1
|
Adnan Awad S, Dufva O, Klievink J, Karjalainen E, Ianevski A, Pietarinen P, Kim D, Potdar S, Wolf M, Lotfi K, Aittokallio T, Wennerberg K, Porkka K, Mustjoki S. Integrated drug profiling and CRISPR screening identify BCR::ABL1-independent vulnerabilities in chronic myeloid leukemia. Cell Rep Med 2024; 5:101521. [PMID: 38653245 PMCID: PMC11148568 DOI: 10.1016/j.xcrm.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacology
- CRISPR-Cas Systems/genetics
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Cell Line, Tumor
Collapse
Affiliation(s)
- Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; Clinical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Ella Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland
| | - Daehong Kim
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kourosh Lotfi
- Department of Medical and Health Sciences, Faculty of Medicine and Health, Linköping University, 58183 Linköping, Sweden
| | - Tero Aittokallio
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland; Biotech Research & Innovation Centre and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland.
| |
Collapse
|
2
|
Das H, Paul L, Chowdhury S, Goswami R, Das S. New insights into self-structure induction in poly (rA) by Quinacrine through non-classical intercalation: Spectroscopic and theoretical perspectives. Int J Biol Macromol 2023; 251:126189. [PMID: 37586624 DOI: 10.1016/j.ijbiomac.2023.126189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Self-structure induction in a single stranded polyriboadenylic acid [poly (rA)] is an auspicious physiological phenomenon which switches off protein production in tumor cells. In the present study, the self-structure induction process in poly (rA) moiety was thoroughly investigated using various steady state and time resolved techniques. Optical melting pattern directly evidenced the formation of self-structured assembly in single stranded poly (rA) upon complexation with quinacrine. Further, UV-absorption spectroscopic studies revealed that quinacrine binds to poly (rA) in co-operative fashion and the indication of intercalative mode of binding first came out with the involvement of around two base pairs of poly (rA) in the complexation. Experimental observations established the unconventional or non-classical intercalation of quinacrine molecule inside self-structured duplex poly (rA) moiety. This complexation was accompanied with negative enthalpy change and positive entropy change; suggesting strong van der Waals and the H-bonding interactions as the major governing forces in the complexation. Moreover, ionic strength dependent binding study established that the non-polyelectrolytic forces were the dominating forces. Further, the photo physical behavior of QN was authenticated using time dependent density functional theory (TDDFT) where both the ground and excited states were exploited.
Collapse
Affiliation(s)
- Himal Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Lopa Paul
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Susmita Chowdhury
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Rapti Goswami
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
3
|
Mucke HA. Drug Repurposing Patent Applications March–June 2022. Assay Drug Dev Technol 2022; 20:286-293. [DOI: 10.1089/adt.2022.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
4
|
Repurposing of Anti-Malarial Drug Quinacrine for Cancer Treatment: A Review. Sci Pharm 2022. [DOI: 10.3390/scipharm90010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinacrine (QC), a synthetic drug belonging to the 9-aminoacridine family, has been used extensively to treat malaria and multiple ailments over the past several decades. Following its discovery in the 1920s and extensive use for the treatment of malaria for nearly two decades, numerous studies have explored its antineoplastic potential in both preclinical and clinical settings. Multiple studies spanning over seven decades have examined a wide range of QC anticancer activities across various types of cancers, along with the underlying mechanisms. Many of these mechanisms, including activation of the p53 signaling cascade and simultaneous NF-κB signaling inhibition, have been reported in various studies, bringing QC to a unique polypharmacological category drug possessing the potential to treat a wide variety of diseases, including cancer. This article summarizes most of the research conducted over several decades to uncover new molecular mechanisms activated or inactivated and directly correlate with antineoplastic activity QC.
Collapse
|
5
|
Wu L, Chatla S, Lin Q, Chowdhury FA, Geldenhuys W, Du W. Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia. Nat Commun 2021; 12:6936. [PMID: 34836965 PMCID: PMC8626516 DOI: 10.1038/s41467-021-27300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 01/30/2023] Open
Abstract
Chemoresistance posts a major hurdle for treatment of acute leukemia. There is increasing evidence that prolonged and intensive chemotherapy often fails to eradicate leukemic stem cells, which are protected by the bone marrow niche and can induce relapse. Thus, new therapeutic approaches to overcome chemoresistance are urgently needed. By conducting an ex vivo small molecule screen, here we have identified Quinacrine (QC) as a sensitizer for Cytarabine (AraC) in treating acute lymphoblastic leukemia (ALL). We show that QC enhances AraC-mediated killing of ALL cells, and subsequently abrogates AraC resistance both in vitro and in an ALL-xenograft model. However, while combo AraC+QC treatment prolongs the survival of primary transplanted recipients, the combination exhibits limited efficacy in secondary transplanted recipients, consistent with the survival of niche-protected leukemia stem cells. Introduction of Cdc42 Activity Specific Inhibitor, CASIN, enhances the eradication of ALL leukemia stem cells by AraC+QC and prolongs the survival of both primary and secondary transplanted recipients without affecting normal long-term human hematopoiesis. Together, our findings identify a small-molecule regimen that sensitizes AraC-mediated leukemia eradication and provide a potential therapeutic approach for better ALL treatment.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Allegra A, Imbesi C, Bitto A, Ettari R. Drug Repositioning for the Treatment of Hematologic Disease: Limits, Challenges and Future Perspectives. Curr Med Chem 2021; 28:2195-2217. [PMID: 33138750 DOI: 10.2174/0929867327999200817102154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning is a strategy to identify new uses for approved or investigational drugs that are used off-label outside the scope of the original medical indication. In this review, we report the most relevant studies about drug repositioning in hematology, reporting the signalling pathways and molecular targets of these drugs, and describing the biological mechanisms which are responsible for their anticancer effects. Although the majority of studies on drug repositioning in hematology concern acute myeloid leukemia and multiple myeloma, numerous studies are present in the literature on the possibility of using these drugs also in other hematological diseases, such as acute lymphoblastic leukemia, chronic myeloid leukemia, and lymphomas. Numerous anti-infectious drugs and chemical entities used for the therapy of neurological or endocrine diseases, oral antidiabetics, statins and medications used to treat high blood pressure and heart failure, bisphosphonate and natural substance such as artemisin and curcumin, have found a place in the treatment of hematological diseases. Moreover, several molecules drastically reversed the resistance of the tumor cells to the chemotherapeutic drugs both in vitro and in vivo.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Das B, Kundu CN. Anti-Cancer Stem Cells Potentiality of an Anti-Malarial Agent Quinacrine: An Old Wine in a New Bottle. Anticancer Agents Med Chem 2021; 21:416-427. [PMID: 32698746 DOI: 10.2174/1871520620666200721123046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Quinacrine (QC) is a tricyclic compound and a derivative of 9-aminoacridine. It has been widely used to treat malaria and other parasitic diseases since the last century. Interestingly, studies have revealed that it also displays anti-cancer activities. Here, we have discussed the anti-cancer mechanism of QC along with its potentiality to specifically target cancer stem cells. The anti-cancer action of this drug includes DNA intercalation, inhibition of DNA repair mechanism, prevention of cellular growth, cell cycle arrest, inhibition of DNA and RNA polymerase activity, induction of autophagy, promotion of apoptosis, deregulation of cell signaling in cancer cells and cancer stem cells, inhibition of metastasis and angiogenesis. In addition, we have also emphasized on the synergistic effect of this drug with other potent chemotherapeutic agents and mentioned its different applications in anti-cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
8
|
Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 2021; 170:284-297. [PMID: 33340624 DOI: 10.1016/j.ijbiomac.2020.12.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Amany Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy, Pharos University of Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
9
|
A compound combination screening approach with potential to identify new treatment options for paediatric acute myeloid leukaemia. Sci Rep 2020; 10:18514. [PMID: 33116257 PMCID: PMC7595190 DOI: 10.1038/s41598-020-75453-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by genetics and morphology. The introduction of intensive chemotherapy treatments together with patient stratification and supportive therapy has resulted in a moderate improvement in patient prognosis. However, overall survival rates remain unacceptably poor, with only 65% of patients surviving longer than 5 years. Recently age-specific differences in AML have been identified, highlighting the need for tailored treatments for paediatric patients. Combination therapies have the potential to improve patient prognosis, while minimising harmful side-effects. In the laboratory setting, identifying key combinations from large drug libraries can be resource-intensive, prohibiting discovery and translation into the clinic. To minimise redundancy and maximise discovery, we undertook a multiplex screen of 80 apoptotic-inducing agents in paediatric AML pre-clinical models. The screen was designed using an all-pairs testing algorithm, which ensured that all pairs of compounds could be tested, while minimising the number of wells used. We identified a combination of ABT-737, a Bcl-2 family inhibitor and Purvalanol A, a CDK inhibitor, as a potential targeted therapy for AML patients with an MLL rearrangement and an FLT3-ITD. Our approach has the potential to reduce resource-intensity and time associated with the identification of novel combination therapies.
Collapse
|
10
|
Liang R, Yao Y, Wang G, Yue E, Yang G, Qi X, Wang Y, Zhao L, Zheng T, Zhang Y, Wenge Wang E. Repositioning Quinacrine Toward Treatment of Ovarian Cancer by Rational Combination With TRAIL. Front Oncol 2020; 10:1118. [PMID: 32766144 PMCID: PMC7379129 DOI: 10.3389/fonc.2020.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
Quinacrine has been identified as a potent DR5-inducing agent that sensitizes cancer cells to TRAIL-induced apoptosis. In the current study, we found that quinacrine increased DR5 mRNA levels significantly in ovarian cancer cell lines regardless of p53 status. Further study showed the half-life of DR5 in quinacrine-treated cells was significantly prolonged, indicating that DR5 protein degradation was inhibited by quinacrine. We tested if the combination of TRAIL and quinacrine could be effective in ovarian cancer treatment in vitro and in ovarian cancer xenograft mouse models. We found that quinacrine enhanced TRAIL sensitivity or reversed TRAIL resistance in all the ovarian cancer cell lines tested. Mice treated with quinacrine and TRAIL remained disease-free for up to 20 weeks, however, mice treated with TRAIL or quinacrine alone and in control group died within ~8 weeks after treatment. Intraperitoneal delivery of quinacrine and TRAIL is rational and practical with extraordinary synergistic anti-cancer effects in preclinical models of ovarian cancer. Clinical investigation of combining quinacrine with TRAIL for ovarian cancer treatment is warranted.
Collapse
Affiliation(s)
- Rui Liang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Department of Pharmacy, Suzhou Vocational Health College, Suzhou, China
| | - Yuanfei Yao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Guangyu Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Er Yue
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Guangchao Yang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Xiuying Qi
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Yang Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Ling Zhao
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| | - Tongsen Zheng
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States.,Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yanqiao Zhang
- Cancer Hospital, Harbin Medical University, Harbin, China
| | - Edward Wenge Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
11
|
Abstract
The never-ending explosion in the cost of new oncology drugs is reducing in many countries the access to the most recent, effective anticancer therapies and represents a significant obstacle to the design and realization of combinatorial trials. Already approved, anticancer and nonanticancer drugs can be considered for in silico, preclinical, and clinical repurposing approaches and offer the significant advantages of a potentially cheaper, faster, and safer validation. This review discusses recent advances and challenges in the field.
Collapse
|
12
|
Wojcicki AV, Kadapakkam M, Frymoyer A, Lacayo N, Chae HD, Sakamoto KM. Repurposing Drugs for Acute Myeloid Leukemia: A Worthy Cause or a Futile Pursuit? Cancers (Basel) 2020; 12:cancers12020441. [PMID: 32069925 PMCID: PMC7072462 DOI: 10.3390/cancers12020441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogenous malignancy of myeloid progenitor cells that affects patients of all ages. Despite decades of research and improvement in overall outcomes, standard therapy remains ineffective for certain subtypes of AML. Current treatment is intensive and leads to a number of secondary effects with varying results by patient population. Due to the high cost of discovery and an unmet need for new targeted therapies that are well tolerated, alternative drug development strategies have become increasingly attractive. Repurposing existing drugs is one approach to identify new therapies with fewer financial and regulatory hurdles. In this review, we provide an overview of previously U.S. Food and Drug Administration (FDA) approved non-chemotherapy drugs under investigation for the treatment of AML.
Collapse
Affiliation(s)
- Anna V. Wojcicki
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Meena Kadapakkam
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Adam Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Norman Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.V.W.); (M.K.); (N.L.); (H.-D.C.)
- Correspondence: ; Tel.: +650-725-7126
| |
Collapse
|
13
|
Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2019; 68:21-30. [PMID: 31562955 DOI: 10.1016/j.semcancer.2019.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Quinacrine, also known as mepacrine, has originally been used as an antimalarial drug for close to a century, but was recently rediscovered as an anticancer agent. The mechanisms of anticancer effects of quinacrine are not well understood. The anticancer potential of quinacrine was discovered in a screen for small molecule activators of p53, and was specifically shown to inhibit NFκB suppression of p53. However, quinacrine can cause cell death in cells that lack p53 or have p53 mutations, which is a common occurrence in many malignant tumors including high grade serous ovarian cancer. Recent reports suggest quinacrine may inhibit cancer cell growth through multiple mechanisms including regulating autophagy, FACT (facilitates chromatin transcription) chromatin trapping, and the DNA repair process. Additional reports also suggest quinacrine is effective against chemoresistant gynecologic cancer. In this review, we discuss anticancer effects of quinacrine and potential mechanisms of action with a specific focus on gynecologic and breast cancer where treatment-refractory tumors are associated with increased mortality rates. Repurposing quinacrine as an anticancer agent appears to be a promising strategy based on its ability to target multiple pathways, its selectivity against cancer cells, and the synergistic cytotoxicity when combined with other anticancer agents with limited side effects and good tolerability profile.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christopher L Pathoulas
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prabhu Thirusangu
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
14
|
Chantzi E, Jarvius M, Niklasson M, Segerman A, Gustafsson MG. COMBImage2: a parallel computational framework for higher-order drug combination analysis that includes automated plate design, matched filter based object counting and temporal data mining. BMC Bioinformatics 2019; 20:304. [PMID: 31164078 PMCID: PMC6549340 DOI: 10.1186/s12859-019-2908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated. RESULTS Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage2 introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling higher- from lower- and single-drug effects. COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma initiating cells. CONCLUSIONS COMBImage2 is able to automatically design and robustly analyze exhaustive and in general higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable, guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases.
Collapse
Affiliation(s)
- Efthymia Chantzi
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,SciLifeLab Drug Discovery and Development, In Vitro Systems Pharmacology Facility, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Segerman
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mats G Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Chantzi E, Jarvius M, Niklasson M, Segerman A, Gustafsson MG. COMBImage: a modular parallel processing framework for pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. BMC Bioinformatics 2018; 19:453. [PMID: 30477419 PMCID: PMC6257977 DOI: 10.1186/s12859-018-2458-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based drug combination analysis that go beyond the conventional but relatively uninformative end point measurements. RESULTS COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google's MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal computer. This framework was employed in the context of an ongoing drug discovery and development project focused on glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use. CONCLUSIONS COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based end point analyses, it could help accelerating and guiding any drug discovery and development project, without use of cell labeling and the need to employ a particular live cell imaging instrument.
Collapse
Affiliation(s)
- Efthymia Chantzi
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
- SciLifeLab Drug Discovery and Development, In Vitro Systems Pharmacology Facility, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Segerman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mats G. Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|