1
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
2
|
Kuroiwa K, Sato M, Narita H, Okamura R, Uesugi Y, Sasaki Y, Shimada S, Watanuki M, Fujiwara S, Kawaguchi Y, Arai N, Yanagisawa K, Iezumi K, Hattori N. Influence of FOXP3 single-nucleotide polymorphism after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:583-591. [PMID: 38418747 DOI: 10.1007/s12185-024-03726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The impact of FOXP3 single-nucleotide polymorphisms (SNP) on clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains poorly understood. We investigated the relationship between a FOXP3 SNP (rs3761548) and clinical outcomes in 91 patients with hematological malignancies after allo-HSCT. Multivariate analysis showed that risk of severe chronic graft-versus-host disease (cGVHD) was significantly higher in patients with the FOXP3-3279C/A or FOXP3-3279A/A genotype than those with the FOXP3-3279C/C genotype [hazard ratio (HR), 2.69; 95% confidence interval (CI) 1.14-6.31; p = 0.023]. Therefore, FOXP3 at SNP rs3761548 can be a useful marker for predicting the occurrence of severe cGVHD.
Collapse
Affiliation(s)
- Kai Kuroiwa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Misuzu Sato
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hinako Narita
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Reiko Okamura
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuka Uesugi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keiichi Iezumi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
3
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
5
|
Vimond N, Lasselin J, Anegon I, Guillonneau C, Bézie S. Genetic engineering of human and mouse CD4 + and CD8 + Tregs using lentiviral vectors encoding chimeric antigen receptors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:69-85. [PMID: 33376756 PMCID: PMC7749301 DOI: 10.1016/j.omtm.2020.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The last decade has seen a significant increase of cell therapy protocols using effector T cells (Teffs) in particular, but also, more recently, non-engineered and expanded polyclonal regulatory T cells (Tregs) to control pathological immune responses such as cancer, autoimmune diseases, or transplantation rejection. However, limitations, such as stability, migration, and specificity of the cell products, have been seen. Thus, genetic engineering of these cell subsets is expected to provide the next generation of T cell therapy products. Lentiviral vectors are commonly used to modify Teffs; however, Tregs are more sensitive to mechanical stress and require specific culture conditions. Also, there is a lack of reproducible and efficient protocols to expand and genetically modify Tregs without affecting their growth and function. Due to smaller number of cells and poorer viability upon culture in vitro, mouse Tregs are more difficult to transduce and amplify in vitro than human Tregs. Here we propose a step-by-step protocol to produce both human and mouse genetically modified CD8+ and CD4+ Tregs in sufficient amounts to assess their therapeutic efficacy in humanized immunocompromised mouse models and murine models of disease and to establish pre-clinical proofs of concept. We report, for the first time, an efficient and reproducible method to isolate Tregs from human blood or mouse spleen, transduce with a lentiviral vector, and culture, in parallel, CD8+ and CD4+ Tregs while preserving their function. Beyond chimeric antigen receptor (CAR)-Treg cell therapy, this protocol will promote the development of potential new engineered T cell therapies to treat autoimmune diseases and transplantation rejection.
Collapse
Affiliation(s)
- Nadège Vimond
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Juliette Lasselin
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Ignacio Anegon
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Carole Guillonneau
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
- Corresponding author: Carole Guillonneau, Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 30 Bd Jean Monnet, 44093, Nantes Cedex 01, France.
| | - Séverine Bézie
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
- Corresponding author: Séverine Bézie, Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 30 Bd Jean Monnet, 44093, Nantes Cedex 01, France.
| |
Collapse
|
6
|
Amini L, Greig J, Schmueck-Henneresse M, Volk HD, Bézie S, Reinke P, Guillonneau C, Wagner DL, Anegon I. Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Front Immunol 2021; 11:611638. [PMID: 33717052 PMCID: PMC7945682 DOI: 10.3389/fimmu.2020.611638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory Tcells (Treg) are essential components of peripheral immune homeostasis. Adoptive Treg cell therapy has shown efficacy in a variety of immune-mediated diseases in preclinical studies and is now moving from phase I/IIa to larger phase II studies aiming to demonstrate efficacy. However, hurdles such as in vivo stability and efficacy remain to be addressed. Nevertheless, preclinical models have shown that Treg function and specificity can be increased by pharmacological substances or gene modifications, and even that conventional T cells can be converted to Treg potentially providing new sources of Treg and facilitating Treg cell therapy. The exponential growth in genetic engineering techniques and their application to T cells coupled to a large body of knowledge on Treg open numerous opportunities to generate Treg with "superpowers". This review summarizes the genetic engineering techniques available and their applications for the next-generation of Super-Treg with increased function, stability, redirected specificity and survival.
Collapse
Affiliation(s)
- Leila Amini
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Séverine Bézie
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Carole Guillonneau
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dimitrios L. Wagner
- BIH Center for Regenerative Therapies (BCRT) and Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
7
|
Ruxolitinib plus extracorporeal photopheresis (ECP) for steroid refractory acute graft-versus-host disease of lower GI-tract after allogeneic stem cell transplantation leads to increased regulatory T cell level. Bone Marrow Transplant 2020; 55:2286-2293. [PMID: 32447349 PMCID: PMC8376644 DOI: 10.1038/s41409-020-0952-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a serious complication after stem cell transplantation and is associated with high non-relapse mortality. If steroid treatment as first-line therapeutic approach fails, treatment options are limited. In retrospective studies, ruxolitinib, a selective Janus kinase 1/2 inhibitor as well as extracorporeal photopheresis (ECP) could show high efficacy in treatment of steroid refractory acute and chronic GVHD. Here, we report single-center experience of combining JAK-inhibitor treatment with ECP in 18 patients with severe steroid refractory aGVHD of lower GI-tract. The treatment was well tolerated and no severe cytopenia (grade IV) occurred, in three patients grade III cytopenia could be observed. Response was complete or partial in 44% and 11%, respectively, resulting in an estimated 2 year overall survival of 56%. Steroids were tapered rapidly with a median time of 2 days for halving of dosage avoiding additional steroid-associated side effects. Under treatment with ruxolitinib and ECP, an increased level of regulatory T cells could be observed elucidating direct effects of this treatment on immune response.
Collapse
|
8
|
Seng A, Krausz KL, Pei D, Koestler DC, Fischer RT, Yankee TM, Markiewicz MA. Coexpression of FOXP3 and a Helios isoform enhances the effectiveness of human engineered regulatory T cells. Blood Adv 2020; 4:1325-1339. [PMID: 32259202 PMCID: PMC7160257 DOI: 10.1182/bloodadvances.2019000965] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of immune cells that suppress the immune response. Treg therapy for inflammatory diseases is being tested in the clinic, with moderate success. However, it is difficult to isolate and expand Tregs to sufficient numbers. Engineered Tregs (eTregs) can be generated in larger quantities by genetically manipulating conventional T cells to express FOXP3. These eTregs can suppress in vitro and in vivo but not as effectively as endogenous Tregs. We hypothesized that ectopic expression of the transcription factor Helios along with FOXP3 is required for optimal eTreg immunosuppression. To test this theory, we generated eTregs by retrovirally transducing total human T cells (CD4+ and CD8+) with FOXP3 alone or with each of the 2 predominant isoforms of Helios. Expression of both FOXP3 and the full-length isoform of Helios was required for eTreg-mediated disease delay in a xenogeneic graft-versus-host disease model. In vitro, this corresponded with superior suppressive function of FOXP3 and full-length Helios-expressing CD4+ and CD8+ eTregs. RNA sequencing showed that the addition of full-length Helios changed gene expression in cellular pathways and the Treg signature compared with FOXP3 alone or the other major Helios isoform. Together, these results show that functional human CD4+ and CD8+ eTregs can be generated from total human T cells by coexpressing FOXP3 and full-length Helios.
Collapse
Affiliation(s)
- Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Kelsey L Krausz
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Ryan T Fischer
- Pediatric Gastroenterology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | | |
Collapse
|
9
|
Pan B, Xia F, Wu Y, Zhang F, Lu Z, Fu R, Shang L, Li L, Sun Z, Zeng L, Xu K. Recipient-derived IL-22 alleviates murine acute graft-versus-host disease in association with reduced activation of antigen presenting cells. Cytokine 2018; 111:33-40. [PMID: 30114627 DOI: 10.1016/j.cyto.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023]
Abstract
Acute graft-versus-host disease (aGVHD) remains a major challenging complication of patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). CD4+ effector T cells and their related cytokines mediate pathogenesis of aGVHD, in which donor-T-cell derived interleukin-22 (IL-22) was recently indicated to play a role. The role of recipient-derived IL-22 in aGVHD remains to be elucidated. By applying IL-22 knock out (IL-22KO) mice as recipients of allotransplant, we found recipient derived IL-22 alleviated aGVHD and improved survival of allotransplant recipients. Knock out of IL-22 in recipient increased levels of T-helper (Th1) 1 cells but decreased levels of regulatory T cells (Tregs) in target tissues of aGVHD. Levels of IL-22 increased in aGVHD mice. Recipient antigen presenting cells (APCs) are important sources of IL-22. IL-22 reduced activation of APCs in vitro. Defect of IL-22 in APCs resulted in increased polarization of Th1 cells but decreased level of Tregs in an in vitro co-culture system. Our data highlight an immunoregulatory function of recipient-derived IL-22 in aGVHD.
Collapse
Affiliation(s)
- Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fan Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Yujing Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Fan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhen Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Ruixue Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Li L, Feng R, Fei S, Cao J, Zhu Q, Ji G, Zhou J. NANOGP8 expression regulates gastric cancer cell progression by transactivating DBC1 in gastric cancer MKN-45 cells. Oncol Lett 2018; 17:555-563. [PMID: 30655801 DOI: 10.3892/ol.2018.9595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
NANOGP8 is one of the NANOG pseudogenes and is expressed together with NANOG in multiple tumor tissues and cell lines. The biological functions of NANOGP8 in progression of gastric cancer are unclear. In the present study, the role of NANOGP8 was investigated in gastric cancer cells. The gathered data demonstrated that NANOG expression in both mRNA and protein was elevated in gastric cancer cell lines relative to a normal gastric epithelial cell line. Downregulation of NANOGP8 inhibited cell proliferation and increased apoptosis in human gastric carcinoma cell lines. Furthermore, silencing of NANOGP8 suppressed tumor growth in vivo. Interestingly, it was identified that deleted in breast cancer 1 (DBC1) expression was also markedly downregulated following NANOGP8 knockdown. DNA microarray and dual-luciferase assays further indicated that NANOGP8 may bind to the DBC1 promoter region and regulate DBC1 expression. Therefore, the gathered data provided evidence that NANOGP8 contributes to progression of gastric cancer via DBC1 and may have potential translational significance.
Collapse
Affiliation(s)
- Li Li
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ru Feng
- Department of Geriatrics, Suqian People's Hospital Drum Tower Hospital Group, Suqian, Jiangsu 223800, P.R. China
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Qinqin Zhu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Guozhong Ji
- Department of Medical Examination Center and Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
11
|
Zhang CX, Cheng H, Han X, Qi KM, Chen W, Wu QY, Cao J, Xu KL. [Construction and in vitro verification of a new humanized anti-CD19 CAR-T cells with high affinity]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:465-470. [PMID: 30032561 PMCID: PMC7342930 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Indexed: 11/08/2022]
Abstract
Objective: To construct humanized anti-CD19 chimeric antigen receptor T cells and investigate its ability to kill leukemia cells in vitro and in vivo. Methods: Humanized anti-human CD19 antibody with a high affinity was obtained based on mouse anti-human CD19 antibody (FMC63). Humanized CD19 CAR-T cells (hCART19) were constructed through transfection of lentivirus carrying a CAR sequence of humanized anti-CD19 scFv into human peripheral CD3(+) T cells. The ability of hCART19 to kill leukemia cells and secrete cytokines was detected by LDH release assay and ELISA. The in vivo tumor-killing effect of hCART19 was evaluated in a leukemia mouse model. Results: Several different humanized CD19 single-chain antibodies which were constructed by IMGT database were expressed in the eukaryotic expression vector and purified followed by acquiring humanized CD19 antibody (Clone H3L2) with similar binding ability to FMC63. Humanized CD19 CAR lentivirus vector was constructed and transfected into T cells to obtain hCART19 cells. The LDH release experiment confirmed that the killing rate of target cells was increased gradually along with the increased E/T ratio. When the ratio of E/T was 10∶1, the killing rate of target cells by hCART19 reached a maximum. When Raji cells were used as target cells, the hCART19 cells group had a significantly higher kill rate [(87.56±1.99)%] than the untransduced T cells group [(19.31±1.16)%] and the control virus transduced T cells group [(21.35±1.19)%](P<0.001). ELISA analysis showed that the secretion of IL-2 [ (10.56±0.88) pg/ml] and IFN-γ [ (199.02±12.66) pg/ml] in the hCART19 cells group were significantly higher than those in the untransduced T cells group [IL-2: (3.55±0.26) pg/ml; IFN-γ: (37.63±0.85) pg/ml] and the control virus transduced T cells group [IL-2: (2.92±0.32) pg/ml; IFN-γ: (52.07±3.33) pg/ml](P<0.001). The above experiments also showed similar results when CHO-K1-CD19 cells were used as target cells. Moreover, in a human leukemia xenograft animal model, the results showed that mice in the untransduced T cells group and the control virus transduced T cells group all died within 20 to 30 days, and the hCART19 cell group survived >40 days, which was more than the survival time of the other two groups of mice. The difference was statistically significant (χ(2)=11.73, P=0.008). Conclusion: Humanized CD19 CAR-T cells with anti-leukemic activity have been successfully constructed, which will lay a foundation for clinical studies in the future.
Collapse
Affiliation(s)
- C X Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Posttransplant chimeric antigen receptor therapy. Blood 2018; 131:1045-1052. [PMID: 29358181 DOI: 10.1182/blood-2017-08-752121] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD.
Collapse
|
13
|
Villa NY, Rahman MM, McFadden G, Cogle CR. Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies. Viruses 2016; 8:85. [PMID: 27011200 PMCID: PMC4810275 DOI: 10.3390/v8030085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.
Collapse
Affiliation(s)
- Nancy Y Villa
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Huang Y, Feng S, Xu Y, Chen W, Wang S, Li D, Li Z, Lu Q, Pan X, Xu K. Suppression of graft-versus-host disease and retention of graft-versus-tumour reaction by murine genetically engineered dendritic cells following bone marrow transplantation. Mol Med Rep 2014; 11:3820-7. [PMID: 25529231 DOI: 10.3892/mmr.2014.3123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 09/18/2014] [Indexed: 11/05/2022] Open
Abstract
The effect of infusion of lentiviral vector‑mediated, genetically engineered dendritic cells (DCs) following allogeneic bone marrow transplantation (allo‑BMT) on graft‑versus‑host disease (GVHD) and graft‑versus‑leukemia (GVL) was investigated in a mouse model. Lentivirus‑mediated expression of soluble tumor necrosis factor receptor 1 (sTNFR1) converted immature DCs (imDCs) from BABL/c mice into engineered DCs in vitro. An EL4 leukemia allo‑BMT model of BABL/c to C57BL/6 mice was established. Engineered DCs with donor bone marrow cells and splenocytes were subsequently transplanted into myeloablatively irradiated recipients. The average survival duration in the sTNFR1‑ and pXZ9‑imDC groups was significantly prolonged compared with that of the allo‑BMT group (P<0.05). Mild histological changes in GVHD or leukemia were observed in the recipients in the sTNFR1‑imDC group and clinical GVHD scores in this group were significantly decreased compared with those of the transplantation and pXZ9‑imDC groups. Serum interferon‑γ levels were decreased in the pXZ9‑imDC and sTNFR1‑imDC groups compared with those in the allo‑BMT group (P<0.05), with the reduction being more significant in the sTNFR1‑imDC group (P<0.05). Serum interleukin‑4 expression levels were decreased in the allo‑BMT group, but gradually increased in the pXZ9‑imDC and sTNFR1‑imDC groups (P<0.05). Co‑injection of donor genetically‑engineered imDCs was able to efficiently protect recipient mice from lethal GVHD while preserving GVL effects during allo‑BMT.
Collapse
Affiliation(s)
- Yihong Huang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wanru Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Shuhua Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qunxian Lu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiuying Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
15
|
Horch M, Nguyen VH. Regulatory T-cell immunotherapy for allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2013; 3:29-44. [PMID: 23556110 DOI: 10.1177/2040620711422266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From mouse studies to recently published clinical trials, evidence has accumulated on the potential use of regulatory T cells (Treg) in preventing and treating graft-versus-host disease following hematopoietic-cell transplantation (HCT). However, controversies remain as to the phenotype and stability of various Treg subsets and their respective roles in vivo, the requirement of antigen-specificity of Treg to reduce promiscuous suppression, and the molecular mechanisms by which Treg suppress, particularly in humans. In this review, we discuss recent findings that support a heterogeneous population of human Treg, address advances in understanding how Treg function in the context of HCT, and present data on recent clinical trials that highlight the feasibility and limitations on Treg immunotherapy for graft-versus-host disease.
Collapse
|
16
|
Fozza C, Dazzi F. Regulatory T cells in stem cell transplantation: Main characters or walk-on actors? Crit Rev Oncol Hematol 2012; 84:18-25. [DOI: 10.1016/j.critrevonc.2012.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/29/2012] [Accepted: 02/02/2012] [Indexed: 11/29/2022] Open
|
17
|
Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B, Harris RA, Magnusson PU, Brittebo E, Loskog ASI. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 2012; 9:112. [PMID: 22647574 PMCID: PMC3403996 DOI: 10.1186/1742-2094-9-112] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/30/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. METHODS CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. RESULTS The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. CONCLUSION CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cell Engineering/methods
- Cell Line
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Forkhead Transcription Factors/administration & dosage
- Forkhead Transcription Factors/genetics
- Gene Transfer Techniques
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- Lentivirus/genetics
- Lentivirus/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell/administration & dosage
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Moa Fransson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, SE-75185, Uppsala, Sweden
| | - Elena Piras
- Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husarg 3, SE-75124, Uppsala, Sweden
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala University Hospital Entr 70, SE-75185, Uppsala, Sweden
| | - Berith Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, SE-75185, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, SE-75185, Uppsala, Sweden
| | - BinFeng Lu
- Department of Immunology, University of Pittsburgh, 320 East North Avenue, Pittsburgh, PA, 15212, USA
| | - Robert A Harris
- Applied Immunology, Department of Clinical Neurosciences, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, Solna, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, SE-75185, Uppsala, Sweden
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husarg 3, SE-75124, Uppsala, Sweden
| | - Angelica SI Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, SE-75185, Uppsala, Sweden
| |
Collapse
|
18
|
Prinz I, Koenecke C. Therapeutic potential of induced and natural FoxP3(+) regulatory T cells for the treatment of Graft-versus-host disease. Arch Immunol Ther Exp (Warsz) 2012; 60:183-90. [PMID: 22476537 DOI: 10.1007/s00005-012-0172-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/04/2012] [Indexed: 01/30/2023]
Abstract
Graft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic stem-cell-transplantation. Present GvHD prophylaxis and treatment is still based on unspecific immunosuppressive drug therapy. Over the last decade, the potential of cell-based therapies involving the infusion of regulatory T cells has emerged as a feasible alternative approach for the treatment and prevention of GvHD. Here we review current efforts to translate data obtained in rodent models into clinical trials. Special emphasis is placed on the variety of strategies to generate sufficient numbers of alloantigen-specific regulatory T cells for adoptive cell therapy. This can be achieved either by expansion or by induction of a regulatory phenotype in naive T cells. Stability of the immunosuppressive phenotype of transferred regulatory T cells even in the highly inflammatory environment of acute GvHD will be thereby a critical parameter for actual therapeutic application.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
19
|
Engel N, Rank A. Epigenomics in hematopoietic transplantation: novel treatment strategies. Epigenomics 2011; 3:611-23. [DOI: 10.2217/epi.11.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a high risk but curative treatment option for leukemia, myelodysplasia and other hematological malignancies. After high dose radio- or chemo-therapy, recipient’s hematopoiesis is replaced by a new immunosystem and residual malignant cells are eliminated by the graft-versus-leukemia reaction. The benefit of this immunological effect is limited by the most frequent complication of hematopoietic stem cell transplantation: graft-versus-host disease. In addition to their well-known anti-tumor activity, epigenetic drugs mediate immunotolerance without reducing alloreactivity or even enhance graft-versus-leukemia effect without inducing graft-versus-host disease by regulating cytokine release, increasing the circulating number of regulatory T cells and interacting with natural killer cells. We focus on the use of epigenetic drugs in the allogeneic transplantation setting in relation to their anti-tumor and immunomodulatory potential.
Collapse
Affiliation(s)
- Nicole Engel
- Ludwig-Maximilians-University Munich (Munich, DE), Großhadern Medical Center, Medical Department III, Germany
| | - Andreas Rank
- Klinikum Augsburg (Augsburg, DE), Medical Department II, Germany
| |
Collapse
|
20
|
Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 2011; 117:3220-9. [PMID: 21258007 DOI: 10.1182/blood-2010-08-303008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD4(+) natural killer T (NKT) cells, along with CD4(+)CD25(+) regulatory T cells (Tregs), are capable of controlling aberrant immune reactions. We explored the adoptive transfer of highly purified (> 95%) CD4(+)NKT cells in a murine model of allogeneic hematopoietic cell transplantation (HCT). NKT cells follow a migration and proliferation pattern similar to that of conventional T cells (Tcons), migrating initially to secondary lymphoid organs followed by infiltration of graft-versus-host disease (GVHD) target tissues. NKT cells persist for more than 100 days and do not cause significant morbidity or mortality. Doses of NKT cells as low as 1.0 × 10(4) cells suppress GVHD caused by 5.0 × 10(5) Tcons in an interleukin-4 (IL-4)-dependent mechanism. Protective doses of NKT cells minimally affect Tcon proliferation, but cause significant reductions in interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production by donor Tcons and in skin, spleen, and gastrointestinal pathology. In addition, NKT cells do not impact the graft-versus-tumor (GVT) effect of Tcons against B-cell lymphoma-1 (BCL-1) tumors. These studies elucidate the biologic function of donor-type CD4(+)NKT cells in suppressing GVHD in an allogeneic transplantation setting, demonstrating clinical potential in reducing GVHD in HCT.
Collapse
|
21
|
Sinkovics JG. Antileukemia and antitumor effects of the graft-versus-host disease: a new immunovirological approach. Acta Microbiol Immunol Hung 2010; 57:253-347. [PMID: 21183421 DOI: 10.1556/amicr.57.2010.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In leukemic mice, the native host's explicit and well-defined immune reactions to the leukemia virus (a strong exogenous antigen) and to leukemia cells (pretending in their native hosts to be protected "self" elements) are extinguished and replaced in GvHD (graft-versus-host disease) by those of the immunocompetent donor cells. In many cases, the GvHD-inducer donors display genetically encoded resistance to the leukemia virus. In human patients only antileukemia and anti-tumor cell immune reactions are mobilized; thus, patients are deprived of immune reactions to a strong exogenous antigen (the elusive human leukemia-sarcoma retroviruses). The innate and adaptive immune systems of mice have to sustain the immunosuppressive effects of leukemia-inducing retroviruses. Human patients due to the lack of leukemiainducing retroviral pathogens (if they exist, they have not as yet been discovered), escape such immunological downgrading. After studying leukemogenic retroviruses in murine and feline (and other mammalian) hosts, it is very difficult to dismiss retroviral etiology for human leukemias and sarcomas. Since no characterized and thus recognized leukemogenic-sarcomagenic retroviral agents are being isolated from the vast majority of human leukemias-sarcomas, the treatment for these conditions in mice and in human patients vastly differ. It is immunological and biological modalities (alpha interferons; vaccines; adoptive lymphocyte therapy) that dominate the treatment of murine leukemias, whereas combination chemotherapy remains the main remission-inducing agent in human leukemias-lymphomas and sarcomas (as humanized monoclonal antibodies and immunotoxins move in). Yet, in this apparently different backgrounds in Mus and Homo, GvHD, as a treatment modality, appears to work well in both hosts, by replacing the hosts' anti-leukemia and anti-tumor immune faculties with those of the donor. The clinical application of GvHD in the treatment of human leukemias-lymphomas and malignant solid tumors remains a force worthy of pursuit, refinement and strengthening. Graft engineering and modifications of the inner immunological environment of the recipient host by the activation or administration of tumor memory T cells, selected Treg cells and natural killer (NKT) cell classes and cytokines, and the improved pharmacotherapy of GvHD without reducing its antitumor efficacy, will raise the value of GvHD to the higher ranks of the effective antitumor immunotherapeutical measures. Clinical interventions of HCT/HSCT (hematopoietic cell/stem cell transplants) are now applicable to an extended spectrum of malignant diseases in human patients, being available to elderly patients, who receive non-myeloablative conditioning, are re-enforced by post-transplant donor lymphocyte (NK cell and immune T cell) infusions and post-transplant vaccinations, and the donor cells may derive from engineered grafts, or from cord blood with reduced GvHD, but increased GvL/GvT-inducing capabilities (graft-versus leukemia/tumor). Post-transplant T cell transfusions are possible only if selected leukemia antigen-specific T cell clones are available. In verbatim quotation: "Ultimately, advances in separation of GvT from GvHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies" (Rezvani, A.R. and Storb, R.F., Journal of Autoimmunity 30:172-179, 2008 (see in the text)). It may be added: for cure, a combination of the GvL/T effects with new targeted therapeutic modalities, as elaborated on in this article, will be necessary.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida College of Medicine, St. Joseph Hospital's Cancer Institute, Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Tampa, FL 33607-6307, USA.
| |
Collapse
|