1
|
Shukla M, Abdul-Hay M, Choi JH. Molecular Features and Treatment Paradigms of Acute Myeloid Leukemia. Biomedicines 2024; 12:1768. [PMID: 39200232 PMCID: PMC11351617 DOI: 10.3390/biomedicines12081768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy that is considered to be a disease of aging, and traditionally has been treated with induction chemotherapy, followed by consolidation chemotherapy and/or allogenic hematopoietic stem cell transplantation. More recently, with the use of next-generation sequencing and access to molecular information, targeted molecular approaches to the treatment of AML have been adopted. Molecular targeting is gaining prominence, as AML mostly afflicts the elderly population, who often cannot tolerate traditional chemotherapy. Understanding molecular changes at the gene level is also important for accurate disease classification, risk stratification, and prognosis, allowing for more personalized medicine. Some mutations are well studied and have an established gene-specific therapy, including FLT3 and IDH1/2, while others are being investigated in clinical trials. However, data on most known mutations in AML are still minimal and therapeutic studies are in pre-clinical stages, highlighting the importance of further research and elucidation of the pathophysiology involving these genes. In this review, we aim to highlight the key molecular alterations and chromosomal changes that characterize AML, with a focus on pathophysiology, presently available treatment approaches, and future therapeutic options.
Collapse
Affiliation(s)
| | | | - Jun H. Choi
- Department of Hematology and Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY 10016, USA; (M.S.)
| |
Collapse
|
2
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
3
|
Dunsmore L, Navo CD, Becher J, de Montes EG, Guerreiro A, Hoyt E, Brown L, Zelenay V, Mikutis S, Cooper J, Barbieri I, Lawrinowitz S, Siouve E, Martin E, Ruivo PR, Rodrigues T, da Cruz FP, Werz O, Vassiliou G, Ravn P, Jiménez-Osés G, Bernardes GJL. Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination. Nat Chem 2022; 14:754-765. [PMID: 35764792 PMCID: PMC9252919 DOI: 10.1038/s41557-022-00964-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Natural products that contain ortho-quinones show great potential as anticancer agents but have been largely discarded from clinical development because their redox-cycling behaviour results in general systemic toxicity. Here we report conjugation of ortho-quinones to a carrier, which simultaneously masks their underlying redox activity. C-benzylation at a quinone carbonyl forms a redox-inactive benzyl ketol. Upon a specific enzymatic trigger, an acid-promoted, self-immolative C-C bond-cleaving 1,6-elimination mechanism releases the redox-active hydroquinone inside cells. By using a 5-lipoxygenase modulator, β-lapachone, we created cathepsin-B-cleavable quinone prodrugs. We applied the strategy for intracellular release of β-lapachone upon antibody-mediated delivery. Conjugation of protected β-lapachone to Gem-IgG1 antibodies, which contain the variable region of gemtuzumab, results in homogeneous, systemically non-toxic and conditionally stable CD33+-specific antibody-drug conjugates with in vivo efficacy against a xenograft murine model of acute myeloid leukaemia. This protection strategy could allow the use of previously overlooked natural products as anticancer agents, thus extending the range of drugs available for next-generation targeted therapeutics.
Collapse
Affiliation(s)
- Lavinia Dunsmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain
| | - Julie Becher
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Ana Guerreiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Emily Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Sigitas Mikutis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Cooper
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Isaia Barbieri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Elise Siouve
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Esther Martin
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Pedro R Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Filipa P da Cruz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio-Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
de Botton S, Brandwein JM, Wei AH, Pigneux A, Quesnel B, Thomas X, Legrand O, Recher C, Chantepie S, Hunault-Berger M, Boissel N, Nehme SA, Frattini MG, Tosolini A, Marion-Gallois R, Wang JJ, Cameron C, Siddiqui M, Hutton B, Milkovich G, Stein EM. Improved survival with enasidenib versus standard of care in relapsed/refractory acute myeloid leukemia associated with IDH2 mutations using historical data and propensity score matching analysis. Cancer Med 2021; 10:6336-6343. [PMID: 34427990 PMCID: PMC8446562 DOI: 10.1002/cam4.4182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The present study evaluated the relative survival benefits associated with enasidenib and current standard of care (SoC) therapies for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and an isocitrate dehydrogenase 2 (IDH2) mutation who are ineligible for hematopoietic stem cell transplantation (HSCT). METHODS Propensity score matching (PSM) analysis compared survival outcomes observed with enasidenib 100 mg daily in the phase I/II AG221-C-001 trial and SoC outcomes obtained from a real-world chart review of patients in France. RESULTS Before matching, enasidenib (n = 195) was associated with numerically improved overall survival (OS) relative to SoC (n = 80; hazard ratio [HR], 0.82; 95% confidence interval [CI], 0.61-1.11). After matching and adjusting for covariates (n = 78 per group), mortality risk was significantly lower with enasidenib than with SoC (HR, 0.67; 95% CI, 0.47-0.97). The median OS was 9.26 months for enasidenib (95% CI, 7.72-13.24) and 4.76 months for SoC (95% CI, 3.81-8.21). Results remained robust across all sensitivity analyses conducted. CONCLUSIONS PSM analyses indicate that enasidenib significantly prolongs survival relative to SoC among patients with R/R AML and an IDH2 mutation who are ineligible for HSCT. Future prospective studies are needed to validate these findings using other data sources and to assess the comparative efficacy of enasidenib for other treatment outcomes.
Collapse
Affiliation(s)
| | | | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | | | | | | | | | - Christian Recher
- CHU de Toulouse, Université de Toulouse III Paul Sabatier, Toulouse, France
| | | | | | | | - Salem A Nehme
- Celgene International, a Bristol Myers Squibb Company, Boudry, Switzerland
| | | | | | | | | | - Chris Cameron
- Cornerstone Research Group, Burlington, Ontario, Canada
| | | | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
5
|
He X, Zou H, Wang F. SOX4-induced upregulation of ARHGAP9 promotes the progression of acute myeloid leukemia. Drug Dev Res 2021; 82:1227-1234. [PMID: 34159626 DOI: 10.1002/ddr.21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/07/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia. Rho GTPase activating protein 9 (ARHGAP9) has been reported to be positively correlated with overall survival of AML patients, but the specific molecular function remains unclear. This study aims to further explore the functional role and the molecular mechanism of ARHGAP9 in AML cells. The expression level of ARHGAP9 in AML cells was measured using quantitative real-time PCR (qRT-PCR) and western blot. Cell transfection was performed to interfere ARHGAP9. CCK-8, flow cytometry and TUNEL assays were conducted to detect cell viability, cell cycle distribution and apoptosis, respectively. The binding relationship between SOX4 and ARHGAP9 promoter was verified using luciferase reporter assay and chromatin immunoprecipitation. The results showed that ARHGAP9 was upregulated in AML cells. Interference of ARHGAP9 greatly reduced cell viability and induced cell cycle arrest in G1 phase, accompanied with the reduction of Ki67, PCNA, cyclin D1, cyclin E1, CDK4 and CDK6. In addition, Interference of ARHGAP9 greatly promoted cell apoptosis, accompanied with the decreased protein expression of Bcl-2 and the increased protein expression of Bax, cleaved caspase 3 and cleaved caspase 9. Furthermore, SOX4 directly bound to ARHGAP9 promoter and regulated ARHGAP9 expression. In conclusion, this study suggested that ARHGAP9 interference exerted an anti-tumor effect through inhibiting cell proliferation, blocking cell cycle progression, and promoting cell apoptosis in AML cells. ARHGAP9 may serve as a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Xin He
- Clinical Laboratory center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haizhu Zou
- Clinical Laboratory center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengyu Wang
- Department of Pediatrics, Zibo Central Hospital, Zibo, China
| |
Collapse
|
6
|
Hui Y, Li Y, Tong X, Huang L, Mao X, Huang L, Zhang D. Reinduction chemotherapy regimen involved decitabine and cladribine improves the prognosis of patients with relapsed or refractory acute myeloid leukemia: A preliminary study. Int J Cancer 2021; 149:901-908. [PMID: 33837553 DOI: 10.1002/ijc.33595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Relapsed/refractory acute myeloid leukemia (R/R-AML) is characterized by a high incidence, short survival and poor prognosis. Presently, no unified effective reinduction chemotherapy regimen has been developed. Therefore, the use of reinduction chemotherapy regimens before allogeneic hematopoietic stem cell transplantation (allo-HSCT) is controversial. Our study aims to analyze the prognostic factors of R/R-AML and to evaluate the efficacy of the regimen involved decitabine, cladribine, idarubicin or homoharringtonine, and cytarabine (DCIA/DCHA). Clinical and survival data of 112 R/R-AML patients were obtained. Among the 102 R/R-AML patients that were treated with conventional regimens, we found that poor prognosis was related to a greater proportion of bone marrow blasts (>70%) and not achieving complete remission (non-CR) after the first reinduction chemotherapy. Hematopoietic stem cell transplantation (of which 89.47% was allo-HSCT) following CR after the first reinduction chemotherapy often improves the prognosis. Of the 10 R/R-AML patients that were treated with the DCIA/DCHA regimen, nine patients achieved CR or complete response with incomplete hematopoietic recovery (CRi) after one course of chemotherapy. The median overall survival of the 10 patients was 10.14 (1.23-29.13) months. In conclusion, non-CR was associated with poor prognosis in R/R-AML. Therefore, intensive reinduction chemotherapy should be selected to achieve CR. This creates conditions for allo-HSCT and improves prognosis of R/R-AML patients. The DCIA/DCHA regimen showed good efficacy and tolerable adverse reactions in R/R-AML treatment. This combination may be used as a bridging regimen for allo-HSCT in R/R-AML.
Collapse
Affiliation(s)
- Yan Hui
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Tong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu Y, Wei J, Liu J, Ma W, Duan Y, Liu D. Novel AXL-targeted agents overcome FLT3 inhibitor resistance in FLT3-ITD + acute myeloid leukemia cells. Oncol Lett 2021; 21:397. [PMID: 33777220 PMCID: PMC7988696 DOI: 10.3892/ol.2021.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
AXL receptor tyrosine kinase (AXL) upregulation mediates drug resistance in several types of human cancer and has become a therapeutic target worthy of exploration. The present study investigated AXL antigen expression and the effects of novel AXL-targeted agents in acute myeloid leukemia (AML) cells. AXL antigen expression in drug-sensitive and drug-resistant human AML cell lines, and AML blast cells from 57 patients with different clinical characteristics, was analyzed by flow cytometry and compared. Furthermore, the effects of the novel AXL antibody DAXL-88, antibody-drug conjugate DAXL-88-monomethyl auristatin E (MMAE), AXL small molecule inhibitor R428 and their combination with FMS-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) in AML cells were analyzed by Cell Counting Kit-8 assay, flow cytometry and western blotting. The present study revealed that AXL antigen expression was upregulated in FLT3-internal tandem duplication (ITD)/tyrosine kinase domain mutation-positive (TKD)+ AML blast cells compared with FLT3-ITD/TKD- AML cells. Additionally, AXL antigen expression was markedly upregulated in the AC220-resistant FLT3-ITD+ MV4-11 cell line (MV4-11/AC220) and in FLT3 inhibitor-resistant blast cells from a patient with FLT3-ITD+ AML compared with parental sensitive cells. The AXL-targeted agents DAXL-88, DAXL-88-MMAE and R428 exhibited dose-dependent cytotoxic effects on FLT3-mutant AML cell lines (THP-1, MV4-11 and MV4-11/AC220) and blast cells from patients with FLT3-ITD+ AML. Combinations of AXL-targeted agents with AC220 exerted synergistic cytotoxic effects and induced apoptosis in MV4-11/AC220 cells and FLT3 inhibitor-resistant blast cells. The antileukemic effect of DAXL-88 and DAXL-88-MMAE may rely on their ability to block AXL, FLT3 and their downstream signaling pathways. The present study demonstrated the association between AXL antigen expression upregulation and drug resistance in FLT3-ITD+ AML, and proposed a method for overcoming FLT3 inhibitor resistance of FLT3-ITD+ AML using novel AXL-targeted agents.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, Chinese PLA Medical School, Beijing 100853, P.R. China.,Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Jing Wei
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Jiaxin Liu
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Weina Ma
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Daihong Liu
- Department of Hematology, Chinese PLA Medical School, Beijing 100853, P.R. China.,Department of Hematology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
8
|
Choi JH, Bogenberger JM, Tibes R. Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond. Target Oncol 2020; 15:147-162. [PMID: 32319019 DOI: 10.1007/s11523-020-00711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease of the hematopoietic system that remains a therapeutic challenge despite advances in our understanding of the underlying cancer biology over the past decade. Recent developments in molecular targeting have shown promising results in treating leukemia, paving the way for novel treatment strategies. The discovery of drugs that promote apoptosis in leukemic cells has translated to encouraging activity in clinical trials. B-cell lymphoma (BCL)-2 inhibition has been at the center of drug development efforts to target apoptosis in AML. Remarkable clinical success with venetoclax has revolutionized the ways we treat hematological malignancies. Several landmark trials have demonstrated the potent antitumor activity of venetoclax, and it is now frequently combined with traditional cytotoxic agents to treat AML. However, resistance to BCL-2 inhibition is emerging, and alternative strategies to address resistance mechanisms have become an important focus of research. A number of clinical trials are now underway to investigate a plurality of novel agents that were shown to overcome resistance to BCL-2 inhibition in preclinical models. Some of the most promising data come from studies on drugs that downregulate myeloid cell leukemia (MCL)-1, such as cyclin-dependent kinases (CDK) inhibitors. Furthermore, innovative approaches to target apoptosis via extrinsic pathways and p53 regulation have added new cytotoxic agents to the arsenal, including drugs that inhibit inhibitor of apoptosis protein (IAP) family proteins and murine double minute 2 (MDM2). This review provides a perspective on past and current treatment strategies harnessing various mechanisms of apoptosis to target AML and highlights some important promising treatment combinations in development.
Collapse
Affiliation(s)
- Jun H Choi
- Division of Hematology and Medical Oncology, New York University School of Medicine and Perlmutter Comprehensive Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Raoul Tibes
- Division of Hematology and Medical Oncology, New York University School of Medicine and Perlmutter Comprehensive Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
9
|
Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet 2019; 10:868. [PMID: 31608113 PMCID: PMC6773888 DOI: 10.3389/fgene.2019.00868] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
The field of gene therapy is striving more than ever to define a path to the clinic and the market. Twenty gene therapy products have already been approved and over two thousand human gene therapy clinical trials have been reported worldwide. These advances raise great hope to treat devastating rare and inherited diseases as well as incurable illnesses. Understanding of the precise pathomechanisms of diseases as well as the development of efficient and specific gene targeting and delivery tools are revolutionizing the global market. Currently, human cancers and monogenic disorders are indications number one. The elevated prevalence of genetic disorders and cancers, clear gene manipulation guidelines and increasing financial support for gene therapy in clinical trials are major trends. Gene therapy is presently starting to become commercially profitable as a number of gene and cell-based gene therapy products have entered the market and the clinic. This article reviews the history and development of twenty approved human gene and cell-based gene therapy products that have been approved up-to-now in clinic and markets of mainly North America, Europe and Asia.
Collapse
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Nazari
- Department of Biology, School of Basic Sciences, Golestan University, Gorgan, Iran
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
10
|
ROS play an important role in ATPR inducing differentiation and inhibiting proliferation of leukemia cells by regulating the PTEN/PI3K/AKT signaling pathway. Biol Res 2019; 52:26. [PMID: 31053167 PMCID: PMC6498685 DOI: 10.1186/s40659-019-0232-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive and mostly incurable hematological malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve AML clinical outcomes. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show biological anti-tumor characteristics in our previous studies. However, its potential effect on leukemia remains unknown. The present research aims to investigate the underlying mechanism of treating leukemia with ATPR in vitro. METHODS In this study, the AML cell lines NB4 and THP-1 were treated with ATPR. Cell proliferation was analyzed by the CCK-8 assay. Flow cytometry was used to measure the cell cycle distribution and cell differentiation. The expression levels of cell cycle and differentiation-related proteins were detected by western blotting and immunofluorescence staining. The NBT reduction assay was used to detect cell differentiation. RESULTS ATPR inhibited cell proliferation, induced cell differentiation and arrested the cell cycle at the G0/G1 phase. Moreover, ATPR treatment induced a time-dependent release of reactive oxygen species (ROS). Additionally, the PTEN/PI3K/Akt pathway was downregulated 24 h after ATPR treatment, which might account for the anti-AML effects of ATPR that result from the ROS-mediated regulation of the PTEN/PI3K/AKT signaling pathway. CONCLUSIONS Our observations could help to develop new drugs targeting the ROS/PTEN/PI3K/Akt pathway for the treatment of AML.
Collapse
|
11
|
Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16:197. [PMID: 30016963 PMCID: PMC6050722 DOI: 10.1186/s12967-018-1579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS UDP-glucuronosyltransferase 1A subfamily (UGT1A) enzymes can inactivate cytarabine (Ara-C) by glucuronidation, and thus serves as candidate genes for interindividual difference in Ara-C response. UGT1A1 is a major UGT1A isoform expressed in human liver. METHODS UGT1A1*6 and *28 polymorphisms resulting in reduced UGT1A1 activity were genotyped in 726 adult acute myeloid leukemia (AML) patients treated with Ara-C based regimens. Influences of both polymorphisms on chemosensitivity and disease prognosis of the patients were evaluated. RESULTS After one or two courses of Ara-C based induction chemotherapy, the complete remission (CR) rate was significantly higher in patients carrying the UGT1A1*6 (77.0%) or the UGT1A1*28 (76.4%) alleles as compared with corresponding wild-type homozygotes (66.9 and 68.5%, respectively). Carriers of the UGT1A1*6 or *28 alleles showed significantly decreased risk of non-CR (OR = 0.528, 95% CI 0.379-0.737, P = 1.7 × 10-4) and better overall survival (HR = 0.787, 95% CI 0.627-0.990, P = 0.040) as compared with homozygotes for both polymorphisms. CONCLUSION Our results suggest that UGT1A1*28 and UGT1A1*6 are associated with improved clinical outcomes in Chinese AML patients treated with Ara-C.
Collapse
Affiliation(s)
- Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J, Pan L, Cronkite A, Sussman D, Klussman K, Ulrich M, Anderson ME, Stone IJ, Zeng W, Jonas M, Lewis TS, Goswami M, Wang SA, Senter PD, Law CL, Feldman EJ, Benjamin DR. Characterization of SGN-CD123A, A Potent CD123-Directed Antibody-Drug Conjugate for Acute Myeloid Leukemia. Mol Cancer Ther 2017; 17:554-564. [PMID: 29142066 DOI: 10.1158/1535-7163.mct-17-0742] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
Treatment choices for acute myelogenous leukemia (AML) patients resistant to conventional chemotherapies are limited and novel therapeutic agents are needed. IL3 receptor alpha (IL3Rα, or CD123) is expressed on the majority of AML blasts, and there is evidence that its expression is increased on leukemic relative to normal hematopoietic stem cells, which makes it an attractive target for antibody-based therapy. Here, we report the generation and preclinical characterization of SGN-CD123A, an antibody-drug conjugate using the pyrrolobenzodiazepine dimer (PBD) linker and a humanized CD123 antibody with engineered cysteines for site-specific conjugation. Mechanistically, SGN-CD123A induces activation of DNA damage response pathways, cell-cycle changes, and apoptosis in AML cells. In vitro, SGN-CD123A-mediated potent cytotoxicity of 11/12 CD123+ AML cell lines and 20/23 primary samples from AML patients, including those with unfavorable cytogenetic profiles or FLT3 mutations. In vivo, SGN-CD123A treatment led to AML eradication in a disseminated disease model, remission in a subcutaneous xenograft model, and significant growth delay in a multidrug resistance xenograft model. Moreover, SGN-CD123A also resulted in durable complete remission of a patient-derived xenograft AML model. When combined with a FLT3 inhibitor quizartinib, SGN-CD123A enhanced the activity of quizartinib against two FLT3-mutated xenograft models. Overall, these data demonstrate that SGN-CD123A is a potent antileukemic agent, supporting an ongoing trial to evaluate its safety and efficacy in AML patients (NCT02848248). Mol Cancer Ther; 17(2); 554-64. ©2017 AACR.
Collapse
Affiliation(s)
- Fu Li
- Translational Research, Seattle Genetics, Inc. Bothell, Washington.
| | | | - Changpu Yu
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Roland B Walter
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology and Department of Medicine, University of Washington, Seattle, Washington
| | - Lori Westendorf
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | | - Lucy Pan
- Analytical Science, Seattle Genetics, Inc., Bothell, Washington
| | - Ashley Cronkite
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Django Sussman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Kerry Klussman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Michelle Ulrich
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | | - Ivan J Stone
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Weiping Zeng
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Mechthild Jonas
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Timothy S Lewis
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Maitrayee Goswami
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D Senter
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Che-Leung Law
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Eric J Feldman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | |
Collapse
|
13
|
Aberger F, Hutterer E, Sternberg C, Del Burgo PJ, Hartmann TN. Acute myeloid leukemia - strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun Signal 2017; 15:8. [PMID: 28122581 PMCID: PMC5267446 DOI: 10.1186/s12964-017-0163-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML), an aggressive and heterogeneous hematological malignancy, remains a challenge. Despite advances in our understanding of the complex genetics and biology of AML pathophysiology, these findings have been translated to the clinic with only limited success, and poor outcomes persist for the majority of patients. Thus, novel treatment strategies are clearly needed for achieving deeper and prolonged remissions and for avoiding the development of resistance. Due to its profound role in (cancer) stem cell biology and differentiation, the Hedgehog (HH)/Glioma-associated Oncogene Homolog (GLI) signaling pathway may be an attractive novel therapeutic target in AML. In this review, we aim to provide a critical and concise overview of the currently known potential and challenges of HH/GLI targeting. We describe the biological role of the HH/GLI pathway in AML pathophysiology. We specifically focus on ways of targeting non-canonical HH/GLI signaling in AML, particularly in combination with standard treatment regimens, which may overcome some hurdles observed with approved HH pathway inhibitors in solid tumors.
Collapse
Affiliation(s)
- Fritz Aberger
- Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| | - Evelyn Hutterer
- Cancer Cluster Salzburg, Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), 5020, Salzburg, Austria.,Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Christina Sternberg
- Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Pedro J Del Burgo
- Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Tanja N Hartmann
- Cancer Cluster Salzburg, Salzburg Cancer Research Institute (SCRI) - Laboratory for Immunological and Molecular Cancer Research (LIMCR), 5020, Salzburg, Austria. .,Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Disease and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| |
Collapse
|
14
|
Paubelle E, Ducastelle-Leprêtre S, Labussière-Wallet H, Nicolini FE, Barraco F, Plesa A, Salles G, Wattel E, Thomas X. Fractionated gemtuzumab ozogamicin combined with intermediate-dose cytarabine and daunorubicin as salvage therapy in very high-risk AML patients: a bridge to reduced intensity conditioning transplant? Ann Hematol 2016; 96:363-371. [DOI: 10.1007/s00277-016-2899-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
|