1
|
Ross RL, Mavria G, Del Galdo F, Elies J. Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis. Front Physiol 2022; 13:900631. [PMID: 35600300 PMCID: PMC9117635 DOI: 10.3389/fphys.2022.900631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a terminal disease characterized by vasculopathy, tissue fibrosis, and autoimmunity. Although the exact etiology of SSc remains unknown, endothelial dysfunction, oxidative stress, and calcium handling dysregulation have been associated with a large number of SSc-related complications such as neointima formation, vasculogenesis, pulmonary arterial hypertension, impaired angiogenesis, and cardiac arrhythmias. Hemeoxygenase-1 (HO-1) is an antioxidant enzyme involved in multiple biological actions in the cardiovascular system including vascular tone, angiogenesis, cellular proliferation, apoptosis, and oxidative stress. The aim of this work was to investigate the physiological role of HO-1 and its relevance in the cardiovascular complications occurring in SSc. We found that, in early phases of SSc, the expression of HO-1 in dermal fibroblast is lower compared to those isolated from healthy control individuals. This is particularly relevant as reduction of the HO-1/CO signaling pathway is associated with endothelial dysfunction and vasculopathy. We show evidence of the role of HO-1/carbon monoxide (CO) signaling pathway in calcium handling. Using an in vitro model of pulmonary arterial hypertension (PAH) we investigated the role of HO-1 in Ca2+ mobilization from intracellular stores. Our results indicate that HO-1 regulates calcium release from intracellular stores of human pulmonary arterial endothelial cells. We interrogated the activity of HO-1 in angiogenesis using an organotypic co-culture of fibroblast-endothelial cell. Inhibition of HO-1 significantly reduced the ability of endothelial cells to form tubules. We further investigated if this could be associated with cell motility or migration of endothelial cells into the extracellular matrix synthesized by fibroblasts. By mean of holographic imaging, we studied the morphological and functional features of endothelial cells in the presence of an HO-1 activator and selective inhibitors. Our results demonstrate that inhibition of HO-1 significantly reduces cell proliferation and cell motility (migration) of cultured endothelial cells, whilst activation of HO-1 does not modify either morphology, proliferation or motility. In addition, we investigated the actions of CO on the Kv7.1 (KCQN1) channel current, an important component of the cardiac action potential repolarization. Using electrophysiology (whole-cell patch-clamp in a recombinant system overexpressing the KCQN1 channel), we assessed the regulation of KCQN1 by CO. CORM-2, a CO donor, significantly reduced the Kv7.1 current, suggesting that HO-1/CO signaling may play a role in the modulation of the cardiac action potential via regulation of this ion channel. In summary, our results indicate a clear link between: 1) downregulation of HO-1/CO signaling; and 2) pathophysiological processes occurring in early phases of SSc, such as calcium homeostasis dysregulation, impaired angiogenesis and cardiac arrhythmias. A better understanding of the canonical actions (mainly due to the biological actions of CO), and non-canonical actions of HO-1, as well as the interaction of HO-1/CO signaling with other gasotransmitters in SSc will contribute to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Georgia Mavria
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Jacobo Elies
- Cardiovascular Research Group, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Jacobo Elies,
| |
Collapse
|
2
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
3
|
Targeting Heme Oxygenase-1 in the Arterial Response to Injury and Disease. Antioxidants (Basel) 2020; 9:antiox9090829. [PMID: 32899732 PMCID: PMC7554957 DOI: 10.3390/antiox9090829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme into carbon monoxide (CO), iron, and biliverdin, which is rapidly metabolized to bilirubin. The activation of vascular smooth muscle cells (SMCs) plays a critical role in mediating the aberrant arterial response to injury and a number of vascular diseases. Pharmacological induction or gene transfer of HO-1 improves arterial remodeling in animal models of post-angioplasty restenosis, vascular access failure, atherosclerosis, transplant arteriosclerosis, vein grafting, and pulmonary arterial hypertension, whereas genetic loss of HO-1 exacerbates the remodeling response. The vasoprotection evoked by HO-1 is largely ascribed to the generation of CO and/or the bile pigments, biliverdin and bilirubin, which exert potent antioxidant and anti-inflammatory effects. In addition, these molecules inhibit vascular SMC proliferation, migration, apoptosis, and phenotypic switching. Several therapeutic strategies are currently being pursued that may allow for the targeting of HO-1 in arterial remodeling in various pathologies, including the use of gene delivery approaches, the development of novel inducers of the enzyme, and the administration of unique formulations of CO and bilirubin.
Collapse
|
4
|
Hendrix P, Foreman PM, Harrigan MR, Fisher WS, Vyas NA, Lipsky RH, Lin M, Walters BC, Tubbs RS, Shoja MM, Pittet JF, Mathru M, Griessenauer CJ. Association of cystathionine beta-synthase polymorphisms and aneurysmal subarachnoid hemorrhage. J Neurosurg 2018; 128:1771-1777. [DOI: 10.3171/2017.2.jns162933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVECystathionine β-synthase (CBS) is involved in homocysteine and hydrogen sulfide (H2S) metabolism. Both products have been implicated in the pathophysiology of cerebrovascular diseases. The impact of CBS polymorphisms on aneurysmal subarachnoid hemorrhage (aSAH) and its clinical sequelae is poorly understood.METHODSBlood samples from all patients enrolled in the CARAS (Cerebral Aneurysm Renin Angiotensin System) study were used for genetic evaluation. The CARAS study prospectively enrolled aSAH patients at 2 academic institutions in the United States from 2012 to 2015. Common CBS polymorphisms were detected using 5′exonuclease genotyping assays. Analysis of associations between CBS polymorphisms and aSAH was performed.RESULTSSamples from 149 aSAH patients and 50 controls were available for analysis. In multivariate logistic regression analysis, the insertion allele of the 844ins68 CBS insertion polymorphism showed a dominant effect on aSAH. The GG genotype of the CBS G/A single nucleotide polymorphism (rs234706) was independently associated with unfavorable functional outcome (modified Rankin Scale Score 3–6) at discharge and last follow-up, but not clinical vasospasm or delayed cerebral ischemia (DCI).CONCLUSIONSThe insertion allele of the 844ins68 CBS insertion polymorphism was independently associated with aSAH while the GG genotype of rs234706 was associated with an unfavorable outcome both at discharge and last follow-up. Increased CBS activity may exert its neuroprotective effects through alteration of H2S levels, and independent of clinical vasospasm and DCI.
Collapse
Affiliation(s)
- Philipp Hendrix
- 1Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Paul M. Foreman
- 2Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Mark R. Harrigan
- 2Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Winfield S. Fisher
- 2Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Nilesh A. Vyas
- 3Department of Neurosciences, Inova Health System, Falls Church
| | - Robert H. Lipsky
- 3Department of Neurosciences, Inova Health System, Falls Church
- 4Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | - Mingkuan Lin
- 4Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | - Beverly C. Walters
- 2Department of Neurosurgery, University of Alabama at Birmingham, Alabama
- 4Department of Molecular Neuroscience, George Mason University, Fairfax, Virginia
| | | | - Mohammadali M. Shoja
- 6Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mali Mathru
- 7Department of Anesthesiology, University of Alabama at Birmingham, Alabama
| | - Christoph J. Griessenauer
- 8Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
- 9Department of Neurosurgery, Geisinger Health System, Danville, Pennsylvania
| |
Collapse
|
5
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
6
|
Yu W, Liu D, Liang C, Ochs T, Chen S, Chen S, Du S, Tang C, Huang Y, Du J, Jin H. Sulfur Dioxide Protects Against Collagen Accumulation in Pulmonary Artery in Association With Downregulation of the Transforming Growth Factor β1/Smad Pathway in Pulmonary Hypertensive Rats. J Am Heart Assoc 2016; 5:e003910. [PMID: 27792648 PMCID: PMC5121494 DOI: 10.1161/jaha.116.003910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND We aimed to explore the role of endogenous sulfur dioxide (SO2) in pulmonary vascular collagen remodeling induced by monocrotaline and its mechanisms. METHODS AND RESULTS A rat model of monocrotaline-induced pulmonary vascular collagen remodeling was developed and administered with l-aspartate-β-hydroxamate or SO2 donor. The morphology of small pulmonary arteries and collagen metabolism were examined. Cultured pulmonary arterial fibroblasts stimulated by transforming growth factor β1 (TGF-β1) were used to explore the mechanism. The results showed that in monocrotaline-treated rats, mean pulmonary artery pressure increased markedly, small pulmonary arterial remodeling developed, and collagen deposition in lung tissue and pulmonary arteries increased significantly in association with elevated SO2 content, aspartate aminotransferase (AAT) activity, and expression of AAT1 compared with control rats. Interestingly, l-aspartate-β-hydroxamate, an inhibitor of SO2 generation, further aggravated pulmonary vascular collagen remodeling in monocrotaline-treated rats, and inhibition of SO2 in pulmonary artery smooth muscle cells activated collagen accumulation in pulmonary arterial fibroblasts. SO2 donor, however, alleviated pulmonary vascular collagen remodeling with inhibited collagen synthesis, augmented collagen degradation, and decreased TGF-β1 expression of pulmonary arteries. Mechanistically, overexpression of AAT1, a key enzyme of SO2 production, prevented the activation of the TGF-β/type I TGF-β receptor/Smad2/3 signaling pathway and abnormal collagen synthesis in pulmonary arterial fibroblasts. In contrast, knockdown of AAT1 exacerbated Smad2/3 phosphorylation and deposition of collagen types I and III in TGF-β1-treated pulmonary arterial fibroblasts. CONCLUSIONS Endogenous SO2 plays a protective role in pulmonary artery collagen accumulation induced by monocrotaline via inhibition of the TGF-β/type I TGF-β receptor/Smad2/3 pathway.
Collapse
Affiliation(s)
- Wen Yu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Die Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chen Liang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Todd Ochs
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stella Chen
- Department of Biochemistry and Cellular Biology, University of California, San Diego, La Jolla, CA
| | - Selena Chen
- Department of Biochemistry and Cellular Biology, University of California, San Diego, La Jolla, CA
| | - Shuxu Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Li XW, Wang XM, Li S, Yang JR. Effects of chrysin (5,7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin Med 2015; 10:4. [PMID: 25722740 PMCID: PMC4341233 DOI: 10.1186/s13020-015-0032-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Chrysin (5,7-dihydroxyflavone) inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation and arterial intima hyperplasia. This study aims to investigate the effects of chrysin on rat pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (PH). METHODS Sprague-Dawley rats were continuously exposed to 10% O2 for 4 weeks to induce PH. The effect of chrysin (50 or 100 mg/kg/d, subcutaneous) on vascular remodeling was investigated in hypoxia-induced PH model. At the end of the experiments, the indexes for pulmonary vascular remodeling and right ventricle hypertrophy were measured by vascular medial wall thickness and the ratio of right ventricle to (left ventricle plus septum). The expressions of NOX4, collagen I, and collagen III were analyzed by immunohistochemistry, real-time PCR, or western blotting. The proliferation of cultured pulmonary artery smooth muscle cells (PASMCs) was determined by BrdU incorporation and flow cytometry. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were also determined by thiobarbituric acid reactive substances assay and 2'7'-dichlorofluorescein diacetate method. RESULTS Chrysin treatment for 4 weeks significantly attenuated pulmonary vascular remodeling and improved collagen accumulation and down-regulated collagen I and collagen III expressions, accompanied by downregulation of NOX4 expression in the pulmonary artery (P = 0.012 for 50 mg/kg/d, P < 0.001 for 100 mg/kg/d) and lung tissue (P = 0.026, P < 0.001). In vitro, chrysin (1, 10, and 100 μM) remarkably attenuated PASMC proliferation (P = 0.021 for 1 μM, P < 0.001 for 10 μM, and P < 0.001 for 100 μM), collagen I expression (P = 0.035, P < 0.001, and P < 0.001), and collagen III expression (P = 0.027, P < 0.001, and P < 0.001) induced by hypoxia, and these inhibitory effects of chrysin were accompanied by inhibition of NOX4 expression (P = 0.019, P < 0.001, and P < 0.001), ROS production (P = 0.038, P < 0.001, and P < 0.001), and MDA generation (P = 0.024, P < 0.001, and P < 0.001). CONCLUSIONS This study demonstrated that chrysin treatment in hypoxia-induced PH in rats reversed the hypoxia-induced (1) elevations of NOX4 expression, (2) productions of ROS and MDA, (3) proliferation of PASMC, and (4) accumulation of collagen.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, Wannan Medical College, Anhui, 241002 China
| | - Xiang-Ming Wang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Anhui, 241002 China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, Anhui, 241002 China
| | - Jie-Ren Yang
- Department of Pharmacology, Wannan Medical College, Anhui, 241002 China
| |
Collapse
|
8
|
Li XW, Du J, Hu GY, Hu CP, Li D, Li YJ, Li XH. Fluorofenidone attenuates vascular remodeling in hypoxia-induced pulmonary hypertension of rats. Can J Physiol Pharmacol 2014; 92:58-69. [DOI: 10.1139/cjpp-2013-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH). TGF-β1 exerts powerful pro-proliferation effects on pulmonary arterial smooth muscle cells (PASMCs), and hence, prompts vascular remodeling. This study is designed to investigate the effect of AKF-PD on vascular remodeling in a rat model of hypoxia-induced PH. PH was induced in rats by 4 weeks of hypoxia. The expression of TGF-β1, collagen I, and collagen III was analyzed by ELISA, immunohistochemistry, real-time PCR, or Western blot. Proliferation of cultured PASMCs was determined by the BrdU incorporation method and flow cytometry. The results showed that AKF-PD treatment (0.5 or 1.0 g·(kg body mass)·d−1) for 4 weeks attenuated pulmonary vascular remodeling and improved homodynamic parameters. TGF-β1 level was significantly down-regulated by AKF-PD both in vivo and in vitro. Furthermore, hypoxia- and TGF-β1-induced PASMC proliferation and collagen expression were both significantly suppressed by AKF-PD. These results suggest that AKF-PD ameliorates the progression of PH induced by hypoxia in rats through its regulation of TGF-β1 expression, PASMC proliferation, and the extracellular matrix.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Gao-Yun Hu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chang-Ping Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 41008, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| |
Collapse
|
9
|
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional regulatory cytokine that is implicated in a variety of kidney diseases, including diabetic nephropathy and chronic transplant rejection, where it promotes stimulation of the extracellular matrix deposition, cell proliferation, and migration. TGF-β exerts its biological functions largely via its downstream complex signaling molecules, Smad proteins. Paradoxically, TGF-β also is essential for normal homeostasis and suppression of inflammation through mechanisms that are yet to be fully elucidated. One feasible mechanism by which TGF-β may exert its beneficial properties is through induction of heme oxygenase-1 (HO-1). Induction of this redox-sensitive enzyme is known to be cytoprotective through its potent antioxidant, anti-inflammatory, and anti-apoptotic properties in different conditions including several kidney diseases. In this overview, recent advances in our understanding of the role of TGF-β in kidney disease, its molecular regulation of HO-1 expression, and the potential role of HO-1 induction as a therapeutic modality in TGF-β-mediated kidney diseases are highlighted.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
10
|
Agostoni P, Swenson ER, Bussotti M, Revera M, Meriggi P, Faini A, Lombardi C, Bilo G, Giuliano A, Bonacina D, Modesti PA, Mancia G, Parati G. High-altitude exposure of three weeks duration increases lung diffusing capacity in humans. J Appl Physiol (1985) 2011; 110:1564-71. [DOI: 10.1152/japplphysiol.01167.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: high-altitude adaptation leads to progressive increase in arterial PaO2. In addition to increased ventilation, better arterial oxygenation may reflect improvements in lung gas exchange. Previous investigations reveal alterations at the alveolar-capillary barrier indicative of decreased resistance to gas exchange with prolonged hypoxia adaptation, but how quickly this occurs is unknown. Carbon monoxide lung diffusing capacity and its major determinants, hemoglobin, alveolar volume, pulmonary capillary blood volume, and alveolar-capillary membrane diffusion, have never been examined with early high-altitude adaptation. Methods and Results: lung diffusion was measured in 33 healthy lowlanders at sea level (Milan, Italy) and at Mount Everest South Base Camp (5,400 m) after a 9-day trek and 2-wk residence at 5,400 m. Measurements were adjusted for hemoglobin and inspired oxygen. Subjects with mountain sickness were excluded. After 2 wk at 5,400 m, hemoglobin oxygen saturation increased from 77.2 ± 6.0 to 85.3 ± 3.6%. Compared with sea level, there were increases in hemoglobin, lung diffusing capacity, membrane diffusion, and alveolar volume from 14.2 ± 1.2 to 17.2 ± 1.8 g/dl ( P < 0.01), from 23.6 ± 4.4 to 25.1 ± 5.3 ml·min−1·mmHg−1 ( P < 0.0303), 63 ± 34 to 102 ± 65 ml·min−1·mmHg−1 ( P < 0.01), and 5.6 ± 1.0 to 6.3 ± 1.1 liters ( P < 0.01), respectively. Pulmonary capillary blood volume was unchanged. Membrane diffusion normalized for alveolar volume was 10.9 ± 5.2 at sea level rising to 16.0 ± 9.2 ml·min−1·mmHg−1·l−1 ( P < 0.01) at 5,400 m. Conclusions: at high altitude, lung diffusing capacity improves with acclimatization due to increases of hemoglobin, alveolar volume, and membrane diffusion. Reduction in alveolar-capillary barrier resistance is possibly mediated by an increase of sympathetic tone and can develop in 3 wk.
Collapse
Affiliation(s)
- Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dipartimento di Scienze Cardiovascolari, Università di Milano, Milan, Italy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, Washington
| | - Erik R. Swenson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, Washington
| | - Maurizio Bussotti
- Cardiologia Riabilitativa, Fondazione S. Maugeri, IRCCS, Milan, Italy
| | - Miriam Revera
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
- Department Clinical Medicine and Prevention, University of Milano-Bicocca, Milan, Italy
| | - Paolo Meriggi
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Faini
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| | - Carolina Lombardi
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
- Department Clinical Medicine and Prevention, University of Milano-Bicocca, Milan, Italy
| | - Grzegorz Bilo
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Giuliano
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| | - Daniele Bonacina
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| | - Pietro A. Modesti
- Dipartimento di Area Critica Medico Chirurgica, Università di Firenze, Firenze, Italy and Fondazione Don C. Gnocchi, IRCCS Centro di Santa Maria degli Ulivi Pozzolatico, Italia
| | - Giuseppe Mancia
- Department Clinical Medicine and Prevention, University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
11
|
Abstract
Dynamic interactions between cells and extracellular matrix (ECM) through integrins influence most cellular functions. Normal cells, but even more, tumor cells are subjected to different forms of stress, including ischemia, radical oxygen species production, starvation, mechanical stress or genotoxic insults due to anti-cancer drugs or irradiation. In these situations, an adaptative cellular response occurs, integrating a complex network of intracellular signaling modules, which, depending on stress intensity, may result to either damage repair followed by complete restitution of cellular functions, or programmed cell death. Because of its implication in oncogenesis and anti-cancer therapy, cellular stress response has been thoroughly investigated. However, most of these studies have been performed in the context of isolated cells without taking into consideration that most cells are part of the tissue within which they interact with ECM through integrin. Few studies have described the influence of stress on cell-to-ECM interaction. However, one can speculate that, in these conditions, cells could functionally interact with protein microenvironment either to create positive interactions to survive (for example by facilitating protective pathways) or negative interaction to die (for example by facilitating detachment). In this review, we summarize the knowledge relative to the influence of different stress modalities on ECM remodeling, integrin expression and/or function modifications, and possible functional consequences, independently from the cellular model as these findings came from a large variety of cells (mesenchymal, endothelial, muscular, epithelial and glandular) and fields of application (cancer, vascular biology and tissue engineering). Most studies support the general notion that non-lethal stress favors ECM stiffness, integrin activation and enhanced survival. This field opens large perspectives not only in tumor biology but also in anti-cancer therapy by targeting one or several steps of the integrin-mediated signaling pathway, including integrin ligation, or activation of integrin-linked enzymes or integrin adaptors.
Collapse
|
12
|
Biomechanics and Pathobiology of Aortic Aneurysms. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2011. [DOI: 10.1007/8415_2011_84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia 2010; 12:608-17. [PMID: 20689755 DOI: 10.1593/neo.10344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Although the mechanisms through which hypoxia influences several phenotypic characteristics such as angiogenesis, selection for resistance to apoptosis, resistance to radiation and chemotherapy, and increased invasion and metastasis are well characterized, the relationship between tumor hypoxia and components of the extracellular matrix (ECM) is relatively unexplored. The collagen I (Col1) fiber matrix of solid tumors is the major structural part of the ECM. Col1 fiber density can increase tumor initiation, progression, and metastasis, with cancer cell invasion occurring along radially aligned Col1 fibers. Here we have investigated the influence of hypoxia on Col1 fiber density in solid breast and prostate tumor models. Second harmonic generation (SHG) microscopy was used to detect differences in Col1 fiber density and volume between hypoxic and normoxic tumor regions. Hypoxic regions were detected by fluorescence microscopy, using tumors derived from human breast and prostate cancer cell lines stably expressing enhanced green fluorescent protein (EGFP) under transcriptional control of the hypoxia response element. In-house fiber analysis software was used to quantitatively analyze Col1 fiber density and volume from the SHG microscopy images. Normoxic tumor regions exhibited a dense mesh of Col1 fibers. In contrast, fewer and structurally altered Col1 fibers were detected in hypoxic EGFP-expressing tumor regions. Microarray gene expression analyses identified increased expression of lysyl oxidase and reduced expression of some matrix metalloproteases in hypoxic compared with normoxic cancer cells. These results suggest that hypoxia mediates Col1 fiber restructuring in tumors, which may impact delivery of macromolecular agents as well as dissemination of cells.
Collapse
|
14
|
Peng P, Huang LY, Li J, Fan R, Zhang SM, Wang YM, Hu YZ, Sun X, Kaye AD, Pei JM. Distribution of kappa-opioid receptor in the pulmonary artery and its changes during hypoxia. Anat Rec (Hoboken) 2009; 292:1062-7. [PMID: 19462402 DOI: 10.1002/ar.20911] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study evaluated the distribution of kappa-opioid receptors (kappa-ORs) in pulmonary arteries (PAs) in rats and investigated whether kappa-ORs are altered in PAs during hypoxia. An animal model of hypobaric/hypoxic pulmonary hypertension and a pulmonary artery smooth muscle cell (PASMC) model of hypoxia were utilized. Distribution of kappa-ORs was determined by fluorescence immunohistochemistry and changes in kappa-ORs expression in PAs and PASMCs were determined by fluorescence immunohistochemistry or Western blot techniques. The kappa-ORs were primarily distributed in the smooth muscle layer of the PAs and in the nucleus of PASMCs. The expression of the kappa-ORs were increased in PAs of rats subjected to hypoxia for 1-4 week (P < 0.01). Accordingly, the expression of kappa-ORs in PASMCs were also increased when subjected to hypoxia for 12-36 hr (P < 0.05). The present study has provided evidence for the first time of the precise location of kappa-ORs in PAs and PASMCs of rats and that hypoxia upregulates expression of kappa-ORs.
Collapse
Affiliation(s)
- Pai Peng
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Zhang P, Zhang QY, Zhang SM, Guo HT, Bi H, Wang YM, Sun X, Liu JC, Cheng L, Cui Q, Yu SQ, Kaye AD, Yi DH, Pei JM. Effects of U50,488H on hypoxia pulmonary hypertension and its underlying mechanism. Vascul Pharmacol 2009; 51:72-7. [DOI: 10.1016/j.vph.2009.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 02/12/2009] [Accepted: 03/30/2009] [Indexed: 11/25/2022]
|
16
|
Kie JH, Kapturczak MH, Traylor A, Agarwal A, Hill-Kapturczak N. Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis. J Am Soc Nephrol 2008; 19:1681-91. [PMID: 18495963 DOI: 10.1681/asn.2007101099] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Induction of heme oxygenase-1 (HO-1) is associated with potential antifibrogenic effects. The effects of HO-1 expression on epithelial-mesenchymal transition (EMT), which plays a critical role in the development of renal fibrosis, are unknown. In this study, HO-1(-/-) mice demonstrated significantly more fibrosis after 7 d of unilateral ureteral obstruction compared with wild-type mice, despite similar degrees of hydronephrosis. The obstructed kidneys of HO-1(-/-) mice also had greater macrophage infiltration and renal tubular TGF-beta1 expression than wild-type mice. In addition, the degree of EMT was more extensive in obstructed HO-1(-/-) kidneys, as assessed by alpha-smooth muscle actin and expression of S100A4 in proximal tubular epithelial cells. In vitro studies using proximal tubular cells isolated from HO-1(-/-) and wild-type kidneys confirmed these observations. In conclusion, HO-1 deficiency is associated with increased fibrosis, tubular TGF-beta1 expression, inflammation, and enhanced EMT in obstructive kidney disease. Modulation of the HO-1 pathway may provide a new therapeutic approach to progressive renal diseases.
Collapse
Affiliation(s)
- Jeong-Hae Kie
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, Sam L, Liu Y, Husain AN, Lang RM, Ratain MJ, Lussier YA, Garcia JGN. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 2008; 33:278-91. [PMID: 18303084 PMCID: PMC3616402 DOI: 10.1152/physiolgenomics.00169.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary hypertension (PH) and cancer pathology share growth factor- and MAPK stress-mediated signaling pathways resulting in endothelial and smooth muscle cell dysfunction and angioproliferative vasculopathy. In this study, we assessed sorafenib, an antineoplastic agent and inhibitor of multiple kinases important in angiogenesis [VEGF receptor (VEGFR)-1-3, PDGF receptor (PDGFR)-beta, Raf-1 kinase] as a potential PH therapy. Two PH rat models were used: a conventional hypoxia-induced PH model and an augmented PH model combining dual VEGFR-1 and -2 inhibition (SU-5416, single 20 mg/kg injection) with hypoxia. In addition to normoxia-exposed control animals, four groups were maintained at 10% inspired O(2) fraction for 3.5 wk (hypoxia/vehicle, hypoxia/SU-5416, hypoxia/sorafenib, and hypoxia/SU-5416/sorafenib). Compared with normoxic control animals, rats exposed to hypoxia/SU-5416 developed hemodynamic and histological evidence of severe PH while rats exposed to hypoxia alone displayed only mild elevations in hemodynamic values (pulmonary vascular and right ventricular pressures). Sorafenib treatment (daily gavage, 2.5 mg/kg) prevented hemodynamic changes and demonstrated dramatic attenuation of PH-associated vascular remodeling. Compared with normoxic control rats, expression profiling (Affymetrix platform) of lung RNA obtained from hypoxia [false discovery rate (FDR) 6.5%]- and hypoxia/SU-5416 (FDR 1.6%)-challenged rats yielded 1,019 and 465 differentially regulated genes (fold change >1.4), respectively. A novel molecular signature consisting of 38 differentially expressed genes between hypoxia/SU-5416 and hypoxia/SU-5416/sorafenib (FDR 6.7%) was validated by either real-time RT-PCR or immunoblotting. Finally, immunoblotting studies confirmed the upregulation of the MAPK cascade in both PH models, which was abolished by sorafenib. In summary, sorafenib represents a novel potential treatment for severe PH with the MAPK cascade a potential canonical target.
Collapse
Affiliation(s)
- Liliana Moreno-Vinasco
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
ZHAO X, ZHANG LK, ZHANG CY, ZENG XJ, YAN H, JIN HF, TANG CS, DU JB. Regulatory Effect of Hydrogen Sulfide on Vascular Collagen Content in Spontaneously Hypertensive Rats. Hypertens Res 2008; 31:1619-30. [DOI: 10.1291/hypres.31.1619] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Hill-Kapturczak N, Jarmi T, Agarwal A. Growth factors and heme oxygenase-1: perspectives in physiology and pathophysiology. Antioxid Redox Signal 2007; 9:2197-207. [PMID: 17979525 DOI: 10.1089/ars.2007.1798] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth factors are mediators of both normal homeostasis and pathophysiology through their effects on various cellular processes. Similarly, heme oxygenase-1 (HO-1) has a role in maintaining physiologic equilibrium, by which it can either alleviate or exacerbate disease, depending on several considerations, including amount, timing, and location of expression, as well as the disease setting. Thus, the synthesis and activities of growth factors and HO-1 are intricately regulated. Interestingly, several growth factors induce HO-1, and, conversely, HO-1 can regulate the expression of some growth factors. This review focuses on the influence of growth factors and HO-1 and potential physiologic effects of the growth factor(s)-HO-1 interaction.
Collapse
Affiliation(s)
- Nathalie Hill-Kapturczak
- Department of Medicine, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
20
|
Li X, Du J, Jin H, Tang X, Bu D, Tang C. The regulatory effect of endogenous hydrogen sulfide on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Life Sci 2007; 81:841-9. [PMID: 17714736 DOI: 10.1016/j.lfs.2007.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 07/13/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
The study aimed to explore the regulatory effect of endogenous hydrogen sulfide (H(2)S), a novel gasotransmitter, on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Thirty-two Sprague-Dawley rats were randomly divided into a sham group, shunt group, sham+PPG (propargylglycine, an inhibitor of cystathionine-gamma-lyase) group and shunt+PPG group. Rats in the shunt and shunt+PPG groups underwent abdominal aorta-inferior vena cava shunting. Rats in the shunt+PPG and sham+PPG groups were intraperitoneally injected with PPG. After 4 weeks of shunting, mean pulmonary artery pressure (MPAP) and pulmonary vascular structural remodeling (PVSR) were evaluated. H(2)S, nitric oxide (NO) and carbon monoxide (CO) contents were measured in lung tissues. Meanwhile, nitric oxide synthase (eNOS), heme oxygenase (HO-1) and proliferative cell nuclear antigen (PCNA) protein expressions and ERK activation were evaluated. After 4 weeks of shunting, rats showed PVSR with increased lung tissue H(2)S and NO content but decreased CO content. After the PPG treatment, MPAP further increased and PVSR was aggravated. Meanwhile, PCNA expression and ERK activation were augmented with decreased lung tissue CO and HO-1 protein production but increased lung tissue NO production and eNOS expression. H(2)S exerted a protective effect on PVSR, and the inhibition of the NO/NOS pathway and the augmentation of the CO/HO pathway might be involved in the mechanisms by which H(2)S regulates PVSR in rats with high pulmonary flow.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Pediatrics, Peking University First Hospital, Xi-An Men Street No. 1, Beijing, 100034, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Yang X, Lee PJ, Long L, Trembath RC, Morrell NW. BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 2007; 37:598-605. [PMID: 17600318 DOI: 10.1165/rcmb.2006-0360oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional cytokines, which play a key role in vascular development and remodeling. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme catabolism, has been shown to be protective against vascular and lung injury. In a microarray study, we identified HO-1 as a major target of BMP4 signaling in human pulmonary artery smooth muscle cells (PASMCs), and confirmed the induction of HO-1 mRNA and protein by RT-PCR and Western blotting, respectively. Immunoblotting demonstrated that incubation of PASMCs with BMP4 rapidly phosphorylated Smad1/5 and activated the mitogen-activated protein kinases, p38(MAPK) and ERK1/2, in PASMCs, but not JNK. Using pathway selective inhibitors, the induction of HO-1 mRNA and protein was shown to be dependent on activation of p38(MAPK). Induction was independent of Smad1/5 signaling, since HO-1 mRNA and protein induction was intact in PASMCs harboring mutations in the kinase domain of BMP type II receptor, with disrupted Smad signaling. In addition, adenoviral transfection of kinase-deficient BMPR-II also failed to inhibit BMP4-induced HO-1 expression. In functional studies, the HO-1 inhibitor, ZnPP-IX, partly reversed the growth-inhibitory effects of BMP4, and overexpression of HO-1 in PASMCs inhibited serum-stimulated [3H]-thymidine incorporation. Taken together, these findings show that HO-1 is an important Smad-independent target of BMP signaling in vascular smooth muscle. Inhibition of HO-1 function or expression will further increase the proproliferative capacity of BMPR-II-deficient PASMCs and may thus represent a potential "second hit" necessary for disease manifestation.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Medicine, University of Cambridge, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Traylor A, Hock T, Hill-Kapturczak N. Specificity protein 1 and Smad-dependent regulation of human heme oxygenase-1 gene by transforming growth factor-beta1 in renal epithelial cells. Am J Physiol Renal Physiol 2007; 293:F885-94. [PMID: 17567933 DOI: 10.1152/ajprenal.00519.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Excess transforming growth factor-beta1 (TGF-beta1) in the kidney leads to increased cell proliferation and deposition of extracellular matrix, resulting in progressive kidney fibrosis. TGF-beta1, however, stabilizes and attenuates tissue injury through the activation of cytoprotective proteins, including heme oxygenase-1 (HO-1). HO-1 catabolizes pro-oxidant heme into substances with anti-oxidant, anti-apoptotic, anti-fibrogenic, vasodilatory and immune modulatory properties. Little is known regarding the molecular regulation of human HO-1 induction by TGF-beta1 except that it is dependent on de novo RNA synthesis and requires a group of structurally related proteins called Smads. It is not known whether other DNA binding proteins are required to initiate transcription of HO-1 and, furthermore, the promoter region(s) involved in TGF-beta1-mediated induction of HO-1 has not been identified. The purpose of this study was to further delineate the molecular regulation of HO-1 by TGF-beta1 in human renal proximal tubular cells. Actinomycin D and nuclear run-on studies demonstrate that TGF-beta1 augments HO-1 expression by increased gene transcription and does not involve increased mRNA stability. Using transient transfection, mithramycin A, small interfering RNA, electrophoretic mobility shift assays, and decoy oligonucleotide experiments, a TGF-beta1-responsive region is identified between 9.1 and 9.4 kb of the human HO-1 promoter. This approximately 280-bp TGF-beta1-responsive region contains a putative Smad binding element and specificity protein 1 binding sites, both of which are required for human HO-1 induction by TGF-beta1.
Collapse
Affiliation(s)
- Amie Traylor
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
23
|
Hongfang J, Junbao D. Effects of hydrogen sulfide on hypoxic pulmonary vascular structural remodeling. Life Sci 2005; 78:1299-309. [PMID: 16257422 DOI: 10.1016/j.lfs.2005.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 07/01/2005] [Indexed: 11/30/2022]
Abstract
To study the role of hydrogen sulfide (H2S) in hypoxic pulmonary vascular structural remodeling (HPVSR), a total of 24 Wistar rats were randomly divided into three groups: control group (n = 8), hypoxia group (n = 8) and hypoxia with sodium hydrosulfide (hy + NaHS) group (n = 8). The mean pulmonary artery pressure (mPAP), plasma H2S and the percentage of muscularized arteries (MA), partially muscularized arteries (PMA) and nonmuscularized arteries (NMA) in small pulmonary vessels were measured. Collagen I and III, elastin, transforming growth factor-beta3 (TGF-beta3), proliferative cell nuclear antigen (PCNA) and human urotensin II(U-II) expressions were detected by immunohistochemical assay. The mRNA expressions of procollagen I and III, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinease-1 (TIMP-1) were detected by in situ hybridization. The results showed that NaHS significantly increased plasma H2S, decreased mPAP and the percentage of MA and PMA of small pulmonary vessels in rats under hypoxia. Meanwhile, NaHS inhibited the proliferation of pulmonary artery smooth muscle cells (PASMCs) represented by a decrease in the expressions of PCNA and human U-II in pulmonary artery wall. NaHS reduced the expression of collagen I and III, elastin and TGF-beta3 protein and decreased the expressions of procollagen I and III mRNA in pulmonary arteries of rats under hypoxia, but it did not impact the ratio of TIMP-1 mRNA to MMP-1mRNA in pulmonary arteries of rats under hypoxia. These data suggested that H2S played an important role in the development of HPVSR.
Collapse
Affiliation(s)
- Jin Hongfang
- Department of Pediatrics, Peking University First Hospital, Xi-An Men Street No. 1, West District, Beijing, 100034, Beijing, People's Republic of China
| | | |
Collapse
|
24
|
Hartsfield CL, McMurtry IF, Ivy DD, Morris KG, Vidmar S, Rodman DM, Fagan KA. Cardioprotective and vasomotor effects of HO activity during acute and chronic hypoxia. Am J Physiol Heart Circ Physiol 2004; 287:H2009-15. [PMID: 15217799 DOI: 10.1152/ajpheart.00394.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.
Collapse
Affiliation(s)
- Cynthia L Hartsfield
- Div of Pulmonary Sciences and Critical Care Medicine, Univ. of Colorado Health Sciences Center, 4200 East Ninth Ave., B-133, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|