1
|
Chen P, Liu X, Zhao Y, Hu Y, Guo J, Wang H. Global, national, and regional burden of acute myeloid leukemia among 60-89 years-old individuals: insights from a study covering the period 1990 to 2019. Front Public Health 2024; 11:1329529. [PMID: 38274540 PMCID: PMC10808630 DOI: 10.3389/fpubh.2023.1329529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background Our study examined the global, national, and regional trends in the incidence, mortality, and disability-adjusted life years (DALYs) associated with older people's acute myeloid leukemia (AML) over a 30 years period. AML, which predominantly affects individuals aged 60-89, is known for its severity and unfavorable prognosis. By providing insights into the growing burden of AML, our research highlights the urgent need for effective interventions and support at various levels. Methods In this study, we analyzed older people with AML aged 60-89 using the Global Burden of Disease (GBD) database for 2019. Our goal was to assess trends and characteristics by examining the incidence rate, mortality rate, DALYs, and estimated annual percentage change (EAPC). We aimed to provide a comprehensive understanding of the disease's trajectory and development. Results In 2019, the older age group of 60 to 89 years reported 61,559 new cases of AML, with the corresponding number of deaths being 53,620, and the estimated DALYs standing at 990,656. Over the last 30 years, the incidence rate of AML in this age bracket increased by 1.67 per 100,000 people, the mortality rate rose by 1.57 per 100,000 people, and the rate of DALYs, indicative of disease burden, climbed by 1.42 per 100,000 people. High Socio-demographic Index (SDI) regions, particularly high-income North America and Australia, had the highest incidence rates. Germany had the highest incidence rate among the 204 countries analyzed, while Monaco reported the highest mortality and DALY rates. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were identified as significant risk factors associated with mortality from older people with AML in 2019. Conclusion Our study showed that the incidence, mortality, and DALY rates of AML in the older population were strongly correlated with the SDI, and these rates have been steadily increasing. This had become an increasingly serious global health issue, particularly in areas with a high SDI. We highlighted the urgency to focus more on this disease and called for the prompt implementation of appropriate preventive and control measures.
Collapse
Affiliation(s)
- Pengyin Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xinling Liu
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yao Zhao
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuyuan Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiaxin Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Haiying Wang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Li J, Pei L, Liang S, Xu S, Wang Y, Wang X, Liao Y, Zhan Q, Cheng W, Yang Z, Tang X, Zhang H, Xiao Q, Chen J, Liu L, Wang L. Gene mutation analysis using next-generation sequencing and its clinical significance in patients with myeloid neoplasm: A multi-center study from China. Cancer Med 2023; 12:9332-9350. [PMID: 36799265 PMCID: PMC10166913 DOI: 10.1002/cam4.5690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Myeloid neoplasms (MN) tend to relapse and deteriorate. Exploring the genomic mutation landscape of MN using next-generation sequencing (NGS) is a great measure to clarify the mechanism of oncogenesis and progression of MN. METHODS This multicenter retrospective study investigated 303 patients with MN using NGS from 2019 to 2021. The characteristics of the mutation landscape in the MN subgroups and the clinical value of gene variants were analyzed. RESULTS At least one mutation was detected in 88.11% of the patients (267/303). TET2 was the most common mutation in the cohort, followed by GATA2, ASXL1, FLT3, DNMT3A, and TP53. Among patients with myeloid leukemia (ML), multivariate analysis showed that patients aged ≥60 years had lower overall survival (OS, p = 0.004). Further analysis showed TET2, NPM1, SRSF2, and IDH1 gene mutations, and epigenetic genes (p < 0.050) presented significantly higher frequency in older patients. In patients with myelodysplastic syndrome (MDS) and myelodysplastic neoplasms (MPN), univariate analysis showed that BCORL1 had a significant impact on OS (p = 0.040); however, in multivariate analysis, there were no factors significantly associated with OS. Differential analysis of genetic mutations showed FLT3, TP53, MUC16, SRSF2, and KDM5A mutated more frequently (p < 0.050) in secondary acute myeloid leukemia (s-AML) than in MDS and MPN. TP53, U2AF1, SRSF2, and KDM5A were mutated more frequently (p < 0.050) in s-AML than in primary AML. KDM5A was observed to be restricted to patients with s-AML in this study, and only co-occurred with MUC16 and TP53 (2/2, 100%). Another mutation was MUC16, and its co-occurrence pattern differed between s-AML and AML. MUC16 mutations co-occurred with KDM5A and TP53 in 66.7% (2/3) of patients with s-AML and co-occurred with CEBPA in 100% (4/4) of patients with AML. CONCLUSIONS Our results demonstrate different genomic mutation patterns in the MN subgroups and highlight the clinical value of genetic variants.
Collapse
Affiliation(s)
- Junnan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Pei
- Department of Hematology, The First Affiliated Hospital of Army Medical University(Southwest Hospital), Chongqing, China
| | - Simin Liang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuangnian Xu
- Department of Hematology, The First Affiliated Hospital of Army Medical University(Southwest Hospital), Chongqing, China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'An, Shaanxi, China
| | - Xiao Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'An, Shaanxi, China
| | - Yi Liao
- Department of Oncology and Hematology, Chongqing University Affiliated Center Hospital, Chongqing, China
| | - Qian Zhan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Cheng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
4
|
Monosomal karyotype as an adverse risk factor for inferior survivals in children with acute myeloid leukemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Chen X, Wang X, Dou H, Yang Z, Bi J, Huang Y, Lu L, Yu J, Bao L. Cytogenetic and mutational analysis and outcome assessment of a cohort of 284 children with de novo acute myeloid leukemia reveal complex karyotype as an adverse risk factor for inferior survival. Mol Cytogenet 2021; 14:27. [PMID: 34011412 PMCID: PMC8136172 DOI: 10.1186/s13039-021-00547-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is rare in children. Although complex karyotype (CK) defined as ≥ 3 cytogenetic abnormalities is an adverse risk factor in adult AML, its prognostic impact on childhood AML remains to be determined. Results We studied the prevalence, cytogenetic and mutational features, and outcome impact of CK in a cohort of 284 Chinese children with de novo AML. Thirty-four (12.0%) children met the criteria for CK-AML with atypical CK being more frequent than typical CK featured with -5/5q-, -7/7q-, and/or 17p aberration. Mutational prevalence was low and co-occurrence mutants were uncommon. Children with CK-AML showed shorter overall survival (OS) (5-year OS: 26.7 ± 10.6% vs. 37.5 ± 8.6%, p = 0.053) and event-free survival (EFS) (5-year EFS: 26.7 ± 10.6% vs. 38.8 ± 8.6%, p = 0.039) compared with those with intermediate-risk genetics. Typical CK tended to correlate with a decreased OS than atypical CK (5-year OS: 0 vs. 33 ± 12.7%.; p = 0.084), and CK with ≥ 5 cytogenetic aberrations was associated with an inferior survival compared with CK with ≤ 4 aberrations (5-year OS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.040; 5-year EFS: 13.6 ± 11.7% vs. 50.0 ± 18.6%; p = 0.048). Conclusion Our results demonstrate CK as an adverse risk factor for reduced survival in childhood AML. Our findings shed light on the cytogenetic and mutational profile of childhood CK-AML and would inform refinement of risk stratification in childhood AML to improve outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00547-0.
Collapse
Affiliation(s)
- Xi Chen
- Center for Clinical Molecular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xingjuan Wang
- Center for Reproductive Medicine, Baoji Maternal and Child Health Hospital, Shanxi, China
| | - Hu Dou
- Department of Clinical Laboratory, Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Yang
- Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Junqin Bi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ling Lu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, No. 136 Zhongshang 2nd Road, Chongqing, 400014, China.
| | - Liming Bao
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, 12705 E. Montview Boulevard, Suite 400, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Asian Population Is More Prone to Develop High-Risk Myelodysplastic Syndrome, Concordantly with Their Propensity to Exhibit High-Risk Cytogenetic Aberrations. Cancers (Basel) 2021; 13:cancers13030481. [PMID: 33513838 PMCID: PMC7865620 DOI: 10.3390/cancers13030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The world population is genetically and environmentally diverse. In particular, genetic differences related to an ethnic factor may underlie differences in cancer phenotypic expression. Therefore, we compared the epidemiology, and the clinical, biological and genetic characteristics of myelodysplastic syndrome (MDS) between Asian and Western countries. Our results show substantial differences in the incidence and age of onset between Asian and Western MDS patients. A higher proportion of Asian MDS patients fall into the high- and very-high risk prognostic MDS groups. This finding is supported by the identification of a higher proportion of high-risk cytogenetic aberrations in Asian MDS patients. However, the survival rate is similar for Western and Asian MDS patients. Our findings may impact the clinical management as well as the strategy of clinical trials targeting those genetic aberrations and mutations depending on the world area where they are run. Abstract This study explores the hypothesis that genetic differences related to an ethnic factor may underlie differences in phenotypic expression of myelodysplastic syndrome (MDS). First, to identify clear ethnic differences, we systematically compared the epidemiology, and the clinical, biological and genetic characteristics of MDS between Asian and Western countries over the last 20 years. Asian MDS cases show a 2- to 4-fold lower incidence and a 10-year younger age of onset compared to the Western cases. A higher proportion of Western MDS patients fall into the very low- and low-risk categories while the intermediate, high and very high-risk groups are more represented in Asian MDS patients according to the Revised International Prognostic Scoring System. Next, we investigated whether differences in prognostic risk scores could find their origin in differential cytogenetic profiles. We found that 5q deletion (del(5q)) aberrations and mutations in TET2, SF3B1, SRSF2 and IDH1/2 are more frequently reported in Western MDS patients while trisomy 8, del(20q), U2AF1 and ETV6 mutations are more frequent in Asian MDS patients. Treatment approaches differ between Western and Asian countries owing to the above discrepancies, but the overall survival rate within each prognostic group is similar for Western and Asian MDS patients. Altogether, our study highlights greater risk MDS in Asians supported by their cytogenetic profile.
Collapse
|
7
|
Ma TT, Lin XJ, Cheng WY, Xue Q, Wang SY, Liu FJ, Yan H, Zhu YM, Shen Y. Development and validation of a prognostic model for adult patients with acute myeloid leukaemia. EBioMedicine 2020; 62:103126. [PMID: 33232873 PMCID: PMC7689519 DOI: 10.1016/j.ebiom.2020.103126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background The high heterogeneity of acute myeloid leukaemia (AML) reflected in the patient- and disease-related factors accounts for the unsatisfactory prognosis despite the introduction of novel therapeutic approaches and drugs in recent years. Methods In the development set (n = 412), parameters including age, hematopoietic cell transplantation-comorbidity index, white blood cell count, hemoglobin, biallelic CEBPA mutations, DNMT3A mutations, FLT3-ITD/NPM1 status, and ELN cytogenetic risk status were identified as independent prognostic factors for overall survival (OS) in the multivariable Cox regression analysis. A nomogram combining these predictors for individual risk estimation was established thereby. Findings The prognostic model demonstrated promising performance in the development cohort. The calibration plot, C-index (0.74), along with the 1-, 2- and 3-year area under the receiver operating characteristic curve (AUC, 0.76, 0.79, and 0.74, respectively) in the validation set (n = 238) substantiated the robustness of the model. In addition to stratifying young (age ≤ 60 years) and elderly patients (age > 60 years) into three and two risk groups with significant distinct outcomes, the prognostic model succeeded in distinguishing eligible candidates for hematopoietic stem cell transplantation. Interpretation The prognostic model is capable of survival prediction, risk stratification and helping with therapeutic decision-making with the use of easily acquired variables in daily clinical routine. Funding This work was supported in part by grants from the National Natural Science Foundation of China (81770141), the National Key R&D Program of China (2016YFE0202800), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161406).
Collapse
Affiliation(s)
- Ting-Ting Ma
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Xiao-Jing Lin
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Wen-Yan Cheng
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Qing Xue
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Shi-Yang Wang
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Fu-Jia Liu
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Han Yan
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Yong-Mei Zhu
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Haematology, Department of Haematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China.
| |
Collapse
|
8
|
Affiliation(s)
| | - Lalit Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit K Sahoo
- All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Wei H, Wang Y, Gale RP, Lin D, Zhou C, Liu B, Qiu S, Gu R, Li Y, Zhao X, Wei S, Gong B, Liu K, Gong X, Liu Y, Zhang G, Song Z, Wang Y, Li W, Mi Y, Wang J. Randomized Trial of Intermediate-dose Cytarabine in Induction and Consolidation Therapy in Adults with Acute Myeloid Leukemia. Clin Cancer Res 2020; 26:3154-3161. [PMID: 32029439 DOI: 10.1158/1078-0432.ccr-19-3433] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/10/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Hui Wei
- State Key Laboratory of Experimental Hematology, Tianjin, China
- National Clinical Research Center for Blood Disease, Tianjin, China
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ying Wang
- National Clinical Research Center for Blood Disease, Tianjin, China
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Robert Peter Gale
- Division of Experimental Medicine, Department of Medicine, Hematology Research Center, Imperial College London, London, United Kingdom
| | - Dong Lin
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Chunlin Zhou
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Bingcheng Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shaowei Qiu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Runxia Gu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yan Li
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xingli Zhao
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shuning Wei
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Benfa Gong
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Kaiqi Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Xiaoyuan Gong
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yuntao Liu
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Guangji Zhang
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhen Song
- National Clinical Research Center for Blood Disease, Tianjin, China
| | - Yang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Wei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, Tianjin, China.
- National Clinical Research Center for Blood Disease, Tianjin, China
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Tianjin, China.
- National Clinical Research Center for Blood Disease, Tianjin, China
- Leukemia Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
10
|
Gene mutational analysis by NGS and its clinical significance in patients with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol Oncol 2020; 9:2. [PMID: 31921515 PMCID: PMC6945703 DOI: 10.1186/s40164-019-0158-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023] Open
Abstract
Background In this study, we retrospectively summarized the differences of molecular gene mutations between MDS and AML patients, as well as the young and older age groups of MDS and AML patients. We also analyzed the response of newly diagnosed AML patients to standard DA or IA induction chemotherapy and the relationship between the chemotherapy outcome and the frequency of different gene mutation abnormalities. Methods NGS assay covering 43 genes was studied in 93 de novo MDS and 325 non-M3 AML patients. Bone marrow samples from all patients underwent gene mutational analysis by NGS. Results At least one non-synonymous gene mutation was detected in 279 AML patients (85.8%) and 85 MDS patients (91.4%). Contrary to 59 years and younger AML patients, there was a significantly higher incidence of gene mutation in 60 years and older AML patients (2.37 vs 1.94, p = 0.034). Gene mutation incidence in 60 years and older MDS patients increased, but no statistical significance was present (1.95 vs 1.64, p = 0.216). AML patients had a significantly higher gene mutation incidence compared with MDS-MLD patients (2.02 vs 1.63, p = 0.046). Gene mutation incidence was higher in patients with MDS-EB1/EB2 compared with patients with MDS-MLD but there was no statistical significance present (2.14 vs 1.63, p = 0.081). AML patients had significantly higher incidences of CEBPA, FLT3-ITD, DNMT3A, NPM1 and IDH1/2 gene mutations (p = 0.0043, 0.000, 0.030962, 0.002752, and 0.000628, respectively) and a lower incidence of TET2 and U2AF1 gene mutations (p = 0.000004 and 0.000, respectively) compared with MDS patients. Among the individual genes in different age groups, there were significantly higher incidences of RUNX1, IDH2, TP53 and SF3B1 gene mutations (p = 0.0478, 0.0028, 0.0024 and 0.005, respectively) as well as a trend of higher ASXL gene mutation (p = 0.057) in 60 years and older AML patients compared to 59 years and younger patients. There was no statistically significant difference in MDS patients with the different age groups and among the individual genes. Between AML patients and MDS patients among the different gene functional groups, AML patients had a significantly higher incidence of transcriptional deregulation (27.4% vs 15.1%, p = 0.014963), activated signalling (36.3% vs 10.8%, p = 0.000002) related gene mutations as well as a significantly lower incidence of RNA spliceosome (6.15% vs 60.1%, p = 0.000) related gene mutations. Furthermore, among the patients who received either IA or DA regimen for induction chemotherapy, patients with IA regimen had a significantly better CR rate than those with DA regimen (76.6% vs 57.1%, p = 0.0228). Conclusions Different gene mutations had been found in majority of MDS and AML patients. MDS and AML patients had different gene mutation patterns. AML patients with fewer or no gene mutations had a better chance of achieving CR when treated with IA and DA regimen induction chemotherapy.
Collapse
|
11
|
Cao XX, Cai H, Mao YY, Wu Q, Zhang L, Zhou DB, Li J. Next-generation sequencing-based genetic landscape and its clinical implications for Chinese acute myeloid leukemia patients. Cancer Cell Int 2018; 18:215. [PMID: 30598640 PMCID: PMC6303841 DOI: 10.1186/s12935-018-0716-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous disease. The survival of older patients is generally poor. In the current study, we sought to investigate the differences in molecular gene mutations between younger and older AML patients, and to identify those newly diagnosed AML patients who are more likely to respond to standard cytarabine and daunorubicin induction chemotherapy. Methods We retrospectively evaluated 179 patients who were newly diagnosed with non-M3 AML. A next-generation sequencing assay covering 34 genes was used to investigate recurrently mutated genes. The mutational status of fusion genes was determined by real time PCR. Results The median age at diagnosis was 53 years (range 18–88 years). Sixty-eight patients were 60 years or older with a median age of 67 years (range 60–88 years). Eighteen patients (10.1%) carried t(8;21)(q22;q22.1) or RUNX1–RUNX1T1 gene fusion, and there was a significantly higher incidence in younger patients (p = 0.019). At least one non-synonymous gene mutation was detected in 159 patients (88.8%). The median number of gene mutations was two (range 0–6). The mean number of molecular gene mutations at diagnosis was higher in older patients than younger patients (2.5 vs 1.83, p = 0.003). Older patients had significantly higher incidences of ASXL1 (22.1% vs 13.5%, p = 0.025) and TP53 mutations (13.2% vs 3.6%, p = 0.034). In total, 78 patients received DA60 (daunorubicin 60 mg/m2 per day on days 1–3 and cytarabine 100 mg/m2 twice per day on days 1–7) as the induction therapy, and information was available on their response to induction treatment. Patients with RUNX1–RUNX1T1 gene fusion were significantly more likely to achieve complete remission (CR) after DA60 induction therapy (p = 0.026), as were patients without the ASXL1 mutation (p = 0.007). Conclusion Older AML patients had a lower incidence of favorable cytogenetics and higher frequencies and burdens of molecular mutations that are associated with poor prognosis compared to younger patients. Patients with RUNX1–RUNX1T1 gene fusion or without the ASXL1 gene mutation had a better chance of achieving CR when treated with cytarabine and daunorubicin induction chemotherapy.
Collapse
Affiliation(s)
- Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Hao Cai
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Yue-Ying Mao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Qi Wu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuai Fu Yuan Hu Tong, Dongcheng District, Beijing, 100730 People's Republic of China
| |
Collapse
|