1
|
Ma L, Yue Y, Zhang X, Wu Z, Wang W, Wang W. Acute myeloid leukemia with ETV6::CHIC2 fusion gene: 'Pitfalls' in diagnosis. Hematology 2024; 29:2381170. [PMID: 39037342 DOI: 10.1080/16078454.2024.2381170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia (AML) with ETV6::CHIC2 and basophilia is rare in hematologic malignancies with poor prognosis. Due to the small number of clinical cases, it is misdiagnosed and missed frequently, and it is necessary to explore laboratory detection for accurate diagnosis. METHODS We report a case of AML with ETV6::CHIC2 and basophilia by morphological screening, immunotyping with precise gating, interpretation of FISH results, and RNA transcriptome sequencing, thus laying the accurate diagnosis for clinical treatment. RESULTS We confirmed a rare case of AML with ETV6::CHIC2 rather than FIP1L1::PDGFRA by morphological analysis, correct immunophenotyping via precise gating, rejecting one-sided view of FISH positive result and targeted RNA sequencing. Precise analysis and more advanced means avoid misdiagnosis and missed frequently. After accurate diagnosis, venetoclax and decitabine therapy were given instead of imatinib; eventually, the patient achieved a relatively good effect. DISCUSSION Immunophenotype analysis is necessary to detect the expression of CD7 when encountering pseudo-lymphocytes with multilineage dysplasia and basophilia. FISH and RT-PCR are still indispensable means of diagnosis of fusion genes in hematologic malignancies but can only detect a limited number of known partner genes and fusion genes with known break points. NGS can achieve sequence analysis indiscriminately and detect all fusion transcripts theoretically, greatly improving the detection range. NGS sequencing is required for t(4;12)(q11;p13) in AML that are not accompanied by eosinophilia.
Collapse
Affiliation(s)
- Li Ma
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| | - Yun Yue
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| | - Xia Zhang
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| | - Zhongfeng Wu
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| | - Wei Wang
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| | - Weiguo Wang
- Department of Clinical Laboratory, Fuyang People's Hospital, Fuyang, People's Republic of China
| |
Collapse
|
2
|
Östlund A, Waraky A, Staffas A, Sjögren H, De Moerloose B, Arad-Cohen N, Cheuk D, Navarro JMF, Jahnukainen K, Kaspers GJL, Kovalova Z, Pasauliene R, Saks K, Zeller B, Norén-Nyström U, Hasle H, Fogelstrand L, Abrahamsson J, Palmqvist L. Characterization of Pediatric Acute Myeloid Leukemia With t(7;12)(q36;p13). Genes Chromosomes Cancer 2024; 63:e70003. [PMID: 39508359 DOI: 10.1002/gcc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Acute myeloid leukemia (AML) with t(7;12)(q36;p13) is a recurrent translocation in AML in infants or very young children and was recently included in the World Health Organization (WHO) Classification of Hematolymphoid Tumors. AML with t(7;12) is reported to involve MNX1 and ETV6 signaling; however, the mechanism of leukemogenesis is not well understood, and the presence of MNX1::ETV6 fusion transcripts has only been confirmed in approximately 50% of cases. In contrast, high expression of MNX1 has been seen in all investigated cases. In this study, we investigated the clinical as well as biological characteristics of 12 pediatric AML with t(7;12) and performed whole transcriptome (WTS) and whole genome sequencing (WGS) on six of these. There was no significant difference in event-free survival or overall survival of these t(7;12) AML patients compared with other AML in the same age group. Interestingly, WTS identified several fusion transcripts involving ETV6 but not together with MNX1. WGS identified the genomic breakpoints and revealed that a common fusion partner on chromosome 7 was NOM1. Principal component analysis (PCA) of the WTS data showed that all t(7;12) AML cases cluster together, separate from all other pediatric AML subtypes; all cases had high expression of MNX1, MNX1-AS1, and MNX1-AS2. Hence, t(7;12) AML, despite expressing different fusion transcripts and with varying translocation breakpoints, constitutes a phenotypically homogenous subgroup. This underlines that the leukemia-driving event most likely is ectopic expression of MNX1 and that this therefore should be the defining Classifying criteria of this type of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Translocation, Genetic
- Male
- Child
- Female
- Child, Preschool
- Infant
- Chromosomes, Human, Pair 12/genetics
- Proto-Oncogene Proteins c-ets/genetics
- Chromosomes, Human, Pair 7/genetics
- Transcription Factors/genetics
- ETS Translocation Variant 6 Protein
- Oncogene Proteins, Fusion/genetics
- Repressor Proteins/genetics
- Adolescent
- Homeodomain Proteins/genetics
Collapse
Affiliation(s)
- Anders Östlund
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmed Waraky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Nira Arad-Cohen
- Department of Pediatric Hemato-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children's Hospital, University of Hong Kong, Hong Kong, China
| | | | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Utrecht, The Netherlands
| | - Zhanna Kovalova
- Department of Pediatric Oncology/Hematology, Children's Clinical University Hospital, Riga, Latvia
| | - Ramune Pasauliene
- Center for Pediatric Oncology and Hematology, Vilnius University Children's Hospital, Vilnius, Lithuania
| | - Kadri Saks
- Department of Hematology Oncology, Tallinn Children's Hospital, Tallinn, Estonia
| | - Bernward Zeller
- Department of Pediatric Hematology-Oncology, Oslo University Hospital, Oslo, Norway
| | - Ulrika Norén-Nyström
- Department of Clinical Sciences, Pediatrics, Umea University, Gothenburg, Sweden
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Institution for Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Zhang S, Gao H, You G, Cao H, Wang Y, Gao L, Zheng SJ. A novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation. Int J Biol Macromol 2024; 279:135525. [PMID: 39260650 DOI: 10.1016/j.ijbiomac.2024.135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangju You
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Han W, Qi M, Ye K, He Q, Yekefenhazi D, Xu D, Han F, Li W. Genome-wide association study for growth traits with 1066 individuals in largemouth bass ( Micropterus salmoides). Front Mol Biosci 2024; 11:1443522. [PMID: 39385983 PMCID: PMC11461307 DOI: 10.3389/fmolb.2024.1443522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The largemouth bass is a native species of North America that was first introduced to mainland China in the 1980s. In recent years, it has been extensively farmed in China due to its high meat quality and broad adaptability. In this study, we collected growth trait data from 1,066 largemouth bass individuals across two populations. We generated an average of approximately 7× sequencing coverage for these fish using Illumina sequencers. From the samples, we identified 2,695,687 SNPs and retained 1,809,116 SNPs for further analysis after filtering. To estimate the number of genome-wide effective SNPs, we performed LD pruning with PLINK software and identified 77,935 SNPs. Our GWAS revealed 15 SNPs associated with six growth traits. We identified a total of 24 genes related to growth, with three genes-igf1, myf5, and myf6-directly associated with skeletal muscle development and growth, located near the leading SNP on chromosome 23. Other candidate genes are involved in the development of tissues and organs or other physiological processes. These findings provide a valuable set of SNPs and genes that could be useful for genetic breeding programs aimed at enhancing growth in largemouth bass.
Collapse
Affiliation(s)
- Wei Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Qiwei He
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dinaer Yekefenhazi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Dongdong Xu
- Key Lab of Mariculture and enhancement of Zhejiang Province, Zhejiang Marine fisheries Research institute, Zhoushan, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
5
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
6
|
Manuelyan K, Momcheva I, Angelova S, Nikolov K, Shivarov V. Recurrent ETV6::SYK rearrangement in myeloid malignancies confers partial susceptibility to MEK inhibition. Br J Haematol 2024; 205:382-386. [PMID: 38763512 DOI: 10.1111/bjh.19549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Affiliation(s)
- Karen Manuelyan
- Department of Dermatology and Venereology, Medical Faculty, Trakia University and UMHAT "Prof. Dr. St. Kirkovich", Stara Zagora, Bulgaria
| | - Irina Momcheva
- Department of Rheumatology Burgas, University "Prof. Dr. Asen Zlatarov" Burgas and UMHAT Burgas, Burgas, Bulgaria
| | - Svetlana Angelova
- Laboratory of Cytogenetics and Molecular Biology, National Haematology Hospital, Sofia, Bulgaria
| | - Krasimir Nikolov
- Department of Medical Oncology, Complex Oncology Center, Burgas, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| |
Collapse
|
7
|
Torres-Velarde JM, Allen KN, Salvador-Pascual A, Leija RG, Luong D, Moreno-Santillán DD, Ensminger DC, Vázquez-Medina JP. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic Biol Med 2024; 218:82-93. [PMID: 38579937 PMCID: PMC11177496 DOI: 10.1016/j.freeradbiomed.2024.04.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.
Collapse
Affiliation(s)
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - Roberto G Leija
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Diamond Luong
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
8
|
Xue S, Sun HP, Huang XB, Chen X, Wang T, Ma W, Tian Y, Pan ZL, Li LH, Zhang L, Liu HX, Cao XY. Characteristics and literature review of ETV6::ABL1 fusion gene-positive acute myeloid leukemia. Int J Hematol 2024; 119:564-572. [PMID: 38441775 DOI: 10.1007/s12185-024-03729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE To describe the features of ETV6::ABL1 AML as well as the clinical treatment and outcomes. METHODS Clinical data were collected from three patients diagnosed with ETV6::ABL1 AML at Hebei Yanda Lu Daopei Hospital and Beijing Lu Daopei Hospital. Their clinical and laboratory features were analyzed, and the treatment process and outcomes were described. Ten reported cases of ETV6::ABL1 AML from the literature were also included for analysis. RESULTS The median age of the patients was 34 years, and 2 patients were male. No patient had a history of blood disorders before diagnosis. After relapse, they were referred to our hospital, where the ETV6::ABL1 gene was detected. Unfortunately, Patient 1 died rapidly after leukemia relapse due to severe infection. Patients 2 and 3 received salvage therapy with a dasatinib-containing regimen, followed by allo-HSCT, and are currently alive and disease-free. CONCLUSION ETV6::ABL1 is a rare but recurrent genetic aberration in AML, and the combined use of fluorescence in situ hybridization and PCR can better identify this fusion gene. Patients carrying ETV6::ABL1 have a high relapse rate and a poor prognosis. TKIs are a reasonable treatment option for this group, and allo-HSCT may be curative.
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Hui-Peng Sun
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100176, China
| | - Xiao-Bing Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xue Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wei Ma
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China
| | - Yao Tian
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Lan Pan
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Li-Hong Li
- Department of Hematology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
- Department of Hematology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lu Zhang
- Department of Hematology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PekingBeijing, China
| | - Hong-Xing Liu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Yanjiao Economic and Technological Development Zone, Si Pu Lan Road, Langfang, 065201, Hebei, People's Republic of China.
| |
Collapse
|
9
|
McConville BM, Thomas T, Beckner R, Valadez C, Chook Y, Chung S, Liszczak G. Enigmatic missense mutations can cause disease via creation of de novo nuclear export signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590854. [PMID: 38712034 PMCID: PMC11071533 DOI: 10.1101/2024.04.24.590854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Disease-causing missense mutations that occur within structurally and functionally unannotated protein regions can guide researchers to new mechanisms of protein regulation and dysfunction. Here, we report that the thrombocytopenia-, myelodysplastic syndromes-, and leukemia-associated P214L mutation in the transcriptional regulator ETV6 creates an XPO1-dependent nuclear export signal to cause protein mislocalization. Strategies to disrupt XPO1 activity fully restore ETV6 P214L protein nuclear localization and transcription regulation activity. Mechanistic insight inspired the design of a 'humanized' ETV6 mice, which we employ to demonstrate that the germline P214L mutation is sufficient to elicit severe defects in thrombopoiesis and hematopoietic stem cell maintenance. Beyond ETV6, we employed computational methods to uncover rare disease-associated missense mutations in unrelated proteins that create a nuclear export signal to disrupt protein function. Thus, missense mutations that operate through this mechanism should be predictable and may suggest rational therapeutic strategies for associated diseases.
Collapse
|
10
|
Casuso A, Benavente BP, Leal Y, Carrera-Naipil C, Valenzuela-Muñoz V, Gallardo-Escárate C. Sex-Biased Transcription Expression of Vitellogenins Reveals Fusion Gene and MicroRNA Regulation in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:243-260. [PMID: 38294574 DOI: 10.1007/s10126-024-10291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.
Collapse
Affiliation(s)
- Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera-Naipil
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
11
|
Waraky A, Östlund A, Nilsson T, Weichenhan D, Lutsik P, Bähr M, Hey J, Tunali G, Adamsson J, Jacobsson S, Morsy MHA, Li S, Fogelstrand L, Plass C, Palmqvist L. Aberrant MNX1 expression associated with t(7;12)(q36;p13) pediatric acute myeloid leukemia induces the disease through altering histone methylation. Haematologica 2024; 109:725-739. [PMID: 37317878 PMCID: PMC10905087 DOI: 10.3324/haematol.2022.282255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Certain subtypes of acute myeloid leukemia (AML) in children have inferior outcome, such as AML with translocation t(7;12)(q36;p13) leading to an MNX1::ETV6 fusion along with high expression of MNX1. We have identified the transforming event in this AML and possible ways of treatment. Retroviral expression of MNX1 was able to induce AML in mice, with similar gene expression and pathway enrichment to t(7;12) AML patient data. Importantly, this leukemia was only induced in immune incompetent mice using fetal but not adult hematopoietic stem and progenitor cells. The restriction in transforming capacity to cells from fetal liver is in alignment with t(7;12)(q36;p13) AML being mostly seen in infants. Expression of MNX1 led to increased histone 3 lysine 4 mono-, di- and trimethylation, reduction in H3K27me3, accompanied with changes in genome-wide chromatin accessibility and genome expression, likely mediated through MNX1 interaction with the methionine cycle and methyltransferases. MNX1 expression increased DNA damage, depletion of the Lin-/Sca1+/c-Kit+ population and skewing toward the myeloid lineage. These effects, together with leukemia development, were prevented by pre-treatment with the S-adenosylmethionine analog Sinefungin. In conclusion, we have shown the importance of MNX1 in development of AML with t(7;12), supporting a rationale for targeting MNX1 and downstream pathways.
Collapse
Affiliation(s)
- Ahmed Waraky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Anders Östlund
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Tina Nilsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Gürcan Tunali
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Jenni Adamsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg
| | - Susanna Jacobsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | | | - Susann Li
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg
| | - Lars Palmqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg.
| |
Collapse
|
12
|
Chai B, Li Y, Guo Y, Zhang Z, Jia K, Chai X, Suo Y. ETV7 promotes colorectal cancer progression through upregulation of IFIT3. Funct Integr Genomics 2024; 24:8. [PMID: 38200280 PMCID: PMC10781848 DOI: 10.1007/s10142-023-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Members of the E26 transformation-specific (ETS) variant transcription factor family act as either tumor suppressors or oncogenic factors in numerous types of cancer. ETS variant transcription factor 7 (ETV7) participates in the development of malignant tumors, whereas its involvement in colorectal cancer (CRC) is less clear. In this study, The Cancer Genome Atlas (TCGA) and immunochemistry staining were applied to check the clinical relevance of ETV7 and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in CRC patients. Overexpression and knockdown of ETV7 and IFIT3 were conducted by transfecting the cells with pCDNA3.1 plasmids and siRNAs, respectively. Western blotting was used to detect the protein expression of ETV7 in CRC cells. Cell Counting Kit-8, cell colony formation, and Transwell assays, as well as flow cytometry, were used to evaluate the proliferation, migration, cell cycle, and apoptosis of CRC cells. Furthermore, western blotting, RT-qPCR, and luciferase assay were used to explore the regulation of ETV7 on IFIT3. Rescue assay was used to investigate the significance of ETV7/IFIT3 axis on CRC progression. We found that ETV7 was upregulated in CRC tissues and cells. Overexpression of ETV7 stimulated the proliferation, migration, and cell cycle amplification, and reduced the apoptosis of CRC cells. Downregulation of ETV7 exerted the opposite effect on CRC cell progression. Moreover, we demonstrated that ETV7 stimulated the transcription activity, the mRNA and protein expression of IFIT3 in CRC cells. There was a positive correlation between ETV7 and IFIT3 in CRC patients. IFIT3 knockdown reversed the promotive effect exerted by overexpression of ETV7 on the amplification and migration of CRC cells. By contrast, overexpression of IFIT3 blocked the inhibitory effect of ETV7-targeting siRNA. In summary, ETV7 induces progression of CRC by activating the transcriptional expression of IFIT3. The EVT7/IFIT3 axis may be a novel target for CRC therapy.
Collapse
Affiliation(s)
- Bao Chai
- Department of Gastroenterology, Shanxi Academy of Medical Science, Shanxi Bethune Hospital, Taiyuan, China
| | - Yanjun Li
- Department of Surgery, Shanxi Academy of Medical Science, Shanxi Bethune Hospital, Taiyuan, China
| | - Yarong Guo
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 85 South Jiefang Road, TaiyuanTaiyuan, 030001, Shanxi Province, China.
| | - Zhuowei Zhang
- Medical Imaging Department, Shanxi Medical University, Taiyuan, China
| | - Kai Jia
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhao Chai
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 85 South Jiefang Road, TaiyuanTaiyuan, 030001, Shanxi Province, China
| | - Yuhong Suo
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Taiyuan, China
| |
Collapse
|
13
|
Bochicchio MT, Marconi G, Baldazzi C, Bandini L, Ruggieri F, Lucchesi A, Agostinelli C, Sabattini E, Orsatti A, Ferrari A, Capirossi G, Servili C, Ghelli Luserna di Rorà A, Martinelli G, Simonetti G, Rosti G. ETV6::ABL1-Positive Myeloid Neoplasm: A Case of a Durable Response to Imatinib Mesylate without Additional or Previous Treatment. Int J Mol Sci 2023; 25:118. [PMID: 38203288 PMCID: PMC10779409 DOI: 10.3390/ijms25010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
ETV6::ABL1 rearranged neoplasms are rare hematological diseases. To date, about 80 cases have been reported, including myeloid and lymphoid leukemias. The ETV6 gene codes for an ETS family transcription factor and several fusion partners have been described. When translocated, ETV6 causes the constitutive activation of the partner genes. Here, we report the case of a 54-year-old woman with a cryptic insertion of the 3' region of ABL1 in the ETV6 gene. The patient was first diagnosed with idiopathic hypereosinophilic syndrome, according to the clinical history, conventional cytogenetics, standard molecular analyses and pathologist description. Next generation sequencing of diagnosis samples unexpectedly detected both ETV6::ABL1 type A and B fusion transcripts, which were then confirmed by FISH. The diagnosis was Myeloid/Lymphoid neoplasm with ETV6::ABL1 fusion, and the patient received imatinib mesylate treatment. In a follow-up after more than one year, the patient still maintained the molecular and complete hematological responses. This case highlights the importance of timely and proper diagnostics and prompt tyrosine kinase inhibitor treatment.
Collapse
Affiliation(s)
- Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Giovanni Marconi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| | - Carmen Baldazzi
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (C.B.); (L.B.)
| | - Lorenza Bandini
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (C.B.); (L.B.)
| | - Francesca Ruggieri
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40100 Bologna, BO, Italy;
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| | - Claudio Agostinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40100 Bologna, BO, Italy;
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Agnese Orsatti
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, BO, Italy; (E.S.); (A.O.)
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Giorgia Capirossi
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Chiara Servili
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | | | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy;
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (F.R.); (A.F.); (G.C.); (C.S.); (G.S.)
| | - Gianantonio Rosti
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, FC, Italy; (G.M.); (A.L.)
| |
Collapse
|
14
|
Chen X, Wang W, Yeh J, Wu Y, Oehler VG, Naresh KN, Liu YJ. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J Mol Diagn 2023; 25:932-944. [PMID: 37813298 DOI: 10.1016/j.jmoldx.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jeffrey Yeh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vivian G Oehler
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
15
|
Gou Y, Tang Y, Liu S, Cheng S, Deng X, Wen Q, Feng Y, Peng X, Wang P, Zhang X. Myeloid/Lymphoid Neoplasms with ETV6::PDGFRB Fusion Gene: A Rare Case of Poor Response to Imatinib and Possible Transformation Mechanisms from Myeloid Neoplasms of Bone Marrow to T-Cell Lymphoblastic Lymphoma Invasion in Lymph Nodes. J Inflamm Res 2023; 16:5163-5170. [PMID: 38026242 PMCID: PMC10649033 DOI: 10.2147/jir.s427995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
The ETV6::PDGFRB fusion gene is commonly reported in chronic myelomonocytic leukemia with eosinophilia, yet patients with ETV6::PDGFRB presenting myeloid and lymphoid neoplasms successively have not been reported. Here, we report the first case of a 35-year-old man with myeloid and lymphoid neoplasms harboring an ETV6::PDGFRB fusion gene who demonstrated poor response to imatinib. The patient was diagnosed with an ETV6::PDGFRB fusion gene myeloid neoplasm on initial diagnosis at our hospital. After 5 months of treatment with imatinib, he was diagnosed with T-cell lymphoblastic lymphoma. ETV6::PDGFRB turned negative after increasing the dose of imatinib, but enlarged superficial lymph nodes reappeared the following year. Notably, the patient exhibited a worse response to imatinib treatment. This study describes this rare case and speculates on a possible mechanism.
Collapse
Affiliation(s)
- Yang Gou
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yongjie Tang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Shuiqing Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Siyu Cheng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Xiaojuan Deng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yimei Feng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Xiangui Peng
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Ping Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Zoller J, Trajanova D, Feurstein S. Germline and somatic drivers in inherited hematologic malignancies. Front Oncol 2023; 13:1205855. [PMID: 37904876 PMCID: PMC10613526 DOI: 10.3389/fonc.2023.1205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.
Collapse
Affiliation(s)
| | | | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
18
|
Choate LA, Jiang L, Stein MI, Shen W, Baughn LB, Peterson JF. Detection of an MN1::ETV6 Gene Fusion in a Case of Acute Myeloid Leukemia with Erythroid Differentiation: A Case Report and Review of the Literature. Case Rep Hematol 2023; 2023:9771388. [PMID: 37434656 PMCID: PMC10332927 DOI: 10.1155/2023/9771388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
The MN1::ETV6 gene fusion resulting from t(12;22)(p13;q12) has been rarely reported in myeloid neoplasms. We describe a 69-year-old male with newly diagnosed acute myeloid leukemia (AML) with erythroid differentiation and t(12;22)(p13;q12) demonstrated by conventional chromosome studies. Subsequent fluorescence in situ hybridization studies demonstrated a balanced ETV6 gene rearrangement (at 12p13). To further characterize this translocation, whole-genome sequencing was performed which confirmed t(12;22) with breakpoints involving the MN1 and ETV6 genes. Herein, we describe our case and review the literature to summarize the clinical and laboratory findings in patients with this rare but recurrent MN1::ETV6 gene fusion observed in myeloid neoplasms. Importantly, this case expands the clinical spectrum associated with the MN1::ETV6 gene fusion to include AML with erythroid differentiation. Lastly, this case demonstrates the importance of moving toward more comprehensive molecular testing to fully characterize the driver events in neoplastic genomes.
Collapse
Affiliation(s)
- Lauren A. Choate
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mariam I. Stein
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Wei Shen
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jess F. Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Xiao P, Chen N, Shao T, Bian X, Miao J, Zheng J, Lang X, Wang Y, Chen X, Jin L, Hu S, Xiao S. Intragenic β-synuclein rearrangements in malignancy. Front Oncol 2023; 13:1167143. [PMID: 37251917 PMCID: PMC10213389 DOI: 10.3389/fonc.2023.1167143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
The synuclein family, consisting of α-, β-, and γ-synuclein, is primarily expressed in neurons. Mutations of α- and β-synuclein have been linked to Parkinson's disease and dementia with Lewy bodies, respectively. Recent studies have shown that synucleins are upregulated in various tumors, including breast, ovarian, meningioma, and melanoma, and high synuclein expression is associated with poor prognosis and drug resistance. We report a novel rearrangement of β-synuclein in a pediatric T-cell acute lymphoblastic leukemia (T-ALL) case, where β-synuclein (SNCB) is fused in-frame with ETS variant transcription factor 6 (ETV6), a gene frequently rearranged in acute leukemia including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia (B-ALL), and T-ALL. An additional case of β-synuclein rearrangement was identified in a squamous cell carcinoma of the lung through analysis of the public TCGA database. Both rearrangements involve the C-terminal of β-synuclein. Since β-synuclein shares extensive amino acid similarities with α-synuclein and α-synuclein binds to 14-3-3, an important regulator of apoptosis, the rearranged β-synuclein may contribute to tumorigenesis by deregulating apoptosis. In addition, overexpression of synucleins has been shown to increase cell proliferation, suggesting that the rearranged β-synuclein may also deregulate the cell cycle.
Collapse
Affiliation(s)
- Peifang Xiao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Nan Chen
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Tingting Shao
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Xinni Bian
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jie Miao
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jiajia Zheng
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xingping Lang
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Yiting Wang
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Xiaojun Chen
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Liqin Jin
- Department of Molecular Genetics, Suzhou Sano Precision Medicine Ltd, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, Children’s Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Meng Z, Si W, Xiuli Z, Liu Y. A Parotid Gland Mammary Analogue Secretory Carcinoma in a 4-Year-Old Boy: Case Report and Literature Review. Fetal Pediatr Pathol 2023; 42:342-350. [PMID: 36053082 DOI: 10.1080/15513815.2022.2116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
Background: Mammary analogue secretory carcinoma (MASC) is characterized by similar histologic, immunohistochemical, and molecular features with breast secretory carcinoma. MASC usually occurs in adults. Case report: A 4-year-old boy presented with a right infra-auricular mass. Features of the tumor include solid, tubular, and papillary growth patterns, with homogenous eosinophilic secretions inside microcystic structures. Immunohistochemical stains showed strong, diffuse staining for CK7, S100, pan-TRK protein. P63 was positive in a peripheral pattern. Fluorescence in situ hybridization (FISH) analysis showed the characteristic ETV6-NTRK3 gene fusion. Conclusion: Typical histological, immunohistochemical, and molecular features are present in MASC occurring early in childhood.
Collapse
Affiliation(s)
- Zhao Meng
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wu Si
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhu Xiuli
- Department of Pediatric, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Freitas AC, Maia T, Desterro J, Pierdomenico F, Nunes A, Ferreira I, Cabeçadas J, Gomes da Silva M. Extramedullary T-lymphoblastic Crisis in a Myelodysplastic/Myeloproliferative Neoplasm with a t(12;22)/MN1::ETV6 Translocation. Hematol Rep 2023; 15:212-219. [PMID: 36975735 PMCID: PMC10048276 DOI: 10.3390/hematolrep15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are not a single disease, but rather a heterogenous group of entities which are increasingly subclassified according to recurrent genetic abnormalities. Chromosomal translocations involving meningioma 1 (MN1) and ETS variant 6 (ETV6) genes are extremely rare, but recurrent in myeloid neoplasms. We describe the case of a patient with a myelodysplastic/myeloproliferative neoplasm with neutrophilia, who developed an extramedullary T-lymphoblastic crisis with the t(12;22)(p13;q12) translocation as the only cytogenetic abnormality. This case shares several clinical and molecular features with myeloid/lymphoid neoplasms with eosinophilia. The treatment of this patient was challenging, as the disease proved to be highly refractory to chemotherapy, with allogenic stem cell transplantation as the only curative option. This clinical presentation has not been reported in association with these genetic alterations and supports the concept of a hematopoietic neoplasm originating in an early uncommitted precursor cell. Additionally, it stresses the importance of molecular characterization in the classification and prognostic stratification of these entities.
Collapse
Affiliation(s)
- Ana Carolina Freitas
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
- Correspondence:
| | - Tiago Maia
- Department of Pathology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Joana Desterro
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Francesca Pierdomenico
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Albertina Nunes
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Isabelina Ferreira
- Department of Bone Marrow Transplantation, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - José Cabeçadas
- Department of Pathology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| | - Maria Gomes da Silva
- Department of Hematology, Portuguese Institute of Oncology Lisbon, 1099-023 Lisbon, Portugal
| |
Collapse
|
22
|
Papadopoulou V, Schoumans J, Scarpelli I, Blum S. Description of an Institutional Cohort of Myeloid Neoplasms Carrying ETV6-Locus Deletions or ETV6 Rearrangements. Acta Haematol 2023; 146:401-407. [PMID: 36848872 PMCID: PMC10614221 DOI: 10.1159/000529844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The gene encoding for transcription factor ETV6 presents recurrent lesions in hematologic neoplasms, most notably the ETV6-RUNX1 rearrangement in childhood B-ALL. The role of ETV6 for normal hematopoiesis is unknown, but loss of its function probably participates in oncogenic procedures. In myeloid neoplasms, ETV6-locus (12p13) deletions are rare but recurrent; ETV6 translocations are even rarer, but those reported seem to have phenotype-defining consequences. We herein describe the genetic and hematologic profile of myeloid neoplasms with ETV6 deletions (10 cases), or translocations (4 cases) diagnosed in the last 10 years in our institution. We find complex caryotype to be the most prevalent cytogenetics among patients with 12p13 deletion (8/10 patients), with most frequent coexisting anomalies being monosomy 7 or deletion 7q32 (5/10), monosomy 5 or del5q14-15 (5/10), and deletion/inversion of chromosome 20 (5/10), and most frequent point mutation being TP53 mutation (6/10 patients). Mechanisms of synergy of these lesions are unknown. We describe the entire genetic profile and hematologic phenotype of cases with extremely rare ETV6 translocations, confirming the biphenotypic T/myeloid nature of acute leukemia associated to ETV6-NCOA2 rearrangement, the association of t (1;12) (p36; p13) and of the CHIC2-ETV6 fusion with MDS/AML, and the association of the ETV6-ACSL6 rearrangement with myeloproliferative neoplasm with eosinophilia. Mutation of the intact ETV6 allele was present in two cases and seems to be subclonal to the chromosomal lesions. Decoding the mechanisms of disease related to ETV6 haploinsufficiency or rearrangements is important for the understanding of pathogenesis of myeloid neoplasms and fundamental research must be guided by observational cues.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Hematology Division, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Ilaria Scarpelli
- Oncogenetics Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - Sabine Blum
- Hematology Division, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
23
|
ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation. Nat Cell Biol 2023; 25:298-308. [PMID: 36658219 PMCID: PMC10101761 DOI: 10.1038/s41556-022-01060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/24/2022] [Indexed: 01/21/2023]
Abstract
The EWS-FLI1 fusion oncoprotein deregulates transcription to initiate the paediatric cancer Ewing sarcoma. Here we used a domain-focused CRISPR screen to implicate the transcriptional repressor ETV6 as a unique dependency in this tumour. Using biochemical assays and epigenomics, we show that ETV6 competes with EWS-FLI1 for binding to select DNA elements enriched for short GGAA repeat sequences. Upon inactivating ETV6, EWS-FLI1 overtakes and hyper-activates these cis-elements to promote mesenchymal differentiation, with SOX11 being a key downstream target. We show that squelching of ETV6 with a dominant-interfering peptide phenocopies these effects and suppresses Ewing sarcoma growth in vivo. These findings reveal targeting of ETV6 as a strategy for neutralizing the EWS-FLI1 oncoprotein by reprogramming of genomic occupancy.
Collapse
|
24
|
Kodgule R, Goldman JW, Monovich AC, Saari T, Aguilar AR, Hall CN, Rajesh N, Gupta J, Chu SCA, Ye L, Gurumurthy A, Iyer A, Brown NA, Chiang MY, Cieslik MP, Ryan RJ. ETV6 Deficiency Unlocks ERG-Dependent Microsatellite Enhancers to Drive Aberrant Gene Activation in B-Lymphoblastic Leukemia. Blood Cancer Discov 2023; 4:34-53. [PMID: 36350827 PMCID: PMC9820540 DOI: 10.1158/2643-3230.bcd-21-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/30/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Distal enhancers play critical roles in sustaining oncogenic gene-expression programs. We identify aberrant enhancer-like activation of GGAA tandem repeats as a characteristic feature of B-cell acute lymphoblastic leukemia (B-ALL) with genetic defects of the ETV6 transcriptional repressor, including ETV6-RUNX1+ and ETV6-null B-ALL. We show that GGAA repeat enhancers are direct activators of previously identified ETV6-RUNX1+/- like B-ALL "signature" genes, including the likely leukemogenic driver EPOR. When restored to ETV6-deficient B-ALL cells, ETV6 directly binds to GGAA repeat enhancers, represses their acetylation, downregulates adjacent genes, and inhibits B-ALL growth. In ETV6-deficient B-ALL cells, we find that the ETS transcription factor ERG directly binds to GGAA microsatellite enhancers and is required for sustained activation of repeat enhancer-activated genes. Together, our findings reveal an epigenetic gatekeeper function of the ETV6 tumor suppressor gene and establish microsatellite enhancers as a key mechanism underlying the unique gene-expression program of ETV6-RUNX1+/- like B-ALL. SIGNIFICANCE We find a unifying mechanism underlying a leukemia subtype-defining gene-expression signature that relies on repetitive elements with poor conservation between humans and rodents. The ability of ETV6 to antagonize promiscuous, nonphysiologic ERG activity may shed light on other roles of these key regulators in hematolymphoid development and human disease. See related commentary by Mercher, p. 2. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Rohan Kodgule
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua W. Goldman
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Travis Saari
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Athalee R. Aguilar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cody N. Hall
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Niharika Rajesh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juhi Gupta
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shih-Chun A. Chu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Li Ye
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ashwin Iyer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Noah A. Brown
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mark Y. Chiang
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcin P. Cieslik
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Russell J.H. Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
25
|
Su Z, Liu X, Hu W, Yang J, Yin X, Hou F, Wang Y, Zhang J. Myeloid neoplasm with ETV6::ACSl6 fusion: landscape of molecular and clinical features. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1010-1018. [PMID: 36069745 DOI: 10.1080/16078454.2022.2117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Since the publication of the third edition, the WHO classification of tumors of hematopoietic and lymphoid disorders has introduced the disease entity of 'myeloid/lymphoid neoplasms with eosinophilia and PDGFRB rearrangement', in which the most common chromosomal abnormality is t(5;12) (q32;p13.2), and this abnormality generates the ETV6::PDGFRB fusion gene. However, there have been patients with hematologic features and chromosomal abnormalities that are extremely similar to those carrying ETV6::PDGFRB fusion. These rare disorders harbor ETV6::ACSL6 fusion, and only sporadic cases have been reported at present. METHODS We report a patient with chronic eosinophilic leukemia (CEL) carrying chromosome translocation t(5;12)(q32;p13.2), and we present the clinical features. In addition, we conducted a literature review to collect all reported cases and summarized the genetic and clinical profiling as well as the treatments and outcomes. RESULT In addition to our patient, a total of 19 cases have been previously reported, including 6 variants of ETV6::ACSL6 and 3 reciprocals. We identified a novel variant of the ETV6::ACSL6 transcript in our patient, and the breakpoint was flanked by exon 2 of ETV6 and exon 2 of ACSL6. The cellular morphology features consisted of myeloproliferative neoplasm (MPN); myelodysplastic/myeloproliferative neoplasm (MDS/MPN), specifically CEL; and acute myelocytic leukemia (AML). The treatments and outcomes varied greatly depending on the type of disease, although tyrosine kinase inhibitors (TKIs) were not effective. CONCLUSION In contrast to neoplasms with ETV6::PDGFRB fusion, myeloid neoplasms with ETV6::ACSL6 fusion have unique characteristics.
Collapse
Affiliation(s)
- Zhan Su
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xin Liu
- Department of Stem Cell Transplantation, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Weiyu Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jie Yang
- Department of Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangcong Yin
- Department of Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fang Hou
- Department of Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yaqi Wang
- Department of Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jinglian Zhang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
26
|
Xiong Z, Wu S, Li FJ, Luo C, Jin QY, Connolly ID, Hayden Gephart M, You L. Elevated ETV6 Expression in Glioma Promotes an Aggressive In Vitro Phenotype Associated with Shorter Patient Survival. Genes (Basel) 2022; 13:genes13101882. [PMID: 36292767 PMCID: PMC9656946 DOI: 10.3390/genes13101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background: GBM astrocytes may adopt fetal astrocyte transcriptomic signatures involved in brain development and migration programs to facilitate diffuse tumor infiltration. Our previous data show that ETS variant 6 (ETV6) is highly expressed in human GBM and fetal astrocytes compared to normal mature astrocytes. We hypothesized that ETV6 played a role in GBM tumor progression. Methods: Expression of ETV6 was first examined in two American and three Chinese tissue microarrays. The correlation between ETV6 staining intensity and patient survival was calculated, followed by validation using public databases—TCGA and REMBRANDT. The effect of ETV6 knockdown on glioma cell proliferation (EdU), viability (AnnexinV labeling), clonogenic growth (colony formation), and migration/invasion (transwell assays) in GBM cells was tested. RNA sequencing and Western blot were performed to elucidate the underlying molecular mechanisms. Results: ETV6 was highly expressed in GBM and associated with an unfavorable prognosis. ETV6 silencing in glioma cells led to increased apoptosis or decreased proliferation, clonogenicity, migration, and invasion. RNA-Seq-based gene expression and pathway analyses revealed that ETV6 knockdown in U251 cells led to the upregulation of genes involved in extracellular matrix organization, NF-κB signaling, TNF-mediated signaling, and the downregulation of genes in the regulation of cell motility, cell proliferation, PI3K-AKT signaling, and the Ras pathway. The downregulation of the PI3K-AKT and Ras-MAPK pathways were further validated by immunoblotting. Conclusion: Our findings suggested that ETV6 was highly expressed in GBM and its high expression correlated with poor survival. ETV6 silencing decreased an aggressive in vitro phenotype probably via the PI3K-AKT and Ras-MAPK pathways. The study encourages further investigation of ETV6 as a potential therapeutic target of GBM.
Collapse
Affiliation(s)
- Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Feng-jiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Qiu-yan Jin
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ian David Connolly
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Correspondence: to: (M.H.G.); (L.Y.)
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
- Correspondence: to: (M.H.G.); (L.Y.)
| |
Collapse
|
27
|
Koochaki SHJ, Słabicki M, Lumpkin R, Zou C, Belizaire R, Fischer ES, Ebert BL. A STUB1 ubiquitin ligase/CHIC2 protein complex negatively regulates the IL-3, IL-5, and GM-CSF cytokine receptor common β chain (CSF2RB) protein stability. J Biol Chem 2022; 298:102484. [PMID: 36108743 PMCID: PMC9574515 DOI: 10.1016/j.jbc.2022.102484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 02/02/2023] Open
Abstract
The IL-3, IL-5, and GM-CSF family of cytokines play an essential role in the growth, differentiation, and effector functions of multiple hematopoietic cell types. Receptors in this family are composed of cytokine-specific α chains and a common β chain (CSF2RB), responsible for the majority of downstream signaling. CSF2RB abundance and stability influence the magnitude of the cellular response to cytokine stimulation, but the exact mechanisms of regulation are not well understood. Here, we use genetic screens in multiple cellular contexts and cytokine conditions to identify STUB1, an E3 ubiquitin ligase, and CHIC2 as regulators of CSF2RB ubiquitination and protein stability. We demonstrate that Stub1 and Chic2 form a complex that binds Csf2rb and that genetic inactivation of either Stub1 or Chic2 leads to reduced ubiquitination of Csf2rb. The effects of Stub1 and Chic2 on Csf2rb were greatest at reduced cytokine concentrations, suggesting that Stub1/Chic2-mediated regulation of Csf2rb is a mechanism of reducing cell surface accumulation when cytokine levels are low. Our study uncovers a mechanism of CSF2RB regulation through ubiquitination and lysosomal degradation and describes a role for CHIC2 in the regulation of a cytokine receptor.
Collapse
Affiliation(s)
- Sebastian H J Koochaki
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard-MIT MD/PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Mikołaj Słabicki
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ryan Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Charles Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Roger Belizaire
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin L Ebert
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Siti Mariam I, Norhidayah R, Zulaikha AB, Nazihah MY, Rosline H, Kausar GA, Sarina S, Azlan H, Ankathil R. Differential prognostic impact of stratified additional chromosome abnormalities on disease progression among Malaysian chronic myeloid leukemia patients undergoing treatment with imatinib mesylate. Front Oncol 2022; 12:720845. [PMID: 36003793 PMCID: PMC9393706 DOI: 10.3389/fonc.2022.720845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of additional chromosome abnormalities (ACAs) in chronic myeloid leukemia (CML) patients during treatment with a tyrosine kinase inhibitor (TKI) regime is generally associated with resistance to treatment and a sign of disease progression to accelerated phase or blast phase. We report the type, frequency, and differential prognostic impact of stratified ACAs with treatment response in 251 Malaysian CML patients undergoing TKI therapy. ACAs were observed in 40 patients (15.9%) of which 7 patients (17.5%) showed ACAs at time of initial diagnosis whereas 33 patients (82.5%) showed ACAs during the course of IM treatment. In order to assess the prognostic significance, we stratified the CML patients with ACAs into four groups, group 1 (+8/+Ph), group 2 (hypodiploidy), group 3 (structural/complex abnormalities); group 4 (high-risk complex abnormalities), and followed up the disease outcome of patients. Group 1 and group 2 relatively showed good prognosis while patients in group 3 and group 4 had progressed or transformed to AP or blast phase with a median survival rate of 12 months after progression. Novel ACAs consisting of rearrangements involving chromosome 11 and chromosome 12 were found to lead to myeloid BP while ACAs involving the deletion of 7q or monosomy 7 led toward a lymphoid blast phase. There was no evidence of group 2 abnormalities (hypodiploidy) contributing to disease progression. Compared to group 1 abnormalities, CML patients with group 3 and group 4 abnormalities showed a higher risk for disease progression. We conclude that the stratification based on individual ACAs has a differential prognostic impact and might be a potential novel risk predictive system to prognosticate and guide the treatment of CML patients at diagnosis and during treatment.
Collapse
Affiliation(s)
- Ismail Siti Mariam
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ramli Norhidayah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abu Bakar Zulaikha
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yunus Nazihah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hassan Rosline
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ghazali Anis Kausar
- Unit of Biostatstics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Sulong Sarina
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Ravindran Ankathil,
| |
Collapse
|
29
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
30
|
Biswas A, Rajesh Y, Das S, Banerjee I, Kapoor N, Mitra P, Mandal M. Therapeutic targeting of RBPJ, an upstream regulator of ETV6 gene, abrogates ETV6-NTRK3 fusion gene transformations in glioblastoma. Cancer Lett 2022; 544:215811. [PMID: 35787922 DOI: 10.1016/j.canlet.2022.215811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Fusion genes are abnormal genes resulting from chromosomal translocation, insertion, deletion, inversion, etc. ETV6, a rather promiscuous partner forms fusions with several other genes, most commonly, the NTRK3 gene. This fusion leads to the formation of a constitutively activated tyrosine kinase which activates the Ras-Raf-MEK and PI3K/AKT/MAPK pathways, leading the cells through cycles of uncontrolled division and ultimately resulting in cancer. Targeted therapies against this ETV6-NTRK3 fusion protein are much needed. Therefore, to find a targeted approach, a transcription factor RBPJ regulating the ETV6 gene was established and since the ETV6-NTRK3 fusion gene is downstream of the ETV6 promoter/enhancer, this fusion protein is also regulated. The regulation of the ETV6 gene via RBPJ was validated by ChIP analysis in human glioblastoma (GBM) cell lines and patient tissue samples. This study was further followed by the identification of an inhibitor, Furamidine, against transcription factor RBPJ. It was found to be binding with the DNA binding domain of RBPJ with antitumorigenic properties and minimal organ toxicity. Hence, a new target RBPJ, regulating the production of ETV6 and ETV6-NTRK3 fusion protein was found along with a potent RBPJ inhibitor Furamidine.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Yetirajam Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
31
|
Suttorp J, Lühmann JL, Behrens YL, Göhring G, Steinemann D, Reinhardt D, von Neuhoff N, Schneider M. Optical Genome Mapping as a Diagnostic Tool in Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:2058. [PMID: 35565187 PMCID: PMC9102001 DOI: 10.3390/cancers14092058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric AML is characterized by numerous genetic aberrations (chromosomal translocations, deletions, insertions) impacting its classification for risk of treatment failure. Aberrations are described by classical cytogenetic procedures (karyotyping, FISH), which harbor limitations (low resolution, need for cell cultivation, cost-intensiveness, experienced staff required). Optical Genome Mapping (OGM) is an emerging chip-based DNA technique combining high resolution (~500 bp) with a relatively short turnaround time. Twenty-four pediatric patients with AML, bi-lineage leukemia, and mixed-phenotype acute leukemia were analyzed by OGM, and the results were compared with cytogenetics. Results were discrepant in 17/24 (70%) cases, including 32 previously unknown alterations called by OGM only. One newly detected deletion and two translocations were validated by primer walking, breakpoint-spanning PCR, and DNA sequencing. As an added benefit, in two cases, OGM identified a new minimal residual disease (MRD) marker. Comparing impact on risk stratification in de novo AML, 19/20 (95%) cases had concordant results while only OGM unraveled another high-risk aberration. Thus, OGM considerably expands the methodological spectrum to optimize the diagnosis of pediatric AML via the identification of new aberrations. Results will contribute to a better understanding of leukemogenesis in pediatric AML. In addition, aberrations identified by OGM may provide markers for MRD monitoring.
Collapse
Affiliation(s)
- Julia Suttorp
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Jonathan Lukas Lühmann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (J.L.L.); (Y.L.B.); (G.G.); (D.S.)
| | - Dirk Reinhardt
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Nils von Neuhoff
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| | - Markus Schneider
- Clinic of Pediatrics III, University Hospital Essen, Virchow-Straße 171, 45147 Essen, Germany; (J.S.); (D.R.); (N.v.N.)
| |
Collapse
|
32
|
Neveu B, Richer C, Cassart P, Caron M, Jimenez-Cortes C, St-Onge P, Fuchs C, Garnier N, Gobeil S, Sinnett D. Identification of new ETV6 modulators through a high-throughput functional screening. iScience 2022; 25:103858. [PMID: 35198911 PMCID: PMC8851229 DOI: 10.1016/j.isci.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network. We develop a genome-wide shRNAs screen for ETV6 modulators The screen uncovered 13 novel putative ETV6 modulator genes The modulators demonstrated a broad impact on the ETV6 transcriptional network T-ALL cells results suggest modulators are conserved in other cellular contexts
Collapse
Affiliation(s)
- Benjamin Neveu
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Chantal Richer
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Pauline Cassart
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Maxime Caron
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Camille Jimenez-Cortes
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Molecular Biology Program, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Claire Fuchs
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Nicolas Garnier
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Stéphane Gobeil
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Corresponding author
| | - Daniel Sinnett
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
- Corresponding author
| |
Collapse
|
33
|
Fishman H, Madiwale S, Geron I, Bari V, Van Loocke W, Kirschenbaum Y, Ganmore I, Kugler E, Rein-Gil A, Friedlander G, Schiby G, Birger Y, Strehl S, Soulier J, Knoechel B, Ferrando A, Noy-Lotan S, Nagler A, Mulloy JC, Van Vlierberghe P, Izraeli S. ETV6-NCOA2 fusion induces T/myeloid mixed-phenotype leukemia through transformation of nonthymic hematopoietic progenitor cells. Blood 2022; 139:399-412. [PMID: 34624096 PMCID: PMC9906988 DOI: 10.1182/blood.2020010405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 09/26/2021] [Indexed: 01/05/2023] Open
Abstract
Mixed-phenotype acute leukemia is a rare subtype of leukemia in which both myeloid and lymphoid markers are co-expressed on the same malignant cells. The pathogenesis is largely unknown, and the treatment is challenging. We previously reported the specific association of the recurrent t(8;12)(q13;p13) chromosomal translocation that creates the ETV6-NCOA2 fusion with T/myeloid leukemias. Here we report that ETV6-NCOA2 initiates T/myeloid leukemia in preclinical models; ectopic expression of ETV6-NCOA2 in mouse bone marrow hematopoietic progenitors induced T/myeloid lymphoma accompanied by spontaneous Notch1-activating mutations. Similarly, cotransduction of human cord blood CD34+ progenitors with ETV6-NCOA2 and a nontransforming NOTCH1 mutant induced T/myeloid leukemia in immunodeficient mice; the immunophenotype and gene expression pattern were similar to those of patient-derived ETV6-NCOA2 leukemias. Mechanistically, we show that ETV6-NCOA2 forms a transcriptional complex with ETV6 and the histone acetyltransferase p300, leading to derepression of ETV6 target genes. The expression of ETV6-NCOA2 in human and mouse nonthymic hematopoietic progenitor cells induces transcriptional dysregulation, which activates a lymphoid program while failing to repress the expression of myeloid genes such as CSF1 and MEF2C. The ETV6-NCOA2 induced arrest at an early immature T-cell developmental stage. The additional acquisition of activating NOTCH1 mutations transforms the early immature ETV6-NCOA2 cells into T/myeloid leukemias. Here, we describe the first preclinical model to depict the initiation of T/myeloid leukemia by a specific somatic genetic aberration.
Collapse
Affiliation(s)
- Hila Fishman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Shreyas Madiwale
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Ifat Geron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Vase Bari
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | - Wouter Van Loocke
- Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Yael Kirschenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Cancer Research Center, Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan, Israel
| | - Itamar Ganmore
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Cancer Research Center, Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan, Israel
| | - Eitan Kugler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Avigail Rein-Gil
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ginette Schiby
- Institute for Pathology Laboratory, Hematology Institute, Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan, Israel
| | - Yehudit Birger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Sabine Strehl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jean Soulier
- Genomes and Cell Biology of Disease, Hôpital Saint-Louis, Paris, France
| | - Birgit Knoechel
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY
| | - Sharon Noy-Lotan
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Division Bone Marrow Transplants and Cord-Blood Bank, Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan, Israel
| | - James C. Mulloy
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | | | - Shai Izraeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rina Zaizov Pediatric Hematology Oncology Division, Schneider Children's Medical Center of Israel, Petah Tikvah, Israel
- Department of System Biology, City of Hope, Duarte, CA
| |
Collapse
|
34
|
Li Z, Sun MZ, Lv X, Guo C, Liu S. ETV6 Regulates Hemin-Induced Erythroid Differentiation of K562 Cells through Mediating the Raf/MEK/ERK Pathway. Biol Pharm Bull 2022; 45:250-259. [PMID: 35228392 DOI: 10.1248/bpb.b21-00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a member of transcription factor E-Twenty Six (ETS) family, ETS variant 6 (ETV6) plays significant role in hematopoiesis and embryonic development. ETV6 dysexpression also involved in the occurrence, development and progression of cancers and leukemia. In current work, we hypothesized that ETV6 plays a role in erythroid differentiation of chronic myeloid leukemia (CML). We found the protein expression level of ETV6 was significantly upregulated during hemin-induced erythroid differentiation of K562 cells. Moreover, overexpression of ETV6 inhibited erythroid differentiation in hemin-induced K562 cells with decreased numbers of benzidine-positive cells and decreased expression levels of erythroid differentiation specific markers glycophorin (GPA), CD71, hemoglobin A (HBA), α-globin, γ-globin and ε-globin. Conversely, ETV6 knockdown promoted erythroid differentiation in hemin-induced K562 cells. Furthermore, ETV6 expression level slightly positively with the proliferation capacity of K562 cells treated with hemin. Mechanistically, ETV6 overexpression inhibited fibrosarcoma/mitogen activated extracellular signal-regulated kinase/extracellular regulated protein kinase (Raf/MEK/ERK) pathway, ETV6 knockdown activated the Raf/MEK/ERK pathway. Collectively, the current work demonstrates that ETV6 plays an inhibitory role in the regulation of K562 cell erythroid differentiation via Raf/MEK/ERK pathway, it would be a potentially therapeutic target for dyserythropoiesis.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Xinxin Lv
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University
| |
Collapse
|
35
|
t(4;12)(q12;p13) ETV6-rearranged AML without eosinophilia does not involve PDGFRA: relevance for imatinib insensitivity. Blood Adv 2021; 6:818-827. [PMID: 34587239 PMCID: PMC8945303 DOI: 10.1182/bloodadvances.2021005280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
Apparent ETV6-PDGFRA fusions identified by FISH analysis in t(4;12)(q12;p13) AML should be confirmed by sequencing. Sequence-confirmed ETV6-PDGFRA fusions have not been identified in patients with t(4;12)(q12;p13) AML without eosinophilia.
Acute myeloid leukemia (AML) with t(4;12)(q12;p13) translocation is rare and often associated with an aggressive clinical course and poor prognosis. Previous reports based on fluorescence in situ hybridization (FISH) analysis have suggested that ETV6::PDGFRA fusions are present in these patients, despite the absence of eosinophilia, which is typically found in other hematopoietic malignancies with PDGFRA-containing fusions. We first detected an ETV6-SCFD2 fusion by targeted RNA sequencing in a patient with t(4;12)(q12;p13) who had been diagnosed with an ETV6-PDGFRA fusion by FISH analysis but failed to respond to imatinib. We then retrospectively identified 4 additional patients with AML and t(4;12)(q12;p13) with apparent ETV6-PDGFRA fusions using chromosome and FISH analysis and applied targeted RNA sequencing to archival material. We again detected rearrangements between ETV6 and non-PDGFRA 4q12 genes, including SCFD2, CHIC2, and GSX2. None of the 3 patients who received imatinib based on the incorrect assumption of an ETV6-PDGFRA fusion responded. Our findings highlight the importance of using a sequencing-based assay to confirm the presence of targetable gene fusions, particularly in genomic regions, such as 4q12, with many clinically relevant genes that are too close to resolve by chromosome or FISH analysis. Finally, combining our data and review of the literature, we show that sequence-confirmed ETV6-PDGFRA fusions are typically found in eosinophilic disorders (3/3 cases), and patients with t(4;12)(q12;p13) without eosinophilia are found to have other 4q12 partners on sequencing (17/17 cases).
Collapse
|
36
|
Parinet V, Chapiro E, Bidet A, Gaillard B, Maarek O, Simon L, Lefebvre C, Defasque S, Mozziconacci MJ, Quinquenel A, Decamp M, Lifermann F, Ali-Ammar N, Maillon A, Baron M, Martin M, Struski S, Penther D, Micol JB, Auger N, Bilhou-Nabera C, Martignoles JA, Tondeur S, Nguyen-Khac F, Hirsch P, Roos-Weil D. Myeloid malignancies with translocation t(4;12)(q11-13;p13): molecular landscape, clonal hierarchy and clinical outcomes. J Cell Mol Med 2021; 25:9557-9566. [PMID: 34492730 PMCID: PMC8505829 DOI: 10.1111/jcmm.16895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Translocation t(4;12)(q11‐13;p13) is a recurrent but very rare chromosomal aberration in acute myeloid leukaemia (AML) resulting in the non‐constant expression of a CHIC2/ETV6 fusion transcript. We report clinico‐biological features, molecular characteristics and outcomes of 21 cases of t(4;12) including 19 AML and two myelodysplastic syndromes (MDS). Median age at the time of t(4;12) was 78 years (range, 56–88). Multilineage dysplasia was described in 10 of 19 (53%) AML cases and CD7 and/or CD56 expression in 90%. FISH analyses identified ETV6 and CHIC2 region rearrangements in respectively 18 of 18 and 15 of 17 studied cases. The t(4;12) was the sole cytogenetic abnormality in 48% of cases. The most frequent associated mutated genes were ASXL1 (n = 8/16, 50%), IDH1/2 (n = 7/16, 44%), SRSF2 (n = 5/16, 31%) and RUNX1 (n = 4/16, 25%). Interestingly, concurrent FISH and molecular analyses showed that t(4;12) can be, but not always, a founding oncogenic event. Median OS was 7.8 months for the entire cohort. In the 16 of 21 patients (76%) who received antitumoral treatment, overall response and first complete remission rates were 37% and 31%, respectively. Median progression‐free survival in responders was 13.7 months. Finally, t(4;12) cases harboured many characteristics of AML with myelodysplasia‐related changes (multilineage dysplasia, MDS‐related cytogenetic abnormalities, frequent ASXL1 mutations) and a poor prognosis.
Collapse
Affiliation(s)
- Vincent Parinet
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Elise Chapiro
- Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,Centre de Recherche des Cordeliers, Inserm, Université de Paris, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Paris, France
| | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Baptiste Gaillard
- Laboratoire d'Hématologie, Hôpital Robert Debré, Reims, France.,Laboratoire de cytogénétique, Centre Hospitalier de Troyes, Troyes, France
| | - Odile Maarek
- Hematology Laboratory, Hôpital Saint-Louis, APHP, University of Paris, Paris, France
| | - Laurence Simon
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Christine Lefebvre
- Laboratoire de Génétique des Hémopathies, CHU Grenoble Alpes, Grenoble, France
| | - Sabine Defasque
- Secteur cytogénétique hématologique, Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | | | - Anne Quinquenel
- CHU de Reims, Hôpital Robert Debré, Reims, France.,Unité de Formation et de recherche (UFR) Médecine, Université Reims Champagne-Ardenne, Reims, France
| | | | | | - Nadia Ali-Ammar
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Agathe Maillon
- Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Marine Baron
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Mélanie Martin
- Laboratoire de Cytogénétique, CHU Caremeau, Nîmes, France
| | - Stéphanie Struski
- Laboratoire d'hématologie/Plateau Technique Hématologie-Oncologie, IUCT Oncopole, Toulouse, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, CLCC Henri Becquerel & INSERM U1245, Rouen, France
| | - Jean-Baptiste Micol
- Hematology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique, Institut Gustave Roussy, Villejuif, France
| | - Chrystèle Bilhou-Nabera
- Service d'Hématologie Biologique, Unité de Cytogénétique onco-hématologique, Hôpital Saint-Antoine, APHP, Sorbonne Université, Paris, France.,Département d'hématologie biologique, INSERM, Centre de Recherche Saint-Antoine Sorbonne, Université, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Jean-Alain Martignoles
- Département d'hématologie biologique, INSERM, Centre de Recherche Saint-Antoine Sorbonne, Université, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Sylvie Tondeur
- Laboratoire de Génétique des Hémopathies, CHU Grenoble Alpes, Grenoble, France
| | - Florence Nguyen-Khac
- Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,Centre de Recherche des Cordeliers, Inserm, Université de Paris, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Paris, France
| | - Pierre Hirsch
- Département d'hématologie biologique, INSERM, Centre de Recherche Saint-Antoine Sorbonne, Université, AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Damien Roos-Weil
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.,Centre de Recherche des Cordeliers, Inserm, Université de Paris, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Paris, France
| | | |
Collapse
|
37
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
38
|
Lim HJ, Lee JH, Lee YE, Baek HJ, Kook H, Park JH, Lee SY, Choi HW, Choi HJ, Kee SJ, Shin JH, Shin MG. The First Korean Case of NUP98-NSD1 and a Novel SNRK-ETV6 Fusion in a Pediatric Therapy-related Acute Myeloid Leukemia Patient Detected by Targeted RNA Sequencing. Ann Lab Med 2021; 41:443-446. [PMID: 33536367 PMCID: PMC7884187 DOI: 10.3343/alm.2021.41.4.443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jun Hyung Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Jo Baek
- Department of Pediatrics, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hoon Kook
- Department of Pediatrics, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ju Heon Park
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
39
|
Tang H, Zhong L, Jiang H, Zhang Y, Liang G, Chen G, Xie G. Secretory carcinoma of the breast with multiple distant metastases in the brain and unfavorable prognosis: a case report and literature review. Diagn Pathol 2021; 16:56. [PMID: 34162406 PMCID: PMC8223364 DOI: 10.1186/s13000-021-01115-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Secretory carcinoma of the breast is one of the rarest entities, accounting for less than 0.15 % of all infiltrating breast carcinomas. It has characteristic histopathological and molecular features and, in general, a more favorable prognosis. In this case report, we describe a local, advanced secretory carcinoma of the breast with aggressive course and an unfavorable outcome. Case presentation A hard, painless, and palpably bossed mass approximately 12.0 cm in diameter occupied most of the left breast of a 39-year-old woman with fixation to the overlying skin. Breast ultrasonography and magnetic resonance imaging (MRI) scans gave the same grading as BI-RADS IV. A needle biopsy was performed, and the pathological diagnosis was secretory carcinoma. Neoadjuvant chemotherapy (NAC) was then performed, after which ultrasonography and MRI scans revealed chemo-resistance of the tumor to NAC. Left breast mastectomy and axillary lymphadenectomy were subsequently performed. Tumor cells were triple-negative and positive for S-100 and periodic acid-Schiff (PAS) staining. Fluorescence in-situ hybridization (FISH) analysis indicated a fusion arrangement of the ETV6-NTRK3 gene. The patient developed multiple distant metastases in the brain and died of these metastases 19 months after initial diagnosis. Conclusions Secretory carcinomas of the breast have been described as a low-grade histologic subtype with a favorable prognosis. This case showed chemo-resistance to neoadjuvant chemotherapy, multiple distant metastases, and a final unfavorable outcome. Further research is needed to better understand the behavior and treatment of this rare tumor.
Collapse
Affiliation(s)
- Hongping Tang
- Department of Pathology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518028, Shenzhen, China
| | - Lihua Zhong
- Department of Breast Surgery, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518028, Shenzhen, China
| | - Hongbing Jiang
- Department of Radiology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518028, Shenzhen, China
| | - Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, 518109, Shenzhen, China
| | - Guannan Liang
- Department of Pathology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518028, Shenzhen, China
| | - Guoyan Chen
- Department of Pathology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518028, Shenzhen, China
| | - Gui'e Xie
- KingMed School of Laboratory Medicine, Guangzhou Medical University, 510182, Guangzhou, China.
| |
Collapse
|
40
|
Borst S, Nations CC, Klein JG, Pavani G, Maguire JA, Camire RM, Drazer MW, Godley LA, French DL, Poncz M, Gadue P. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports 2021; 16:1458-1467. [PMID: 34019812 PMCID: PMC8190596 DOI: 10.1016/j.stemcr.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.
Collapse
Affiliation(s)
- Sara Borst
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Joshua G Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rodney M Camire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mortimer Poncz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Hung D, Lenton D, Eslick R, Blennerhassett R, Joshi M, McCaughan G, Day S, Wright D. Chromosome microarray characterisation of chromosome arm 12p loss associated with complex molecular karyotype and recurrent adverse cytogenetic markers in multiple myeloma. Genes Chromosomes Cancer 2021; 60:668-677. [PMID: 34041820 DOI: 10.1002/gcc.22975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Copy number loss within chromosome 12 short arm (12p) has gained attention as an adverse cytogenetic marker in multiple myeloma. The prognostic significance and characterisation of the common minimal deleted region remains controversial between various studies with loss of CD27 proposed as the putative critical gene. We aimed to determine the frequency of 12p loss, its correlation with adverse cytogenetic markers further to define and characterise 12p deletions. Our study included a prospective cohort of 574 multiple myeloma patients referred for cytogenetic testing, including interphase fluorescence in situ hybridisation for IGH (14q32.33) translocations and chromosome microarray. Loss of 12p was detected in 54/574 (9.4%) patients and when compared with the non-12p loss group [520/574 (90.6%)], 12p loss patients demonstrated a statistically significant association with specific recurrent cytogenetic markers: complex molecular karyotypes (98.1% vs 45.2%), 1p loss (50.0% vs 20.2%), t(4;14) (20.4% vs 7.7%), 8p loss (37.0% vs 15.0%), 13/13q loss (70.4% vs 41.7%), and 17p loss (33.3% vs 6.5%). The size and location of 12p losses were heterogeneous with a common 0.88 Mb minimally deleted region that included ~9 genes from ETV6 to CDKN1B in 52/54 (~96.3%) patients but did not include CD27. Our findings support 12p loss being a secondary chromosome abnormality frequently co-occurring with adverse cytogenetic markers and complex molecular karyotypes indicative of chromosome instability.
Collapse
Affiliation(s)
- Dorothy Hung
- Cytogenetics Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Douglas Lenton
- Clinical Haematology Services, Orange, New South Wales, Australia
| | - Renee Eslick
- Haematology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
| | | | - Maansi Joshi
- Department of Haematology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Georgia McCaughan
- Haematology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - Samantha Day
- Haematology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Dale Wright
- Cytogenetics Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
42
|
Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement. Blood Adv 2021; 4:4924-4928. [PMID: 33049052 DOI: 10.1182/bloodadvances.2019001282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Key Points
Myeloid/lymphoid neoplasms with eosinophilia are driven by aberrant tyrosine kinases in pluripotent cells and display variable phenotypes. FGFR-driven hematolymphoid neoplasms are targetable by TKI inhibitors such as ponatinib; studies of specific FGFR inhibitors are ongoing.
Collapse
|
43
|
Roy U, Raghavan SC. Deleterious point mutations in T-cell acute lymphoblastic leukemia: Mechanistic insights into leukemogenesis. Int J Cancer 2021; 149:1210-1220. [PMID: 33634864 DOI: 10.1002/ijc.33527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by the leukemogenic transformation of immature T cells, which accumulate an array of genetic and epigenetic lesions, leading to a sustained proliferation of abnormal T cells. Genetic alterations in the DNA repair genes, protooncogenes, transcription factors, and epigenetic modifiers have been studied in the past decade using next-generation sequencing and high-resolution copy number arrays. While other genomic lesions like chromosomal rearrangements, inversions, insertions, and gene fusions have been well studied at functional level, the mechanism of generation of driver mutations in T-ALL is the subject of current investigation. Novel oncogenic mutations in the TP53, BRCA2, PTEN, IL7R, RAS, NOTCH1, ETV6, BCL11B, WT1, DNMT3A, PRC2, PHF6, USP7, KDM6A and an array of other genes disrupt the genetic and epigenetic homeostasis in T-ALL. In this review, we have summarized the mechanistic role of deleterious driver mutations in T-ALL initiation and progression. We speculate that the formation of non-B DNA structures could be one of the primary reasons for the occurrence of different genomic lesions seen in T-ALL, which warrants further investigation. Understanding the mechanism behind the genesis of oncogenic mutations will pave the way to develop targeted therapies that can improve the overall survival and treatment outcome.
Collapse
Affiliation(s)
- Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Gerak CAN, Cho SY, Kolesnikov M, Okon M, Murphy MEP, Sessions RB, Roberge M, McIntosh LP. Biophysical characterization of the ETV6 PNT domain polymerization interfaces. J Biol Chem 2021; 296:100284. [PMID: 33450226 PMCID: PMC7949025 DOI: 10.1016/j.jbc.2021.100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
ETV6 is an E26 transformation specific family transcriptional repressor that self-associates by its PNT domain to facilitate cooperative DNA binding. Chromosomal translocations frequently generate constitutively active oncoproteins with the ETV6 PNT domain fused to the kinase domain of one of many protein tyrosine kinases. Although an attractive target for therapeutic intervention, the propensity of the ETV6 PNT domain to polymerize via the tight head-to-tail association of two relatively flat interfaces makes it challenging to identify suitable small molecule inhibitors of this protein-protein interaction. Herein, we provide a comprehensive biophysical characterization of the ETV6 PNT domain interaction interfaces to aid future drug discovery efforts and help define the mechanisms by which its self-association mediates transcriptional repression. Using NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations, along with amide hydrogen exchange measurements, we demonstrate that monomeric PNT domain variants adopt very stable helical bundle folds that do not change in conformation upon self-association into heterodimer models of the ETV6 polymer. Surface plasmon resonance-monitored alanine scanning mutagenesis studies identified hot spot regions within the self-association interfaces. These regions include both central hydrophobic residues and flanking salt-bridging residues. Collectively, these studies indicate that small molecules targeted to these hydrophobic or charged regions within the relatively rigid interfaces could potentially serve as orthosteric inhibitors of ETV6 PNT domain polymerization.
Collapse
Affiliation(s)
- Chloe A N Gerak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophia Y Cho
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
45
|
Shao H, Wang W, Song J, Tang G, Zhang X, Tang Z, Srivastava J, Shah B, Medeiros LJ, Zhang L. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk Res 2020; 99:106460. [PMID: 33166908 DOI: 10.1016/j.leukres.2020.106460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
Abstract
Myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement are a unique category in the WHO classification, and include cases with rearrangement of PDGFRA, PDGFRB, FGFR1, and PCM1-JAK2. We report three patients presented with eosinophilia and FLT3 rearrangement: the first case with chronic eosinophilic leukemia, not otherwise specified and T-lymphoblastic leukemia/lymphoma; the second case with myeloid sarcoma; and the last case with high-grade myelodysplastic syndrome. The first case showed t(13;14)(q12;q32), which encoded FLT3-TRIP11. The patient was treated with intense chemotherapy and subsequently sorafenib with clinical improvement. Unfortunately, the patient showed persistent residual disease and passed away 9 months after the diagnosis from pneumonia. The other two cases both showed ETV6-FLT3. The second patient was treated with local radiation and systemic chemotherapy including sorafenib and was alive. The third patient was treated with chemotherapy but showed transformation to acute myeloid leukemia and died 15 months after diagnosis. These cases are among a growing number of cases with FLT3 rearrangement that all showed similar clinicopathologic features characterized by myeloproliferative neoplasm with eosinophilia and frequent T lymphoblastic leukemia/lymphoma. Therefore, we propose that the myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement be included in the WHO category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement.
Collapse
MESH Headings
- Abnormal Karyotype
- Aged
- Bone Marrow/pathology
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 13/ultrastructure
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Disease Progression
- Eosinophilia/complications
- Eosinophilia/genetics
- Eosinophilia/pathology
- Humans
- Hypereosinophilic Syndrome/complications
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/pathology
- Leukemia/classification
- Lymph Nodes/pathology
- Lymphoma/classification
- Male
- Middle Aged
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Oncogene Proteins, Fusion/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/complications
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins c-ets/genetics
- Repressor Proteins/genetics
- Sarcoma, Myeloid/complications
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Translocation, Genetic
- World Health Organization
- fms-Like Tyrosine Kinase 3/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Haipeng Shao
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jinming Song
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jaya Srivastava
- Adaptive Biotechnologies, 1551 Eastlake Ave E, Ste 200, Seattle, WA, United States
| | - Bijal Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ling Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, United States.
| |
Collapse
|
46
|
Porcheri C, Meisel CT, Mitsiadis TA. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers (Basel) 2020; 12:E3107. [PMID: 33114321 PMCID: PMC7690880 DOI: 10.3390/cancers12113107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary gland tumors are neoplasms affecting the major and minor salivary glands of the oral cavity. Their complex pathological appearance and overlapping morphological features between subtypes, pose major challenges in the identification, classification, and staging of the tumor. Recently developed techniques of three-dimensional culture and organotypic modelling provide useful platforms for the clinical and biological characterization of these malignancies. Additionally, new advances in genetic and molecular screenings allow precise diagnosis and monitoring of tumor progression. Finally, novel therapeutic tools with increased efficiency and accuracy are emerging. In this review, we summarize the most common salivary gland neoplasms and provide an overview of the state-of-the-art tools to model, diagnose, and treat salivary gland tumors.
Collapse
Affiliation(s)
- Cristina Porcheri
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.T.M.); (T.A.M.)
| | | | | |
Collapse
|
47
|
Zhang L, Wang M, Wang Z, Zeng Z, Wen L, Xu Y, Yao L, Cen J, Li H, Pan J, Sun A, Wu D, Chen S, Ma L, Yang X. Identification of a novel ETV6 truncated fusion gene in myeloproliferative neoplasm, unclassifiable with t(4;12)(q12;p13). Ann Hematol 2020; 99:2445-2447. [PMID: 32734549 DOI: 10.1007/s00277-020-04207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022]
MESH Headings
- Abnormal Karyotype
- Aged
- Bone Marrow/pathology
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/ultrastructure
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/ultrastructure
- Diagnosis, Differential
- Exons/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Male
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/pathology
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-ets/genetics
- RNA, Long Noncoding/genetics
- Repressor Proteins/genetics
- Translocation, Genetic
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Zhao Zeng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Yi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Li Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Jiannong Cen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Liang Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China.
| | - Xiaofei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
48
|
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 2020; 3:4065-4080. [PMID: 31816062 DOI: 10.1182/bloodadvances.2019001012] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg (HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase expression of the programmed cell death protein 1 (PD-1) ligands. To define genetic mechanisms of response and resistance to PD-1 blockade and identify complementary treatment targets, we performed whole-exome sequencing of flow cytometry-sorted HRS cells from 23 excisional biopsies of newly diagnosed cHLs, including 8 Epstein-Barr virus-positive (EBV+) tumors. We identified significantly mutated cancer candidate genes (CCGs) as well as somatic copy number alterations and structural variations and characterized their contribution to disease-defining immune evasion mechanisms and nuclear factor κB (NF-κB), JAK/STAT, and PI3K signaling pathways. EBV- cHLs had a higher prevalence of genetic alterations in the NF-κB and major histocompatibility complex class I antigen presentation pathways. In this young cHL cohort (median age, 26 years), we identified a predominant mutational signature of spontaneous deamination of cytosine- phosphate-guanines ("Aging"), in addition to apolipoprotein B mRNA editing catalytic polypeptide-like, activation-induced cytidine deaminase, and microsatellite instability (MSI)-associated hypermutation. In particular, the mutational burden in EBV- cHLs was among the highest reported, similar to that of carcinogen-induced tumors. Together, the overall high mutational burden, MSI-associated hypermutation, and newly identified genetic alterations represent additional potential bases for the efficacy of PD-1 blockade in cHL. Of note, recurrent cHL alterations, including B2M, TNFAIP3, STAT6, GNA13, and XPO1 mutations and 2p/2p15, 6p21.32, 6q23.3, and 9p/9p24.1 copy number alterations, were also identified in >20% of primary mediastinal B-cell lymphomas, highlighting shared pathogenetic mechanisms in these diseases.
Collapse
|
49
|
Biswas A, Rajesh Y, Mitra P, Mandal M. ETV6 gene aberrations in non-haematological malignancies: A review highlighting ETV6 associated fusion genes in solid tumors. Biochim Biophys Acta Rev Cancer 2020; 1874:188389. [PMID: 32659251 DOI: 10.1016/j.bbcan.2020.188389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
ETV6 (translocation-Ets-leukemia virus) gene is a transcriptional repressor mainly involved in haematopoiesis and maintenance of vascular networks and has developed to be a major oncogene with the potential ability of forming fusion partners with many other genes with carcinogenic consequences. ETV6 fusions function primarily by constitutive activation of kinase activity of the fusion partners, modifications in the normal functions of ETV6 transcription factor, loss of function of ETV6 or the partner gene and activation of a proto-oncogene near the site of translocation. The role of ETV6 fusion gene in tumorigenesis has been well-documented and more variedly found in haematological malignancies. However, the role of the ETV6 oncogene in solid tumors has also risen to prominence due to an increasing number of cases being reported with this malignancy. Since, solid tumors can be well-targeted, the diagnosis of this genre of tumors based on ETV6 malignancy is of crucial importance for treatment. This review highlights the important ETV6 associated fusions in solid tumors along with critical insights as to existing and novel means of targeting it. A consolidation of novel therapies such as immune, gene, RNAi, stem cell therapy and protein degradation hitherto unused in the case of ETV6 solid tumor malignancies may open further therapeutic avenues.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
50
|
Wu X, Cai H, Qiu Y, Li J, Zhou DB, Cao XX. ETV6-ACSL6 fusion gene in myeloid neoplasms: clinical spectrum, current practice, and outcomes. Orphanet J Rare Dis 2020; 15:192. [PMID: 32723365 PMCID: PMC7388225 DOI: 10.1186/s13023-020-01478-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 07/21/2020] [Indexed: 12/03/2022] Open
Abstract
Background ETV6-ACSL6 is a fusion gene rarely reported in myeloid malignancies, and its clinical characteristics, proper treatment strategies, and effect on prognosis are poorly understood. Results Sixteen patients with the ETV6-ACSL6 fusion gene were identified, with a median age of 50 years. Twelve patients were male. Clinical diagnoses included chronic eosinophilic leukemia, not otherwise specified, acute myeloid leukemia, and other types of myeloproliferative and myelodysplastic disorders. Ten out of 12 patients had increased levels of eosinophils, and four out of five had increased levels of basophils in peripheral blood. Treatment with tyrosine kinase inhibitors was ineffective. The prognosis of the patients was poor, with seven patients dying within 1 year. Conclusions Patients with the ETV6-ACSL6 fusion gene mainly present with myeloproliferative and myelodysplastic disorders, typically with increased eosinophils and/or basophils and poor survival. Intensive therapies such as allogenic stem cell transplantation should be an initial consideration for eligible patients.
Collapse
Affiliation(s)
- Xia Wu
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Cai
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Qiu
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|