1
|
Cheong I, Liang C, Bhayana V, Stevic I, Louzada M, Chin-Yee I, Rutledge AC. Shortcoming of serum B-cell maturation antigen measurement by enzyme-linked immunosorbent assay in one laboratory's experience: Unsatisfactory assay reproducibility. Clin Biochem 2025; 138:110941. [PMID: 40345317 DOI: 10.1016/j.clinbiochem.2025.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Serum protein electrophoresis and serum free light chain (SFLC) assays are standard methods for monitoring patients with multiple myeloma (MM). However, patients with non-secretory MM often require invasive bone marrow biopsies to monitor treatment response and disease progression. Recently, serum soluble B-cell maturation antigen (sBCMA) has been proposed as an alternative biomarker for monitoring of MM, including non-secretory disease. We aimed to optimize the performance of and validate a serum sBCMA enzyme-linked immunosorbent assay (ELISA) from R&D Systems for research and eventual clinical use. METHODS AND RESULTS A total allowable error of 25 % was used, with one-third (8.3 %) budgeted for imprecision, one-third for bias, and one-half (12.5 %) as the allowable deviation from linearity. For imprecision, the repeatability coefficient of variation (CV) was acceptable, but the within-laboratory CV was not. We were limited in our ability to assess accuracy, but recovery of the ELISA standards was acceptable, and the sBCMA concentrations determined in various patient populations compared well to previous publications. The sBCMA concentration also correlated significantly with the M-protein concentration and the involved/uninvolved SFLC ratio. The sBCMA ELISA was verified to be linear within the allowable deviation between 99.04-1179.36 pg/mL. We attempted to confirm stability of serum sBCMA stored at room temperature, 4 °C, and -20 °C for up to 50 weeks, but the assay reproducibility was too poor for this to be assessed adequately. CONCLUSION Despite efforts to optimize the performance of the ELISA, the results were not reproducible enough over time to allow us to implement this sBCMA ELISA for clinical use.
Collapse
Affiliation(s)
- Ian Cheong
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Vipin Bhayana
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, London Health Sciences Centre and St. Joseph's Health Care London, London, ON, Canada
| | - Ivan Stevic
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, London Health Sciences Centre and St. Joseph's Health Care London, London, ON, Canada
| | - Martha Louzada
- Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ian Chin-Yee
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, London Health Sciences Centre and St. Joseph's Health Care London, London, ON, Canada; Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angela C Rutledge
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, London Health Sciences Centre and St. Joseph's Health Care London, London, ON, Canada.
| |
Collapse
|
2
|
Freeman CL, Noble J, Menges M, Villanueva R, Nakashima JY, Figura NB, Tonseth RP, Werner Idiaquez D, Skelson L, Smith E, Abraham-Miranda J, Corallo S, De Avila G, Castaneda Puglianini OA, Liu H, Alsina M, Nishihori T, Shain KH, Baz R, Blue B, Grajales-Cruz A, Koomen JM, Atkins RM, Hansen DK, S Silva A, Kim J, Balagurunathan Y, Locke FL. Tumor burden quantified by soluble B-cell maturation antigen and metabolic tumor volume determines myeloma CAR-T outcomes. Blood 2025; 145:1645-1657. [PMID: 39652773 DOI: 10.1182/blood.2024024965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a breakthrough treatment for relapsed and refractory multiple myeloma (RRMM). However, these products are complex to deliver, and alternative options are now available. Identifying biomarkers that can predict therapeutic outcomes is crucial for optimizing patient selection. There is a paucity of data evaluating the utility of both serum soluble B-cell maturation antigen (sBCMA) levels and metabolic tumor volume (MTV) at baseline in patients with RRMM undergoing CAR-T therapy. We identified a cohort of 183 patients with available serum to measure sBCMA and/or pretreatment MTV, derived from positron emission tomography-computed tomography scans obtained per standard of care. Expectedly, high pretreatment levels of sBCMA correlated with other established markers of tumor burden (eg, bone marrow plasma cells and β2 microglobulin) and inflammation and were highly prognostic for CAR-T-related toxicities and inferior progression-free survival (PFS). High MTV values were also associated with shorter PFS and inferior overall survival. The poor correlation observed between these 2 measures prompted evaluation of those with discordant results, identifying that those with low sBCMA and high MTV frequently had low/absent BCMA expression on plasma cells and suboptimal response. Our findings highlight the potential utility of sBCMA and MTV to facilitate more personalized treatment strategies in the management of RRMM eligible for BCMA-directed CAR-T.
Collapse
Affiliation(s)
- Ciara L Freeman
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jerald Noble
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Meghan Menges
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Justyn Y Nakashima
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Nicholas B Figura
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | - Lawrence Skelson
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Eric Smith
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Julieta Abraham-Miranda
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Salvatore Corallo
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gabriel De Avila
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Omar A Castaneda Puglianini
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Hien Liu
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Melissa Alsina
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Taiga Nishihori
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Brandon Blue
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ariel Grajales-Cruz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Reginald M Atkins
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Doris K Hansen
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Frederick L Locke
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
3
|
Elmeliegy M, Viqueira A, Vandendries E, Hickman A, Conte U, Irby D, Hibma J, Lon HK, Piscitelli J, Soltantabar P, Skoura A, Jiang S, Wang D. Dose Optimization of Elranatamab to Mitigate the Risk of Cytokine Release Syndrome in Patients with Multiple Myeloma. Target Oncol 2025; 20:349-359. [PMID: 40000533 PMCID: PMC11933221 DOI: 10.1007/s11523-025-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Elranatamab is a BCMA-CD3 bispecific antibody approved for the treatment of relapsed or refractory multiple myeloma. Cytokine release syndrome is one of the most common adverse events associated with bispecific antibodies. OBJECTIVE We aimed to determine the optimal elranatamab dosing regimen for mitigating cytokine release syndrome. PATIENTS AND METHODS Safety, pharmacokinetics, and exposure-response were analyzed across four clinical studies (MagnetisMM-1, MagnetisMM-2, MagnetisMM-3, and MagnetisMM-9). Different priming regimens evaluated across these studies included a one-step-up dose priming regimen of 44 mg with or without premedication, a two-step-up dose priming regimen of 12 mg on day 1 and 32 mg on day 4 with premedication, and a two-step-up dose priming regimen of 4 mg on day 1 and 20 mg on day 4 with premedication. RESULTS The maximum elranatamab serum concentration on day 1 was positively associated with any-grade and grade ≥ 2 cytokine release syndrome. A slower time to maximum serum concentration and a lower dose-normalized maximum serum concentration were observed with subcutaneous versus intravenous administration, supporting subcutaneous dosing to help mitigate cytokine release syndrome. CONCLUSIONS Based on the incidence, severity, and predictable profile of cytokine release syndrome, the 12/32-mg priming-dose regimen with premedication was determined to be the optimal regimen before the first full dose of 76 mg on day 8. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT03269136, NCT04798586, NCT04649359, and NCT05014412.
Collapse
Affiliation(s)
- Mohamed Elmeliegy
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA.
| | - Andrea Viqueira
- Oncology Research and Development, Pfizer SLU, Madrid, Spain
| | - Erik Vandendries
- Oncology Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Anne Hickman
- Oncology Research and Development, Pfizer Inc., Groton, CT, USA
| | - Umberto Conte
- Oncology Research and Development, Pfizer Inc., New York, NY, USA
| | - Donald Irby
- Pfizer Research and Development, Pfizer Inc., La Jolla, CA, USA
| | - Jennifer Hibma
- Pfizer Research and Development, Pfizer Inc., La Jolla, CA, USA
| | - Hoi-Kei Lon
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA
| | - Joseph Piscitelli
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA
| | - Pooneh Soltantabar
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA
| | - Athanasia Skoura
- Oncology Research and Development, Pfizer Inc., New York, NY, USA
| | - Sibo Jiang
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA
| | - Diane Wang
- Oncology Research and Development, Pfizer Inc., San Diego, CA, 92121, USA
| |
Collapse
|
4
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Sierro-Martínez B, Escamilla-Gómez V, Pérez-Ortega L, Guijarro-Albaladejo B, Hernández-Díaz P, de la Rosa-Garrido M, Lara-Chica M, Rodríguez-Gil A, Reguera-Ortega JL, Sanoja-Flores L, Arribas-Arribas B, Montiel-Aguilera MÁ, Carmona G, Robles MJ, Caballero-Velázquez T, Briones J, Einsele H, Hudecek M, Pérez-Simón JA, García-Guerrero E. Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features. Cell Oncol (Dordr) 2025; 48:219-237. [PMID: 39192092 PMCID: PMC11850460 DOI: 10.1007/s13402-024-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness. METHODS CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness. RESULTS Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10). CONCLUSIONS CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).
Collapse
Affiliation(s)
- Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Virginia Escamilla-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Laura Pérez-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Paola Hernández-Díaz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María de la Rosa-Garrido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maribel Lara-Chica
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Reguera-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Luzalba Sanoja-Flores
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
- Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Maria Jose Robles
- Unidad de Patología Comparada, Biobanco Virgen del Rocío-IBiS, Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Briones
- Servicio de Hematología, Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
6
|
Narra RK, Peshin S, Dhakal B. Novel Approaches of Cellular Therapy in Multiple Myeloma: Focus on Chimeric Antigen Receptor T-Cells. Acta Haematol 2024; 148:330-345. [PMID: 39733769 DOI: 10.1159/000543265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/23/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Recent advancements in cellular therapies, particularly chimeric antigen receptor T-cells (CAR-T) and T-cell-engaging bispecific antibodies have significantly altered the therapeutic landscape for multiple myeloma. There are two US FDA approved CAR-T products targeting BCMA available for commercial use at this time. Though these innovative therapies have demonstrated considerable efficacy in heavily pretreated multiple myeloma patients, many challenges remain, including accessibility, potential toxicities such as cytokine release syndrome and neurotoxicity and development of resistance through targeted antigen loss and T-cell exhaustion and various other mechanisms. CRISPR edited allogeneic CAR-T cells, CAR-NK cells, and structural makeover of autologous CART with safety switches are being studied to address current limitations in cellular therapy. Additionally, newer target antigens such as GPRC5D, FcRH5, armored CAR-T cells that resist immunosuppressive cytokines such as TGF-β are being investigated. SUMMARY This review summarizes safety and efficacy of currently available CART, discusses challenges with these therapies, and ongoing research efforts aimed at addressing resistance, mitigate treatment-related toxicities, and refining for broader applicability and prolonged efficacy. KEY MESSAGES CART cell therapy has shown significant benefit in treatment of multiple myeloma. Many challenges persist. Novel strategies with structural modifications are being incorporated to overcome the limitations.
Collapse
Affiliation(s)
- Ravi Kishore Narra
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Supriya Peshin
- Division of Internal Medicine, Norton community Hospital, Norton, Virginia, USA
| | - Binod Dhakal
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Swan D, Madduri D, Hocking J. CAR-T cell therapy in Multiple Myeloma: current status and future challenges. Blood Cancer J 2024; 14:206. [PMID: 39592597 PMCID: PMC11599389 DOI: 10.1038/s41408-024-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The treatment of multiple myeloma has changed dramatically in recent years, with huge strides forward made in the field. Chimeric antigen receptor T-cell therapy targeting the B cell maturation antigen (BCMA) is now widely approved in relapsed refractory patients and is moving into earlier treatment lines. In this review, we discuss the evidence underpinning current regulatory approvals and consider mechanisms through which CAR-T cell efficacy could be improved. These include tackling BCMA-loss, harnessing the immunosuppressive tumour microenvironment, manufacturing concerns including the potential role of other cellular sources, safety issues such as cytokine release syndrome and neurotoxicity, and optimal patient selection.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, Austin Health, Melbourne, VIC, Australia.
| | - Deepu Madduri
- Department of Medicine, Blood and Marrow Transplantation, Stanford Hospital, Palo Alto, CA, USA
| | - Jay Hocking
- Department of Haematology, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Rees M, Abdallah N, Yohannan B, Gonsalves WI. Bispecific antibody targets and therapies in multiple myeloma. Front Immunol 2024; 15:1424925. [PMID: 39450163 PMCID: PMC11499143 DOI: 10.3389/fimmu.2024.1424925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Recently, several bispecific antibodies (BsAbs) have been approved for the treatment of relapsed multiple myeloma (MM) after early phase trials in heavily pre-treated patients demonstrated high response rates and impressive progression-free survival with monotherapy. These BsAbs provide crucial treatment options for relapsed patients and challenging decisions for clinicians. Evidence on the optimal patient population, treatment sequence, and duration of these therapeutics is unknown and subject to active investigation. While rates of cytokine release syndrome and neurotoxicity appear to be lower with BsAbs than with CAR T-cells, morbidity from infection is high and novel pathways of treatment resistance arise from the longitudinal selection pressure of chronic BsAb therapy. Lastly, a wealth of novel T-cell engagers with unique antibody-structures and antigenic targets are under active investigation with promising early outcome data. In this review, we examine the mechanism of action, therapeutic targets, combinational approaches, sequencing and mechanisms of disease relapse for BsAbs in MM.
Collapse
Affiliation(s)
- Matthew Rees
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, St Vincent’s Hospital Melbourne,
Melbourne, VIC, Australia
| | - Nadine Abdallah
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Binoy Yohannan
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
9
|
Carretero-Iglesia L, Hall OJ, Berret J, Pais D, Estoppey C, Chimen M, Monney T, Loyau J, Dreyfus C, Macoin J, Perez C, Menon V, Gruber I, Laurendon A, Caro LN, Gudi GS, Matsuura T, van der Graaf PH, Blein S, Mbow ML, Croasdale-Wood R, Srivastava A, Dyson MR, Matthes T, Kaya Z, Edwards CM, Edwards JR, Maiga S, Pellat-Deceunynck C, Touzeau C, Moreau P, Konto C, Drake A, Zhukovsky EA, Perro M, Pihlgren M. ISB 2001 trispecific T cell engager shows strong tumor cytotoxicity and overcomes immune escape mechanisms of multiple myeloma cells. NATURE CANCER 2024; 5:1494-1514. [PMID: 39261676 PMCID: PMC11505469 DOI: 10.1038/s43018-024-00821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Despite recent advances in immunotherapies targeting single tumor-associated antigens, patients with multiple myeloma eventually relapse. ISB 2001 is a CD3+ T cell engager (TCE) co-targeting BCMA and CD38 designed to improve cytotoxicity against multiple myeloma. Targeting of two tumor-associated antigens by a single TCE resulted in superior cytotoxic potency across a variable range of BCMA and CD38 tumor expression profiles mimicking natural tumor heterogeneity, improved resistance to competing soluble factors and exhibited superior cytotoxic potency on patient-derived samples and in mouse models. Despite the broad expression of CD38 across human tissues, ISB 2001 demonstrated a reduced T cell activation profile in the absence of tumor cells when compared to TCEs targeting CD38 only. To determine an optimal first-in-human dose for the ongoing clinical trial ( NCT05862012 ), we developed an innovative quantitative systems pharmacology model leveraging preclinical data, using a minimum pharmacologically active dose approach, therefore reducing patient exposure to subefficacious doses of therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Vinu Menon
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | | | | | | | - Tomomi Matsuura
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | - Piet H van der Graaf
- Certara UK Limited, Canterbury Innovation Centre, University Road, Canterbury, United Kingdom
| | | | | | | | | | | | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, Geneva, Switzerland
| | - Zeynep Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - James R Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Sophie Maiga
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | | | - Cyrille Touzeau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Philippe Moreau
- Nantes Université, Inserm, CNRS, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU, Nantes, France
| | - Cyril Konto
- Ichnos Glenmark Innovation, New York, NY, USA
| | - Adam Drake
- Ichnos Glenmark Innovation, New York, NY, USA
| | | | - Mario Perro
- Ichnos Glenmark Innovation, New York, NY, USA.
| | | |
Collapse
|
10
|
Yashar D, Regidor B, Goldwater MS, Bujarski S, Del Dosso A, Berenson JR. Targeting B-cell maturation antigen for treatment and monitoring of relapsed/refractory multiple myeloma patients: a comprehensive review. Ther Adv Hematol 2024; 15:20406207241275797. [PMID: 39290982 PMCID: PMC11406639 DOI: 10.1177/20406207241275797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Despite major therapeutic advancements in recent years, multiple myeloma (MM) remains an incurable disease with nearly all patients experiencing relapsed and refractory disease over the course of treatment. Extending the duration and durability of clinical responses will necessitate the development of therapeutics with novel targets that are capable of robustly and specifically eliminating myeloma cells. B-cell maturation antigen (BCMA) is a membrane-bound protein expressed predominantly on malignant plasma cells and has recently been the target of several novel therapeutics to treat MM patients. This review will focus on recently approved and currently in development agents that target this protein, including bispecific antibodies, antibody-drug conjugates, and chimeric antigen receptor T-cell therapies. In addition, this protein also serves as a novel serum biomarker to predict outcomes and monitor disease status for MM patients; the studies demonstrating this use of BCMA will be discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | | | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, 9201 Sunset Blvd., West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
- ONCOtherapeutics, West Hollywood, CA, USA
| |
Collapse
|
11
|
Heerma van Voss MR, Molenaar RJ, Korst CLBM, Bartelink IH, Baglio SR, Kruyswijk S, de Ruijter M, Zweegman S, Kuipers MT, van de Donk NWCJ. T-cell redirecting bispecific antibody treatment in multiple myeloma: current knowledge and future strategies for sustained T-cell engagement. Expert Opin Biol Ther 2024; 24:889-901. [PMID: 39185748 DOI: 10.1080/14712598.2024.2397436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION T-cell redirecting bispecific antibodies (BsAbs), targeting B-cell maturation antigen (BCMA) or G-protein - coupled receptor class C group 5 member D (GPRC5D), are efficacious new agents for the treatment of patients with relapsed or refractory MM. AREAS COVERED This review discusses the pharmacokinetic properties, efficacy, and safety profile of T-cell redirecting BsAbs in MM, with a special focus on their optimal dosing schedule, resistance mechanisms and future strategies to enhance efficacy, reduce toxicity, and maximize duration of response. EXPERT OPINION To further improve the efficacy of BsAbs, ongoing studies are investigating whether combination therapy can enhance depth and duration of response. An important open question is also to what extent response to BsAbs can be improved when these agents are used in earlier lines of therapy. In addition, more evidence is needed on rational de-intensification strategies of BsAb dosing upon achieving a sufficient response, and if (temporary) treatment cessation is possible in patients who have achieved a deep remission (e.g. complete response or minimal residual disease-negative status).
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Charlotte L B M Korst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Imke H Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Serena R Baglio
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandy Kruyswijk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike de Ruijter
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maria T Kuipers
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Guo P, Wang Y, He H, Chen D, Liu J, Qiang W, Lu J, Liang Y, Du J. Elevated serum levels of soluble B-cell maturation antigen as a prognostic biomarker for multiple myeloma. Clin Exp Immunol 2024; 217:221-232. [PMID: 38743453 PMCID: PMC11310710 DOI: 10.1093/cei/uxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Indexed: 05/16/2024] Open
Abstract
Serum B-cell maturation antigen (sBCMA) levels can serve as a sensitive biomarker in multiple myeloma (MM). In the research setting, sBCMA levels can be accurately detected by enzyme-linked immunosorbent assay (ELISA), but the approach has not been approved for clinical use. Here, we used a novel chemiluminescence method to assess sBCMA levels in 759 serum samples from 17 healthy donors and 443 patients with plasma cell (PC) diseases including AL amyloidosis, POEMS syndrome, and MM. Serum BCMA levels were elevated 16.1-fold in patients with newly diagnosed MM compared to healthy donors and rare PC diseases patients. Specifically, the sBCMA levels in patients with progressive disease were 64.6-fold higher than those who showed partial response or above to treatment. The sBCMA level also correlated negatively with the response depth of MM patients. In newly diagnosed and relapsed MM patients, survival was significantly longer among those subjects whose sBCMA levels are below the median levels compared with those above the median value. We optimized the accuracy of the survival prediction further by integrating sBCMA level into the Second Revised International Staging System (R2-ISS). Our findings provide evidence that the novel chemiluminescence method is sensitive and practical for measuring sBCMA levels in clinical samples and confirm that sBCMA might serve as an independent prognostic biomarker for MM.
Collapse
Affiliation(s)
- Pei Guo
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haiyan He
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Dongjian Chen
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Liu
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanting Qiang
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Lu
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Juan Du
- Department of Hematology, Myeloma and Lymphoma Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Hamadeh IS, Friend R, Mailankody S, Atrash S. Chimeric antigen receptor T-cells: a review on current status and future directions for relapsed/refractory multiple myeloma. Front Oncol 2024; 14:1455464. [PMID: 39175472 PMCID: PMC11338754 DOI: 10.3389/fonc.2024.1455464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Although multiple myeloma is an incurable disease, the past decade has witnessed significant improvement in patient outcomes. This was brought about by the development of T-cell redirection therapies such as chimeric antigen receptor (CAR) T-cells, which can leverage the natural ability of the immune system to fight myeloma cells. The approval of the B-cell maturation antigen (BCMA)-directed CAR T, idecabtagene vicleucel (ide-cel), and ciltacabtagene autoleucel (cilta-cel) has resulted in a paradigm shift in the treatment of relapsed/refractory multiple myeloma. Overall response rates ranging from 73 to 97% are currently achievable. However, the limitations of KarMMa-1 and CARTITUDE-1 studies spurred the generation of real-world data to provide some insights into the effectiveness of ide-cel and cilta-cel among patients who were excluded from clinical trials, particularly those who received prior BCMA-targeted or other T-cell redirection therapies. Despite their unprecedented clinical efficacy in heavily pretreated patients, responses to CAR T remain non-durable. Although the underlying mechanisms of resistance to these agents haven't been fully elucidated, studies have suggested that resistance patterns could be multifaceted, implicating T-cell exhaustion and tumor intrinsic mechanisms such as BCMA target loss, upregulation of gamma-secretase, and others. Herein, we provide a succinct overview of the development of CAR T-cells, manufacturing process, and associated toxicities/complications. In this review, we also recapitulate the existing literature pertaining MM CAR-T as well as emerging data from some of the ongoing clinical trials designed to mitigate the shortcomings of these agents, and improve the clinical efficacy of CAR T, especially in the relapsed/refractory setting.
Collapse
Affiliation(s)
- Issam S. Hamadeh
- Clinical Pharmacy Services, Pharmacy Department, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Reed Friend
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| | - Sham Mailankody
- Myeloma Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shebli Atrash
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| |
Collapse
|
14
|
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther 2024; 32:2444-2460. [PMID: 38822527 PMCID: PMC11405165 DOI: 10.1016/j.ymthe.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Combined Modality Therapy
Collapse
Affiliation(s)
- Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
15
|
Rees MJ, Mammadzadeh A, Bolarinwa A, Elhaj ME, Bohra A, Bansal R, Ailawadhi S, Parrondo R, Chhabra S, Khot A, Hayman S, Dispenzieri A, Buadi F, Dingli D, Warsame R, Kapoor P, Gertz MA, Muchtar E, Kourelis T, Gonsalves W, Rajkumar SV, Lin Y, Kumar S. Clinical features associated with poor response and early relapse following BCMA-directed therapies in multiple myeloma. Blood Cancer J 2024; 14:122. [PMID: 39043638 PMCID: PMC11266661 DOI: 10.1038/s41408-024-01081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024] Open
Abstract
Three classes of BCMA-directed therapy (BDT) exist: antibody drug-conjugates (ADCs), CAR-T, and T-cell engagers (TCEs), each with distinct strengths and weaknesses. To aid clinicians in selecting between BDTs, we reviewed myeloma patients treated at Mayo Clinic with commercial or investigational BDT between 2018-2023. We identified 339 individuals (1-exposure = 297, 2-exposures = 38, 3-exposures = 4) who received 385 BDTs (ADC = 59, TCE = 134, CAR-T = 192), with median follow-up of 21-months. ADC recipients were older, with more lines of therapy (LOT), and penta-refractory disease. Compared to ADCs, CAR-T (aHR = 0.29, 95%CI = 0.20-0.43) and TCEs (aHR = 0.62, 95%CI = 0.43-0.91) had better progression-free survival (PFS) on analysis adjusted for age, the presence of extramedullary (EMD), penta-refractory disease, multi-hit high-risk cytogenetics, prior BDT, and the number of LOT in the preceding 1-year. Likewise, compared to ADCs, CAR-T (aHR = 0.28, 95%CI = 0.18-0.44) and TCEs (aHR = 0.60, 95%CI = 0.39-0.93) had superior overall survival. Prior BDT exposure negatively impacted all classes but was most striking in CAR-T, ORR 86% vs. 50% and median PFS 13-months vs. 3-months. Of relapses, 54% were extramedullary in nature, and a quarter of these cases had no history of EMD. CAR-T demonstrates superior efficacy and where feasible, should be the initial BDT. However, for patients with prior BDT or rapidly progressive disease, an alternative approach may be preferable.
Collapse
Affiliation(s)
| | | | | | | | - Arwa Bohra
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Amit Khot
- Division of Clinical Hematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Francis Buadi
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Letouzé E, Moreau P, Munshi N, Samur M, Minvielle S, Touzeau C. Mechanisms of resistance to bispecific T-cell engagers in multiple myeloma and their clinical implications. Blood Adv 2024; 8:2952-2959. [PMID: 38513088 PMCID: PMC11302375 DOI: 10.1182/bloodadvances.2023012354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Bispecific T-cell engagers (TCEs) are revolutionizing patient care in multiple myeloma (MM). These monoclonal antibodies, that redirect T cells against cancer cells, are now approved for the treatment of triple-class exposed relapsed/refractory MM (RRMM). They are currently tested in earlier lines of the disease, including in first line. Yet, primary resistance occurs in about one-third of patients with RRMM, and most responders eventually develop acquired resistance. Understanding the mechanisms of resistance to bispecific TCE is thus essential to improve immunotherapies in MM. Here, we review recent studies investigating the clinical and molecular determinants of resistance to bispecific TCE. Resistance can arise from tumor-intrinsic or tumor-extrinsic mechanisms. Tumor-intrinsic resistance involves various alterations leading to the loss of the target antigen, such as chromosome deletions, point mutations, or epigenetic silencing. Loss of major histocompatibility complex (MHC) class I, preventing MHC class I: T-cell receptor (TCR) costimulatory signaling, was also reported. Tumor-extrinsic resistance involves abundant exhausted T-cell clones and several factors generating an immunosuppressive microenvironment. Importantly, some resistance mechanisms impair response to 1 TCE while preserving the efficacy of others. We next discuss the clinical implications of these findings. Monitoring the status of target antigens in tumor cells and their immune environment will be key to select the most appropriate TCE for each patient and to design combination and sequencing strategies for immunotherapy in MM.
Collapse
Affiliation(s)
- Eric Letouzé
- Nantes Université, INSERM, CNRS, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Philippe Moreau
- Nantes Université, INSERM, CNRS, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Nantes, France
- Hematology Department, University Hospital Hôtel-Dieu, Nantes, France
| | - Nikhil Munshi
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mehmet Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Veterans Affairs Boston Healthcare System, Boston, MA
| | - Stéphane Minvielle
- Nantes Université, INSERM, CNRS, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Nantes, France
- University Hospital Hôtel-Dieu, Nantes, France
| | - Cyrille Touzeau
- Nantes Université, INSERM, CNRS, Université d'Angers, Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Nantes, France
- Hematology Department, University Hospital Hôtel-Dieu, Nantes, France
| |
Collapse
|
17
|
Costa BA, Ortiz RJ, Lesokhin AM, Richter J. Soluble B-cell maturation antigen in multiple myeloma. Am J Hematol 2024; 99:727-738. [PMID: 38270277 DOI: 10.1002/ajh.27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
B-cell maturation antigen (BCMA) has emerged as a promising immunotherapeutic target in multiple myeloma (MM) management, with the successive approval of antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T-cell therapies directed to this membrane receptor. Soluble BCMA (sBCMA), a truncated version produced through gamma-secretase cleavage, can be quantified in serum/plasma samples from patients with MM via electrochemiluminescence, fluorescence, or enzyme-linked immunosorbent assays, as well as through mass spectrometry-based proteomics. Besides its short serum half-life and independence from kidney function, sBCMA represents a reliable and convenient tool for MM monitoring in patients with nonsecretory or oligosecretory disease. Numerous studies have suggested a potential utility of this bioanalyte in the risk stratification of premalignant plasma cell disorders, diagnosis and prognostication of MM, and response evaluation following anti-myeloma therapies. In short, sBCMA might be the "Swiss army knife" of MM laboratory testing, but is it ready for prime time?
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ricardo J Ortiz
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander M Lesokhin
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Lee H, Neri P, Bahlis NJ. BCMA- or GPRC5D-targeting bispecific antibodies in multiple myeloma: efficacy, safety, and resistance mechanisms. Blood 2024; 143:1211-1217. [PMID: 38194680 DOI: 10.1182/blood.2023022499] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Bispecific antibodies that engage T cells to target B-cell maturation antigen or G-protein-coupled receptor class C group 5 member D have demonstrated remarkable efficacy in heavily pretreated relapsed or refractory multiple myeloma (MM), leading to the recent accelerated approval of teclistamab, elranatamab, and talquetamab by health agencies. Future challenges, however, remain to define their optimal dosing schedule and duration, sequencing, and integration with established anti-MM therapeutics as well as delineating the biological and clinical mediators of immune escape.
Collapse
Affiliation(s)
- Holly Lee
- Department of Medicine, Divisions of Hematology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola Neri
- Department of Medicine, Divisions of Hematology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nizar J Bahlis
- Department of Medicine, Divisions of Hematology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Rees MJ, Kumar S. BCMA-directed therapy, new treatments in the myeloma toolbox, and how to use them. Leuk Lymphoma 2024; 65:287-300. [PMID: 38354090 DOI: 10.1080/10428194.2023.2284088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024]
Abstract
To address the dearth of therapeutic options available for relapsed-refractory multiple myeloma (RRMM), attention has shifted to immunotherapeutic strategies, with most products in development targeting the B-cell maturation antigen (BCMA). BCMA is a transmembrane receptor of the tumor necrosis factor receptor superfamily, essential for plasma cell survival and minimally expressed on non-hematopoietic tissues; it represents an ideal therapeutic target. Three categories of BCMA-directed therapies exist, with distinct strengths and weaknesses. Antibody-drug conjugates (ADCs) are immediately available with modest single-agent efficacy in RRMM, but deliverability is hampered by corneal toxicity. CAR T-cells are the most effective class but face significant logistical and financial barriers. Bispecific antibodies offer superior efficacy and tolerability compared to ADCs, but prolonged exposure causes significant cumulative infectious risk. In this review, we will examine the role of BCMA in MM biology, the approved and emerging therapies targeting this antigen, and how these agents can be optimally sequenced.
Collapse
Affiliation(s)
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Kirchhoff DC, Zhang W, Chandras A, Mendu DR. Analytical assessment and validation of the ProteinSimple ELLA serum B-cell maturation antigen assay. Pract Lab Med 2024; 38:e00354. [PMID: 38283321 PMCID: PMC10821622 DOI: 10.1016/j.plabm.2023.e00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Objectives Soluble B-Cell Maturation Antigen (sBCMA) is a degradation product of plasma cell-bound BCMA found in serum. Serum sBCMA concentrations correlate with bone marrow plasma cellularity, making it an attractive biomarker for monitoring plasma cell disorders, such as multiple myeloma. Here we evaluated the automated BCMA immunoassay for the ProteinSimple ELLA, for the analysis of sBCMA. Design & methods Inter and intra-run precision was assessed through replicate sBCMA measurements at 3 different concentration levels. Linearity was determined through serial dilution of a high sBMCA patient sample. Accuracy was assessed through split specimen analysis on two separate lots of reagents. Stability was assessed at 3 temperature levels over 14 days. Cross-reactivity was assessed on BCMA targeting and non-targeting chemotherapeutics. A reference range was established through the analysis of 146 healthy donor samples. The effect of endogenous interferents was assessed through spiking and recovery studies. Results Inter and intra-run precision studies afforded CVs of <10% at all three concentration levels. Analytical measurement range was confirmed from 0.1 to 7 ng/mL. Accuracy studies afforded a slope of 0.976, intercept of 1.22, R2 of 0.996. Assayed sBCMA values were unaffected by endogenous interferents and non-BMCA targeting antibodies. BCMA targeting therapeutics negatively affected assayed sBCMA concentrations. The reference range was established at 19-58 ng/mL sBCMA is analytically stable. Conclusions The ProteinSimple ELLA sBCMA assay shows acceptable performance for the clinical assessment of sBCMA. The assay was highly affected by BCMA targeting therapeutics, thereby patients undergoing this therapy should not have their sBCMA levels assessed by this method.
Collapse
Affiliation(s)
- Daniel Conrad Kirchhoff
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Wei Zhang
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Athanasia Chandras
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Damodara Rao Mendu
- Clinical Chemistry Service, Department of Pathology, Molecular and Cell-Based Medicine, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
21
|
Springer C, Krauter J, Trummer A. Plasma levels of BCMA-positive extracellular vesicles correlate to response and side effects in myeloma patients treated with belantamab-mafodotin. Oncotarget 2023; 14:949-956. [PMID: 38039414 PMCID: PMC10691812 DOI: 10.18632/oncotarget.28538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In myeloma patients, high levels of soluble BCMA (sBCMA) can limit the efficacy of BCMA-directed therapies. Belantamab-mafodotin is a BCMA antibody-drug conjugate and shows good overall response rates in heavily pretreated patients but progression-free survival data are poor. As the drug induces apoptosis, we hypothesized that sBCMA includes extracellular vesicles (EV) and thus evaluated numbers of BCMA-EV before and during belantamab therapy in 10 myeloma patients. BCMA-EV were significantly higher in patients prior to Belantamab (median: 3227/μl; p = .013) than in other myeloma patients before therapy (n = 10; 1082/μl) or healthy volunteers (n = 10; 980/μl). During therapy, BCMA-EV showed a significant increase to a maximum of 8292/μl (p = .028). Maximal changes in BCMA-EV (Δmax = BCMA-EV at C1/maximal BCMA-EV) showed a strong inverse, logarithmic correlation (r = -.950; p < .001) with FLC ratio changes (Δmax = FLC ratio at C1/minimal FLC ratio) and BCMA-EV peaks often preceded FLC progression. Correlating increase of LDH and BCMA-EV levels, together with clinical symptoms, point to a mafodotin-induced eryptosis. In summary, BCMA-EV are a part of sBCMA, peak levels precede progression, and their measurement might be helpful in identifying resistance mechanisms and side effects of BCMA targeted therapies.
Collapse
Affiliation(s)
- Carsten Springer
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Jürgen Krauter
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Arne Trummer
- Department of Hematology and Oncology, Städtisches Klinikum Braunschweig, Braunschweig, Germany
- Department of Hematology, Oncology and Palliative Care, Heidekreis-Klinikum, Walsrode, Germany
| |
Collapse
|
22
|
Del Giudice ML, Galimberti S, Buda G. Beyond BCMA, why GPRC5D could be the right way: treatment strategies with immunotherapy at relapse after anti-BCMA agents. Cancer Immunol Immunother 2023; 72:3931-3937. [PMID: 37924369 PMCID: PMC10700430 DOI: 10.1007/s00262-023-03559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
Multiple Myeloma remains incurable, and there is a need for therapies with novel mechanisms of action. Recently, B cell maturation antigen targeted therapy has demonstrated deep and durable responses in a largely treated population. However, the relapse rate of myeloma patients after anti-BCMA treatment strategies is increasing worldwide, and one of the most challenging issues for them is to choose the best therapy sequencing. After anti-BCMA treatment, retreatment with anti-BCMA drugs remains an option, but new targets are emerging strongly. One of them is G protein-coupled receptor, class C group 5 member D (GPRC5D), that due to the very promising data from the use of chimeric antigen receptor T-cells (CAR-T) and bispecific antibodies (BsAb) seems to be the ideal candidate in the relay of myeloma treatment at relapse. In this literature review, we discuss data from treatment with the new drugs at relapse after anti-BCMA therapies, observing an undeniable benefit from the use of drugs directed against GPRC5D.
Collapse
Affiliation(s)
- Maria Livia Del Giudice
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, 56126, Pisa, Italy.
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, 56126, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, 56126, Pisa, Italy
| |
Collapse
|
23
|
Lin Z, Yu N, Cheng C, Jin B, Zhang Q, Zhuang H, Jiang X. Serum levels and significance of soluble B-cell maturation antigen in childhood-onset systemic lupus erythematosus with renal involvement. Lupus 2023; 32:680-687. [PMID: 36914971 DOI: 10.1177/09612033231164633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The aim of this study was to investigate serum levels of soluble B-cell maturation antigen (sBCMA) in childhood-onset systemic lupus erythematous (cSLE) patients with renal involvement, and to elucidate their association with clinical characteristics. METHODS 116 cases of cSLE patients with renal involvement (84 females and 32 males; median age 11.6 (10.1, 12.9) years) hospitalized in Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University and 31 healthy controls (HCs) were enrolled. Serum concentrations of sBCMA were determined using enzyme-linked immunosorbent assay (ELISA). Clinical and laboratory information of cSLE patients were retrospectively analyzed. RESULTS Serum sBCMA levels were significantly increased in primary cSLE when compared with treated cSLE patients and HCs, whereas there was no significant difference between treated cSLE patients and HCs. Patients with high disease activity displayed higher serum sBCMA levels compared with those with no or mild to moderate disease activity. Positive correlation was observed between serum sBCMA levels and systemic lupus erythematosus disease activity index-2K (SLEDAI-2K), antinuclear antibody titers, anti-double-stranded DNA titers, erythrocyte sedimentation rate, and immunoglobulin G levels, while sBCMA levels were negatively correlated with blood white blood cell count, hemoglobin, platelet count, complement C3 and C4 levels. Serum sBCMA levels decreased as disease ameliorated after treatments among 11 cases with follow-up examinations. CONCLUSIONS In cSLE patients with renal involvement, serum sBCMA levels correlated significantly with disease activity, immunological, and hematological parameters, but not with renal parameters. Our results suggest the potential and significance of serum sBCMA as a biomarker in cSLE patients.
Collapse
Affiliation(s)
- Zhilang Lin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Nannan Yu
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Bei Jin
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Qiufang Zhang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hongjie Zhuang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, 71068Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
24
|
Alomari M, Kunacheewa C, Manasanch EE. The role of soluble B cell maturation antigen as a biomarker in multiple myeloma. Leuk Lymphoma 2023; 64:261-272. [PMID: 36282671 DOI: 10.1080/10428194.2022.2133540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Currently used stratification models in myeloma precursor disease as well as staging systems and response criteria in myeloma have limitations including failure to identify functionally high-risk myeloma patients. B-cell maturation antigen, a transmembrane glycoprotein required for long-lived plasma cells, is specific and expressed by myeloma cells. When it sheds from the surface of myeloma cells it can be measured in the blood as serum (sBCMA) and correlated with clinical outcomes in myeloma precursor disease as well as in active myeloma. We performed a literature review using PubMed and found 825 articles since 1992 of which any articles related to sBCMA were reviewed. These studies show the potential of sBCMA to become an important biomarker in myeloma. Here, we describe the potential advantages of sBCMA in the biology, diagnosis, prognosis, and surveillance of myeloma, while also reviewing the challenges that lie ahead before it can be implemented as a clinical tool.
Collapse
Affiliation(s)
- Mohammed Alomari
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elisabet E Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Iula R, De Novellis D, Trastulli F, Della Pepa R, Fontana R, Carobene A, Di Perna M, D’Ambrosio A, Romano M, Leone A, De Fazio L, Fiumarella A, Gaeta G, Marafioti V, Barbato S, Palmieri S, Rocco S, Serio B, Califano C, Pane F, Ferrara F, Giudice V, Selleri C, Catalano L. Efficacy and safety of belantamab-mafodotin in triple-refractory multiple myeloma patients: A multicentric real-life experience. Front Oncol 2022; 12:1026251. [PMID: 36457484 PMCID: PMC9705330 DOI: 10.3389/fonc.2022.1026251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Belantamab-mafodotin is an innovative and selective treatment for multi-refractory/relapsed multiple myeloma (MM) patients; however, available real-life experiences on efficacy and safety are limited. In this real-world multicentric retrospective study, we enrolled 28 MM patients treated in four Hematology units of Campania region, Italy, who received a median of six treatment lines prior to belantamab-mafodotin. The overall response rate (ORR) was 40% (complete remission, CR, 11%; very good partial remission, VGPR, 11%; and partial remission, PR, 18%), with a median progression-free survival (PFS) and overall survival (OS) of 3 and 8 months, respectively. One of the most frequent drug-related adverse events was keratopathy observed in nine (32%) patients, leading to therapy discontinuation in only three (11%) of them. Moreover, 22 out of 28 total patients who were treated with at least two administrations achieved an ORR of 50% (CR, 14%; VGPR, 14%; and PR, 22%) with a median PFS and OS of 5 and 11 months, respectively. In conclusion, our multicentric study confirmed efficacy and safety of belantamab-mafodotin in triple-refractory MM patients even in the real-life setting.
Collapse
Affiliation(s)
- Rossella Iula
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Danilo De Novellis
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Fabio Trastulli
- Hematology and Transplant Program, AORN “A. Cardarelli” Hospital, Naples, Italy
| | - Roberta Della Pepa
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Fontana
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
| | - Angela Carobene
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
| | - Maria Di Perna
- Onco-Hematology Unit, “A. Tortora” Hospital, Pagani, Italy
| | - Alessandro D’Ambrosio
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Martina Romano
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Aldo Leone
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Laura De Fazio
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Alfonso Fiumarella
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Giuseppe Gaeta
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Violetta Marafioti
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Serafina Barbato
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Salvatore Palmieri
- Hematology and Transplant Program, AORN “A. Cardarelli” Hospital, Naples, Italy
| | - Stefano Rocco
- Hematology and Transplant Program, AORN “A. Cardarelli” Hospital, Naples, Italy
| | - Bianca Serio
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
| | | | - Fabrizio Pane
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Felicetto Ferrara
- Hematology and Transplant Program, AORN “A. Cardarelli” Hospital, Naples, Italy
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Lucio Catalano
- Hematology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
26
|
Sriram H, Kunjachan F, Khanka T, Gawai S, Ghogale S, Deshpande N, Girase K, Patil J, Chatterjee G, Rajpal S, Patkar NV, Bagal B, Jain H, Sengar M, Hasan SK, Khattry N, Subramanian PG, Gujral S, Tembhare PR. Expression levels and patterns of B-cell maturation antigen in newly diagnosed and relapsed multiple myeloma patients from Indian subcontinent. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:462-470. [PMID: 36346307 DOI: 10.1002/cyto.b.22099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many novel therapies are being evaluated for the treatment of Multiple myeloma (MM). The cell-surface protein B-cell maturation antigen (BCMA, CD269) has recently emerged as a promising target for CAR-T cell and monoclonal-antibody therapies in MM. However, the knowledge of the BCMA expression-pattern in myeloma patients from the Indian subcontinent is still not available. We present an in-depth study of BCMA expression-pattern on abnormal plasma cells (aPC) in Indian MM patients. METHODS We studied BM samples from 217 MM patients (211-new and 6-relapsed) with a median age of 56 years (range, 30-78 years & M:F-2.29) and 20 control samples. Expression levels/patterns of CD269 (clone-19f2) were evaluated in aPCs from MM patients and in normal PCs (nPC) from uninvolved staging bone marrow samples (controls) using multicolor flow cytometry (MFC). Expression-level of CD269 was determined as a ratio of mean fluorescent intensity (MFI-R) of CD269 in PCs to that of non-B-lymphocytes and expression-pattern (homogenous/heterogeneous) as coefficient-of-variation of immunofluorescence (CVIF). RESULTS Median (range) percentage of CD269-positive abnormal-PCs in total PCs was 71.6% (0.49-99.29%). The MFI-R (median, range) of CD269 was significantly higher in aPCs (4.13, 1.12-26.88) than nPCs (3.33, 1.23-12.87), p < .0001. Median (range) MFI of CD269 at diagnosis and relapse were 2.39 (0.77-9.57) and 2.66 (2.15-3.23) respectively. CD269 levels were similar at diagnosis and relapse, p = .5529. CONCLUSIONS We demonstrated that BCMA/CD269 is highly expressed in aPCs from a majority of MM patients, both at diagnosis and relapse. Thus, BCMA is a valuable target for therapy for Indian MM patients.
Collapse
Affiliation(s)
- Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Florence Kunjachan
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sangamitra Gawai
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Jagruti Patil
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Papagudi G Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prashant R Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
27
|
Mejia Saldarriaga M, Darwiche W, Jayabalan D, Monge J, Rosenbaum C, Pearse RN, Niesvizky R, Bustoros M. Advances in the molecular characterization of multiple myeloma and mechanism of therapeutic resistance. Front Oncol 2022; 12:1020011. [PMID: 36387095 PMCID: PMC9646612 DOI: 10.3389/fonc.2022.1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Recent insight in the genomic landscape of newly diagnosed multiple myeloma (NDMM) and its precursor conditions, monoclonal gammopathy of uncertain significance (MGUS), and smoldering myeloma have allowed the identification of patients with precursor conditions with a high risk of progression. These cases with "progressor" MGUS/SMM have a higher average mutation burden, have higher rates of mutations in specific genes such as MAPK, DNA repair, MYC, DIS3, and are enriched for specific mutational signatures when compared to non-progressors and are comparable to those found in NDMM. The highly preserved clonal heterogeneity seen upon progression of SMM, combined with the importance of these early variables, suggests that the identification of progressors based on these findings could complement and enhance the currently available clinical models based on tumor burden. Mechanisms leading to relapse/refractory multiple myeloma (RRMM) are of clinical interest given worse overall survival in this population. An Increased mutational burden is seen in patients with RRMM when compared to NDMM, however, there is evidence of branching evolution with many of these mutations being present at the subclonal level. Likewise, alterations in proteins associated with proteosome inhibitor and immunomodulatory drugs activity could partially explain clinical resistance to these agents. Evidence of chromosomal events leading to copy number changes is seen, with the presence of TP53 deletion, mutation, or a combination of both being present in many cases. Additional chromosomal events such as 1q gain and amplification may also interact and lead to resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
28
|
Watson E, Djebbari F, Rampotas A, Ramasamy K. BCMA-targeted therapies for multiple myeloma: strategies to maximise efficacy and minimize adverse events. Expert Rev Hematol 2022; 15:503-517. [PMID: 35633050 DOI: 10.1080/17474086.2022.2084068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immunotherapies targeting B cell maturation antigen (BCMA) in multiple myeloma are transitioning through trials and entering the clinic, and will likely become a core pillar in myeloma therapeutics. These agents demonstrate unprecedented activity in multiply relapsed patients, but - notwithstanding the short follow-up times - their survival curves do not appear to demonstrate a plateau, and the treatments inevitably bring with them a range of toxicities that might be associated with tolerability issues. AREAS COVERED We will briefly lay out the current therapeutic landscape in multiple myeloma, before introducing BCMA and explaining its significance. We will address in turn the three key classes of anti-BCMA immunotherapies: antibody-drug conjugates, bispecific antibodies and chimeric antigen receptor T cells. We describe the mechanisms of action of these classes and review the evidence supporting their efficacy and toxicities. We then bring all three therapies into one discussion that explores how to mitigate toxicities and overcome myeloma's ability to resist these potent treatments. EXPERT OPINION Finally, we take the discussion back to the clinic, and consider how we might deploy anti-BCMA therapies most effectively for our patients. We consider the sequencing of treatment, and what further evidence is needed to more fully inform our therapy decisions.
Collapse
Affiliation(s)
- Edmund Watson
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Faouzi Djebbari
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Alexandros Rampotas
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Karthik Ramasamy
- Clinical Haematology Department, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| |
Collapse
|
29
|
Roncador G, Puñet-Ortiz J, Maestre L, Rodríguez-Lobato LG, Jiménez S, Reyes-García AI, García-González Á, García JF, Piris MÁ, Montes-Moreno S, Rodríguez-Justo M, Mena MP, Fernández de Larrea C, Engel P. CD229 (Ly9) a Novel Biomarker for B-Cell Malignancies and Multiple Myeloma. Cancers (Basel) 2022; 14:2154. [PMID: 35565280 PMCID: PMC9101303 DOI: 10.3390/cancers14092154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
CD229 (Ly9) homophilic receptor, which belongs to the SLAM family of cell-surface molecules, is predominantly expressed on B and T cells. It acts as a signaling molecule, regulating lymphocyte homoeostasis and activation. Studies of CD229 function indicate that this receptor functions as a regulator of the development of marginal-zone B cells and other innate-like T and B lymphocytes. The expression on leukemias and lymphomas remains poorly understood due to the lack of CD229 monoclonal antibodies (mAb) for immunohistochemistry application (IHC). In this study, we used a new mAb against the cytoplasmic region of CD229 to study the expression of CD229 on normal tissues and B-cell malignancies, including multiple myeloma (MM), using tissue microarrays. We showed CD229 to be restricted to hematopoietic cells. It was strongly expressed in all cases of MM and in most marginal-zone lymphomas (MZL). Moderate CD229 expression was also found in chronic lymphocyte leukemia (CLL), follicular (FL), classic mantle-cell (MCL) and diffuse large B-cell lymphoma. Given the high expression on myeloma cells, we also analyzed for the presence of soluble CD229 in the sera of these patients. Serum levels of soluble CD229 (sCD229) at the time of diagnosis in MM patients could be useful as a prognostic biomarker. In conclusion, our results indicate that CD229 represents not only a useful biomarker but also an attractive therapeutic target.
Collapse
Affiliation(s)
- Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Centro de Investigación Médica en red Cancer (CIBERONC), 28029 Madrid, Spain; (G.R.); (L.M.); (S.J.); (A.I.R.-G.); (Á.G.-G.)
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Barcelona, Casanova 172, 08036 Barcelona, Spain;
| | - Lorena Maestre
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Centro de Investigación Médica en red Cancer (CIBERONC), 28029 Madrid, Spain; (G.R.); (L.M.); (S.J.); (A.I.R.-G.); (Á.G.-G.)
| | - Luis Gerardo Rodríguez-Lobato
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (L.G.R.-L.); (M.-P.M.); (C.F.d.L.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Scherezade Jiménez
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Centro de Investigación Médica en red Cancer (CIBERONC), 28029 Madrid, Spain; (G.R.); (L.M.); (S.J.); (A.I.R.-G.); (Á.G.-G.)
| | - Ana Isabel Reyes-García
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Centro de Investigación Médica en red Cancer (CIBERONC), 28029 Madrid, Spain; (G.R.); (L.M.); (S.J.); (A.I.R.-G.); (Á.G.-G.)
| | - Álvaro García-González
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Centro de Investigación Médica en red Cancer (CIBERONC), 28029 Madrid, Spain; (G.R.); (L.M.); (S.J.); (A.I.R.-G.); (Á.G.-G.)
| | - Juan F. García
- Department of Pathology, MD Anderson Cancer Center Madrid, Centro de Investigación Médica en Red Cancer (CIBERONC), 28040 Madrid, Spain;
| | - Miguel Ángel Piris
- Department of Pathology, Fundación Jiménez Díaz, Centro de Investigación Médica en Red Cancer (CIBERONC), 28040 Madrid, Spain;
| | - Santiago Montes-Moreno
- Translational Haematopathology Laboratory, Anatomic Pathology Department, Hospital Universitario Marqués de Valdecilla/IDIVAL, CIBERONC, 39008 Santander, Spain;
| | - Manuel Rodríguez-Justo
- Department of Research Pathology, Cancer Institute, University Collage London, London WC1E 6DD, UK;
| | - Mari-Pau Mena
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (L.G.R.-L.); (M.-P.M.); (C.F.d.L.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Fernández de Larrea
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (L.G.R.-L.); (M.-P.M.); (C.F.d.L.)
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Barcelona, Casanova 172, 08036 Barcelona, Spain;
| |
Collapse
|
30
|
Anderson GS, Ballester-Beltran J, Giotopoulos G, Guerrero JA, Surget S, Williamson JC, So T, Bloxham D, Aubareda A, Asby R, Walker I, Jenkinson L, Soilleux EJ, Roy JP, Teodósio A, Ficken C, Officer-Jones L, Nasser S, Skerget S, Keats JJ, Greaves P, Tai YT, Anderson KC, MacFarlane M, Thaventhiran JE, Huntly BJ, Lehner PJ, Chapman MA. Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood 2022; 139:2471-2482. [PMID: 35134130 PMCID: PMC11022854 DOI: 10.1182/blood.2021015161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The accessibility of cell surface proteins makes them tractable for targeting by cancer immunotherapy, but identifying suitable targets remains challenging. Here we describe plasma membrane profiling of primary human myeloma cells to identify an unprecedented number of cell surface proteins of a primary cancer. We used a novel approach to prioritize immunotherapy targets and identified a cell surface protein not previously implicated in myeloma, semaphorin-4A (SEMA4A). Using knock-down by short-hairpin RNA and CRISPR/nuclease-dead Cas9 (dCas9), we show that expression of SEMA4A is essential for normal myeloma cell growth in vitro, indicating that myeloma cells cannot downregulate the protein to avoid detection. We further show that SEMA4A would not be identified as a myeloma therapeutic target by standard CRISPR/Cas9 knockout screens because of exon skipping. Finally, we potently and selectively targeted SEMA4A with a novel antibody-drug conjugate in vitro and in vivo.
Collapse
Affiliation(s)
- Georgina S.F. Anderson
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jose A. Guerrero
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sylvanie Surget
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Tsz So
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - David Bloxham
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anna Aubareda
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Asby
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Ieuan Walker
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Lesley Jenkinson
- CRUK–AstraZeneca Antibody Alliance Laboratory, Cambridge, United Kingdom
| | | | - James P. Roy
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ana Teodósio
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Ficken
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Sara Nasser
- Translational Genomics Research Institute, Phoenix, AZ
| | - Sheri Skerget
- Translational Genomics Research Institute, Phoenix, AZ
| | | | - Peter Greaves
- Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Yu-Tzu Tai
- Dana Farber Cancer Institute, Boston, MA
| | | | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Brian J.P. Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Michael A. Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
31
|
New immunotherapeutic target in myeloma. Blood 2022; 139:2417-2418. [PMID: 35446380 DOI: 10.1182/blood.2022015481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
|
32
|
Paul B, Rodriguez C, Usmani SZ. BCMA-Targeted Biologic Therapies: The Next Standard of Care in Multiple Myeloma Therapy. Drugs 2022; 82:613-631. [PMID: 35412114 PMCID: PMC9554894 DOI: 10.1007/s40265-022-01697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
With recent advances in myeloma therapy, patients can achieve long-term remissions, but eventually relapses will occur. Triple-class refractory myeloma (disease that is refractory to an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 monoclonal antibody) and penta-refractory myeloma (disease that is refractory to two proteasome inhibitors, two immunomodulatory agents, and an anti-CD38 antibody) are associated with a particularly poor prognosis, and novel treatments are desperately needed for these patients. Targeting B cell maturation antigen (BCMA), which is ubiquitously expressed on plasma cells, has emerged as a well-tolerated and highly efficacious strategy in patients with relapsed and refractory myeloma. Several mechanisms of targeting BCMA are currently under investigation, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells and natural killer (NK) cells, all with unique side effect profiles. Early phase clinical trials showed unprecedented response rates in highly refractory myeloma patients, leading to the recent approvals of some of these agents. Still, many questions remain with regard to this target, including how best to target it, how to treat patients who have progressed on a BCMA-targeting therapy, and whether response rates will deepen if these agents are used in earlier lines of therapy. In this review, we examine the rationale for targeting BCMA and summarize the data for several agents across multiple classes of BCMA-targeting therapeutics, paying special attention to the diverse mechanisms and unique challenges of each therapeutic class.
Collapse
Affiliation(s)
- Barry Paul
- Division of Plasma Cell Disorders, Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA
| | | | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
33
|
Choi T, Kang Y. Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma. Pharmacol Ther 2022; 232:108007. [PMID: 34582835 PMCID: PMC8930424 DOI: 10.1016/j.pharmthera.2021.108007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Although treatment outcomes of multiple myeloma patients have improved significantly during the last two decades, myeloma is still an incurable disease. There are newly emerging immunotherapies to treat multiple myeloma including monoclonal antibodies, antibody-drug conjugate, bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy. Impressive response rate and clinical efficacy in heavily pretreated myeloma patients led to the FDA approval of the first myeloma CAR-T therapy in March 2021. Among many different targets for myeloma CAR-T therapies, B Cell Maturation Antigen (BCMA) has been the most successful target so far, but other targets which can be used either for single-target or dual-target CAR-T's are actively being explored. Clinical efficacy and safety of current myeloma CAR-T therapies will be presented here. Potential mechanisms leading to resistance include clearance of CAR-T cells, antigenic escape, and immunosuppressive tumor microenvironment. Novel strategies to enhance myeloma CAR-T will also be described. In this article, we provide a comprehensive review of the current data and the future directions of myeloma CAR-T therapies.
Collapse
Affiliation(s)
- Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
34
|
Kakiuchi-Kiyota S, Ross T, Wallweber HA, Kiefer JR, Schutten MM, Adedeji AO, Cai H, Hendricks R, Cohen S, Myneni S, Liu L, Fullerton A, Corr N, Yu L, de Almeida Nagata D, Zhong S, Leong SR, Li J, Nakamura R, Sumiyoshi T, Li J, Ovacik AM, Zheng B, Dillon M, Spiess C, Wingert S, Rajkovic E, Ellwanger K, Reusch U, Polson AG. A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma. Leukemia 2022; 36:1006-1014. [PMID: 35001074 DOI: 10.1038/s41375-021-01478-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.
Collapse
Affiliation(s)
| | | | | | - James R Kiefer
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | | | - Hao Cai
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Robert Hendricks
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Sivan Cohen
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Srividya Myneni
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Luna Liu
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Aaron Fullerton
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Nicholas Corr
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Lanlan Yu
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | - Shelly Zhong
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Steven R Leong
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Ji Li
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Rin Nakamura
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Teiko Sumiyoshi
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Jinze Li
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | - Bing Zheng
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Mike Dillon
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Christoph Spiess
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | | | | | | | - Andrew G Polson
- Genentech Research and Early Development, San Francisco, CA, USA.
| |
Collapse
|
35
|
Quazi S. An Overview of CAR T Cell Mediated B Cell Maturation Antigen Therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e392-e404. [PMID: 34992008 DOI: 10.1016/j.clml.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Multiple Myeloma (MM) is one of the incurable types of cancer in plasma cells. While immense progress has been made in the treatment of this malignancy, a large percentage of patients were unable to adapt to such therapy. Additionally, these therapies might be associated with significant diseases and are not always tolerated well in all patients. Since cancer in plasma cells has no cure, patients develop resistance to treatments, resulting in R/R MM (Refractory/Relapsed Multiple Myeloma). BCMA (B cell maturation antigen) is primarily produced on mature B cells. It's up-regulation and activation are associated with multiple myeloma in both murine and human models, indicating that this might be an effective therapeutic target for this type of malignancy. Additionally, BCMA's predictive value, association with effective clinical trials, and capacity to be utilized in previously difficult to observe patient populations, imply that it might be used as a biomarker for multiple myeloma. Numerous kinds of BCMA-targeting medicines have demonstrated antimyeloma efficacy in individuals with refractory/relapsed MM, including CAR T-cell (Chimeric antigen receptor T cell) treatments, ADCs (Antibody-drug conjugate s), bispecific antibody constructs. Among these medications, CART cell-mediated BCMA therapy has shown significant outcomes in multiple myeloma clinical trials. This review article outlines CAR T cell mediated BCMA medicines have the efficiency to change the therapeutic pattern for multiple myeloma significantly.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
| |
Collapse
|
36
|
Hemminki K, Försti A, Houlston R, Sud A. Epidemiology, genetics and treatment of multiple myeloma and precursor diseases. Int J Cancer 2021; 149:1980-1996. [PMID: 34398972 PMCID: PMC11497332 DOI: 10.1002/ijc.33762] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy caused by the clonal expansion of plasma cells. The incidence of MM worldwide is increasing with greater than 140 000 people being diagnosed with MM per year. Whereas 5-year survival after a diagnosis of MM has improved from 28% in 1975 to 56% in 2012, the disease remains essentially incurable. In this review, we summarize our current understanding of MM including its epidemiology, genetics and biology. We will also provide an overview of MM management that has led to improvements in survival, including recent changes to diagnosis and therapies. Areas of unmet need include the management of patients with high-risk MM, those with reduced performance status and those refractory to standard therapies. Ongoing research into the biology and early detection of MM as well as the development of novel therapies, such as immunotherapies, has the potential to influence MM practice in the future.
Collapse
Affiliation(s)
- Kari Hemminki
- Biomedical Center, Faculty of MedicineCharles University in PilsenPilsenCzech Republic
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Asta Försti
- Hopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric NeurooncologyGerman Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
| | - Richard Houlston
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Amit Sud
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- The Department of Haemato‐OncologyThe Royal Marsden Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
37
|
"Real-life" data of the efficacy and safety of belantamab mafodotin in relapsed multiple myeloma-the Mayo Clinic experience. Blood Cancer J 2021; 11:196. [PMID: 34876555 PMCID: PMC8651684 DOI: 10.1038/s41408-021-00592-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Belantamab mafodotin is a highly selective targeted therapy for multiple myeloma. It targets the B cell maturation antigen (BCMA) on plasma cells and showed promising results in several randomized clinical trials. We report the outcomes of 36 patients treated at Mayo Clinic. Our cohort received a median of eight prior lines of therapy. Six patients received belantamab in combination with other medications (pomalidomide, cyclophosphamide, thalidomide), 13 patients (36%) were 70 years or older, two patients had a creatinine of >2.5 mg/dL, and one patient was on dialysis. All three patients with renal failure received full dose belantamab. Chimeric antigen receptor (CAR-T) therapy was used prior to belantamab in seven patients and none of them responded to belantamab therapy. The overall response rate (ORR) was 33% (CR 6%, VGPR 8%, PR 19%), like the ORR reported in the DREAMM-2 trial. Keratopathy developed in 16 patients (43%), grade 1 in six patients, grade 2 in seven patients, and grade 3 in three patients. Eight percent discontinued therapy due to keratopathy. The median PFS and OS was 2 months and 6.5 months, respectively.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a significant number of patients still progress on current available therapies. Here, we review treatment modalities used to target BCMA in the treatment of MM, specifically antibody-drug conjugates (ADC), bispecific antibody constructs, and chimeric antibody receptor (CAR) modified T-cell therapies. We will provide an overview of therapies from these classes that have presented or published clinical data, as well as data on mechanisms of resistance to these novel agents. RECENT FINDINGS Clinical trials exploring different BCMA-targeting modalities to treat multiple myeloma are underway and demonstrate promising results. In relapsed/refractory multiple myeloma, anti-BCMA ADCs and bispecific antibody constructs are showing impressive efficacy with manageable side effect profiles. In parallel, adoptive cellular therapy has induced dramatic durable responses in multiply relapsed and refractory myeloma patients. Therapeutic approaches targeting BCMA hold significant potential in the management of multiple myeloma and will soon be incorporated in combination with current standard therapies to improve outcomes for patients with multiple myeloma. In addition, novel approaches are being evaluated to overcome resistance mechanisms to anti-BCMA therapies.
Collapse
Affiliation(s)
- Carlyn Rose Tan
- Myeloma Service Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E 74th Street, New York, NY, 10021, USA.
| | - Urvi A Shah
- Myeloma Service Department of Medicine, Memorial Sloan Kettering Cancer Center, 530 E 74th Street, New York, NY, 10021, USA
| |
Collapse
|
39
|
Effective anti-BCMA retreatment in multiple myeloma. Blood Adv 2021; 5:3016-3020. [PMID: 34351389 DOI: 10.1182/bloodadvances.2021004176] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of anti-B-cell maturation antigen (BCMA) therapies holds great promise in multiple myeloma (MM). These include chimeric antigen receptor (CAR) T cells, bispecific antibodies, and antibody-drug conjugates. Their development in clinical trials and further approval are changing the strategy for treating MM. Considering that a cure has not been reached, a central question in the coming years will be the possibility of using these therapies sequentially. Here, we report 2 cases of the serial use of anti-BCMA therapies with parallel monitoring of BCMA expression and anti-CAR antibodies. We further discuss recent data from clinical studies that have informed us about the different mechanisms of resistance to anti-BCMA therapies, including antigen escape, BCMA shedding, anti-drug antibodies, T-cell exhaustion, and the emergence of an immunosuppressive microenvironment. This knowledge will be essential to help guide the strategy of serial treatments with anti-BCMA therapies.
Collapse
|
40
|
|
41
|
The LncRNA RP11-301G19.1/miR-582-5p/HMGB2 axis modulates the proliferation and apoptosis of multiple myeloma cancer cells via the PI3K/AKT signalling pathway. Cancer Gene Ther 2021; 29:292-303. [PMID: 33707625 DOI: 10.1038/s41417-021-00309-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have recently been reported to act as crucial regulators and prognostic biomarkers of human tumorigenesis. Based on microarray data, RP11-301G19.1 was previously identified as an upregulated lncRNA during B cell development. However, the effect of RP11-301G19.1 on multiple myeloma (MM) cells remains unclear. In the present study, the effects of RP11-301G19.1 on tumour progression were ascertained both in vitro and in vivo. Our results demonstrated that RP11-301G19.1 was upregulated in MM cell lines and that its downregulation inhibited the proliferation and cell cycle progression and promoted the apoptosis of MM cells. Bioinformatic analysis and luciferase reporter assay results revealed that RP11-301G19.1 can upregulate the miR-582-5p-targeted gene HMGB2 as a competing endogenous RNA (ceRNA). Furthermore, Western blot results indicated that RP11-301G19.1 knockdown decreased the levels of PI3K and AKT phosphorylation without affecting their total protein levels. Additionally, in a xenograft model of human MM, RP11-301G19.1 knockdown significantly inhibited tumour growth by downregulating HMGB2. Overall, our data demonstrated that RP11-301G19.1 is involved in MM cell proliferation by sponging miR-582-5p and may serve as a therapeutic target for MM.
Collapse
|
42
|
Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021; 8:9. [PMID: 33504363 PMCID: PMC7839214 DOI: 10.1186/s40779-021-00302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, and is characterized by the clonal expansion of malignant plasma cells. Despite the recent improvement in patient outcome due to the use of novel therapeutic agents and stem cell transplantation, all patients eventually relapse due to clone evolution. B cell maturation antigen (BCMA) is highly expressed in and specific for MM cells, and has been implicated in the pathogenesis as well as treatment development for MM. In this review, we will summarize representative anti-BCMA immune therapeutic strategies, including BCMA-targeted vaccines, anti-BCMA antibodies and BCMA-targeted CAR cells. Combination of different immunotherapeutic strategies of targeting BCMA, multi-target immune therapeutic strategies, and adding immune modulatory agents to normalize anti-MM immune system in minimal residual disease (MRD) negative patients, will also be discussed.
Collapse
Affiliation(s)
- Yi Fang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
43
|
Bhoj VG, Li L, Parvathaneni K, Zhang Z, Kacir S, Arhontoulis D, Zhou K, McGettigan-Croce B, Nunez-Cruz S, Gulendran G, Boesteanu AC, Johnson L, Feldman MD, Radaelli E, Mansfield K, Nasrallah M, Goydel RS, Peng H, Rader C, Milone MC, Siegel DL. Adoptive T cell immunotherapy for medullary thyroid carcinoma targeting GDNF family receptor alpha 4. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:387-398. [PMID: 33614919 PMCID: PMC7879023 DOI: 10.1016/j.omto.2021.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Metastatic medullary thyroid cancer (MTC) is a rare but often aggressive thyroid malignancy with a 5-year survival rate of less than 40% and few effective therapeutic options. Adoptive T cell immunotherapy using chimeric antigen receptor (CAR)-modified T cells (CAR Ts) is showing encouraging results in the treatment of cancer, but development is challenged by the availability of suitable target antigens. We identified glial-derived neurotrophic factor (GDNF) family receptor alpha 4 (GFRα4) as a putative antigen target for CAR-based therapy of MTC. We show that GFRα4 is highly expressed in MTC, in parafollicular cells within the thyroid from which MTC originates, and in normal thymus. We isolated two single-chain variable fragments (scFvs) targeting GFRα4 isoforms a and b by antibody phage display. CARs bearing the CD3ζ and the CD137 costimulatory domains were constructed using these GFRα4-specific scFvs. GFRα4-specific CAR Ts trigger antigen-dependent cytotoxicity and cytokine production in vitro, and they are able to eliminate tumors derived from the MTC TT cell line in an immunodeficient mouse xenograft model of MTC. These data demonstrate the feasibility of targeting GFRα4 by CAR T and support this antigen as a promising target for adoptive T cell immunotherapy and other antibody-based therapies for MTC.
Collapse
Affiliation(s)
- Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kalpana Parvathaneni
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kacir
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dimitrios Arhontoulis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gayathri Gulendran
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina C Boesteanu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Mansfield
- Discovery and Investigative Pathology, Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - MacLean Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca S Goydel
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don L Siegel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Martino M, Paviglianiti A. An update on B-cell maturation antigen-targeted therapies in Multiple Myeloma. Expert Opin Biol Ther 2021; 21:1025-1034. [PMID: 33412948 DOI: 10.1080/14712598.2021.1872540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: B-cell maturation antigen (BCMA) targeted therapy (BCMA-TT) has emerged as a promising treatment for Multiple Myeloma (MM). the three most common treatment modalities for targeting BCMA are antibody-drug conjugates (ADCs), bispecific antibody constructs, including BiTE (bispecific T-cell engager) immuno-oncology therapies, and chimeric antigen receptor (CAR)-modified T-cell therapy.Areas covered: The review provides an overview of the main published studies on clinical and pre-clinical data from trials using BCMA-TT.Expert opinion: Despite progresses in survival outcomes and the availability of new drugs, MM remains an incurable disease. ADC is a promising antibody-based treatment and Belantamab mafodotin showed an anti-myeloma effect alone or in combination with other drugs. The major issue of ADC is the occurrence of events interfering with the efficacy and the off-target cytotoxicity. Bispecific antibody constructs are off-the-shelf therapies characterized by a potential rapid availability. The most critical limitation of bispecific antibody constructs is their short half-life necessitating prolonged intravenous infusion. CAR-T cells produced unprecedented results in heavily pretreated RRMM. The most common toxicities include neurologic toxicity and cytokine release syndrome, B-cell aplasia, cytopenias, and hypogammaglobulinemia. Further studies are needed to detect which are the eligible patients who could benefit from one treatment more than another.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Annalisa Paviglianiti
- Stem Cell Transplant and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| |
Collapse
|
45
|
Yu B, Jiang T, Liu D. BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 2020; 13:125. [PMID: 32943087 PMCID: PMC7499842 DOI: 10.1186/s13045-020-00962-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY USA
| | - Tianbo Jiang
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
| |
Collapse
|
46
|
Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C, Hudecek M, Einsele H, Danhof S. CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front Oncol 2020; 10:1243. [PMID: 32850376 PMCID: PMC7399644 DOI: 10.3389/fonc.2020.01243] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Despite recent therapeutic advances, the prognosis of multiple myeloma (MM) patients remains poor. Thus, new strategies to improve outcomes are imperative. Chimeric antigen receptor (CAR) T-cell therapy has changed the treatment landscape of B-cell malignancies, providing a potentially curative option for patients who are refractory to standard treatment. Long-term remissions achieved in patients with acute lymphoblastic leukemia and Non-Hodgkin Lymphoma encouraged its further development in MM. B-cell maturation antigen (BCMA)-targeted CAR T-cells have established outstanding results in heavily pre-treated patients. However, several other antigens such as SLAMF7 and CD44v6 are currently under investigation with promising results. Idecabtagene vicleucel is expected to be approved soon for clinical use. Unfortunately, relapses after CAR T-cell infusion have been reported. Hence, understanding the underlying mechanisms of resistance is essential to promote prevention strategies and to enhance CAR T-cell efficacy. In this review we provide an update of the most recent clinical and pre-clinical data and we elucidate both, the potential and the challenges of CAR T-cell therapy in the future.
Collapse
Affiliation(s)
- Luis Gerardo Rodríguez-Lobato
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maya Ganzetti
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlos Fernández de Larrea
- Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael Hudecek
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Division of Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 2020; 34:985-1005. [PMID: 32055000 PMCID: PMC7214244 DOI: 10.1038/s41375-020-0734-z] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Despite considerable advances in the treatment of multiple myeloma (MM) in the last decade, a substantial proportion of patients do not respond to current therapies or have a short duration of response. Furthermore, these treatments can have notable morbidity and are not uniformly tolerated in all patients. As there is no cure for MM, patients eventually become resistant to therapies, leading to development of relapsed/refractory MM. Therefore, an unmet need exists for MM treatments with novel mechanisms of action that can provide durable responses, evade resistance to prior therapies, and/or are better tolerated. B-cell maturation antigen (BCMA) is preferentially expressed by mature B lymphocytes, and its overexpression and activation are associated with MM in preclinical models and humans, supporting its potential utility as a therapeutic target for MM. Moreover, the use of BCMA as a biomarker for MM is supported by its prognostic value, correlation with clinical status, and its ability to be used in traditionally difficult-to-monitor patient populations. Here, we review three common treatment modalities used to target BCMA in the treatment of MM: bispecific antibody constructs, antibody–drug conjugates, and chimeric antigen receptor (CAR)-modified T-cell therapy. We provide an overview of preliminary clinical data from trials using these therapies, including the BiTE® (bispecific T-cell engager) immuno-oncology therapy AMG 420, the antibody–drug conjugate GSK2857916, and several CAR T-cell therapeutic agents including bb2121, NIH CAR-BCMA, and LCAR-B38M. Notable antimyeloma activity and high minimal residual disease negativity rates have been observed with several of these treatments. These clinical data outline the potential for BCMA-targeted therapies to improve the treatment landscape for MM. Importantly, clinical results to date suggest that these therapies may hold promise for deep and durable responses and support further investigation in earlier lines of treatment, including newly diagnosed MM.
Collapse
|
48
|
Tai YT, Anderson KC. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin Biol Ther 2019; 19:1143-1156. [PMID: 31277554 DOI: 10.1080/14712598.2019.1641196] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: B cell maturation antigen (BCMA) contributes to MM pathophysiology and is a target antigen for novel MM immunotherapy. Complete responses have been observed in heavily pretreated MM patients after treatment with BCMA antibody-drug conjugates (ADC), chimeric antigen receptor T, and bi-specific T cell engagers (BiTE®). These and other innovative BCMA-targeted therapies transform the treatment landscape and patient outcome in MM. Areas covered: The immunobiological rationale for targeting BCMA in MM is followed by key preclinical studies and available clinical data on efficacy and safety of therapies targeting BCMA from recent phase I/II studies. Expert opinion: BCMA is the most selective MM target antigen, and BCMA-targeted approaches have achieved high responses even in relapse and refractory MM as a monotherapy. Long-term follow-up and correlative studies using immuno-phenotyping and -sequencing will delineate mechanisms of overcoming the immunosuppressive MM bone marrow microenvironment to mediate additive or synergistic anti-MM cytotoxicity. Moreover, they will delineate cellular and molecular events underlying the development of resistance underlying relapse of disease. Most importantly, targeted BCMA-based immunotherapies used earlier in the disease course and in combination (adoptive T cell therapy, mAbs/ADCs, checkpoint and cytokine blockade, and vaccines) have great promise to achieve long-term disease control and potential cure.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
49
|
Giuliani N, Accardi F, Marchica V, Dalla Palma B, Storti P, Toscani D, Vicario E, Malavasi F. Novel targets for the treatment of relapsing multiple myeloma. Expert Rev Hematol 2019; 12:481-496. [PMID: 31125526 DOI: 10.1080/17474086.2019.1624158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Multiple myeloma (MM) is characterized by the high tendency to relapse and develop drug resistance. Areas covered: This review focused on the main novel targets identified to design drugs for the treatment of relapsing MM patients. CD38 and SLAMF7 are the main surface molecules leading to the development of monoclonal antibodies (mAbs) recently approved for the treatment of relapsing MM patients. B cell maturation antigen (BCMA) is a suitable target for antibody-drug conjugates, bispecific T cell engager mAbs and Chimeric Antigen Receptor (CAR)-T cells. Moreover, the programmed cell death protein 1 (PD)-1/PD-Ligand (PD-L1) expression profile by MM cells and their microenvironment and the use of immune checkpoints inhibitors in MM patients are reported. Finally, the role of histone deacetylase (HDAC), B cell lymphoma (BCL)-2 family proteins and the nuclear transport protein exportin 1 (XPO1) as novel targets are also underlined. The clinical results of the new inhibitors in relapsing MM patients are discussed. Expert opinion: CD38, SLAMF7, and BCMA are the main targets for different immunotherapeutic approaches. Selective inhibitors of HDAC6, BCL-2, and XPO1 are new promising compounds under clinical investigation in relapsing MM patients.
Collapse
Affiliation(s)
- Nicola Giuliani
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Fabrizio Accardi
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Valentina Marchica
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | | | - Paola Storti
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Denise Toscani
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Emanuela Vicario
- a Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Fabio Malavasi
- b Department of Medical Science , University of Turin , Turin , Italy
| |
Collapse
|