1
|
Dhingra RR, MacFarlane PM, Thomas PJ, Paton JFR, Dutschmann M. Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623076. [PMID: 39605441 PMCID: PMC11601293 DOI: 10.1101/2024.11.11.623076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Like other brain circuits, the brainstem respiratory network is continually modulated by neurotransmitters that activate slow metabotropic receptors. In many cases, activation of these receptors only subtly modulates the respiratory motor pattern. However, activation of some receptor types evokes the arrest of the respiratory motor pattern as can occur following the activation of μ-opioid receptors. We propose that the varied effects of neuromodulation on the respiratory motor pattern depend on the pattern of neuromodulator receptor expression and their influence on the excitability of their post-synaptic targets. Because a comprehensive characterization of these cellular properties across the respiratory network remains challenging, we test our hypothesis by combining computational modelling with ensemble electrophysiologic recording in the pre-Bötzinger complex (pre-BötC) using high-density multi-electrode arrays (MEA). Our computational model encapsulates the hypothesis that neuromodulatory transmission is organized asymmetrically across the respiratory network to promote rhythm and pattern generation. To test this hypothesis, we increased the strength of neuromodulatory connections in the model and used selective agonists in situ while monitoring pre-BötC ensemble activities. The model predictions of increasing slow inhibition were consistent with experiments examining the effect of systemic administration of the 5HT1aR agonist 8-OH-DPAT. Similarly, the predicted effects of increasing slow excitation in the model were experimentally confirmed in pre-BötC ensemble activities before and after systemic administration of the μ-opioid receptor agonist fentanyl. We conclude that asymmetric neuromodulation can contribute to respiratory rhythm and pattern generation and accounts for its varied effects on breathing.
Collapse
Affiliation(s)
- Rishi R Dhingra
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M MacFarlane
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Peter J Thomas
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH, USA
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Mathias Dutschmann
- Present Address: Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Pagare P, Obeng S, Huang B, Marcus MM, Nicholson KL, Townsend AE, Banks ML, Zhang Y. Preclinical Characterization and Development on NAQ as a Mu Opioid Receptor Partial Agonist for Opioid Use Disorder Treatment. ACS Pharmacol Transl Sci 2022; 5:1197-1209. [PMID: 36407950 PMCID: PMC9667545 DOI: 10.1021/acsptsci.2c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Mu opioid receptor (MOR) selective antagonists and partial agonists have clinical utility for the treatment of opioid use disorders (OUDs). However, the development of many has suffered due to their poor pharmacokinetic properties and/or rapid metabolism. Our recent efforts to identify MOR modulators have provided 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a low-efficacy partial agonist, that showed sub-nanomolar binding affinity to the MOR (K i 0.6 nM) with selectivity over the delta opioid receptor (δ/μ 241) and the kappa opioid receptor (κ/μ 48). Its potent inhibition of the analgesic effect of morphine (AD50 0.46 mg/kg) and precipitation of significantly less withdrawal symptoms even at 100-fold greater dose than naloxone represents a promising molecule for further development as a novel OUD therapeutic agent. Therefore, further in vitro and in vivo characterization of its pharmacokinetics and pharmacodynamics properties was conducted to fully understand its pharmaceutical profile. NAQ showed favorable in vitro ADMET properties and no off-target binding to several classes of GPCRs, enzymes, and ion channels. Following intravenous administration, 1 mg/kg dose of NAQ showed a similar in vivo pharmacokinetic profile to naloxone; however, orally administered 10 mg/kg NAQ demonstrated significantly improved oral bioavailability over both naloxone and naltrexone. Abuse liability assessment of NAQ in rats demonstrated that NAQ functioned as a less potent reinforcer than heroin. Chronic 5 day NAQ pretreatment decreased heroin self-administration in a heroin-vs-food choice procedure similar to the clinically used MOR partial agonist buprenorphine. Taken together, these studies provide evidence supporting NAQ as a promising lead to develop novel OUD therapeutics.
Collapse
Affiliation(s)
- Piyusha
P. Pagare
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Samuel Obeng
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Boshi Huang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| | - Madison M. Marcus
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Katherine L. Nicholson
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Andrew E. Townsend
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University School of Medicine, Richmond, Virginia23298-0613, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia23298-0540, United States
| |
Collapse
|
3
|
Obeng S, Yuan Y, Jali A, Selley DE, Zhang Y. In vitro and in vivo functional profile characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ) as a low efficacy mu opioid receptor modulator. Eur J Pharmacol 2018; 827:32-40. [PMID: 29530590 PMCID: PMC5890425 DOI: 10.1016/j.ejphar.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Evidence has shown that downstream signaling by mu opioid receptor (MOR) agonists that recruit β-arrestin2 may lead to the development of tolerance. Also, it has been suggested that opioid receptor desensitization and cyclic AMP overshoot contributes to the development of tolerance and occurrence of withdrawal, respectively. Therefore, studies were conducted with 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a MOR selective partial agonist discovered in our laboratory, to characterize its effect on β-arrestin2 recruitment and precipitation of a cyclic AMP overshoot. DAMGO, a MOR full agonist dose-dependently increased β-arrestin2 association with the MOR, whereas NAQ did not. Moreover, NAQ displayed significant, concentration-dependent antagonism of DAMGO-induced β-arrestin2 recruitment. After prolonged morphine treatment of mMOR-CHO cells, there was a significant overshoot of cAMP upon exposure to naloxone, but not NAQ. Moreover, prolonged incubation of mMOR-CHO cells with NAQ did not result in desensitization nor downregulation of the MOR. In functional studies comparing NAQ with nalbuphine in the cAMP inhibition, Ca2+ flux and [35S]GTPγS binding assays, NAQ did not show agonism in the Ca2+ flux assay but showed partial agonism in the cAMP and [35S]GTPγS assays. Also, NAQ significantly antagonized DAMGO-induced intracellular Ca2+ increase. In conclusion, NAQ is a low efficacy MOR modulator that lacks β-arrestin2 recruitment function and does not induce cellular hallmarks of MOR adaptation and fails to precipitate a cellular manifestation of withdrawal in cells pretreated with morphine. These characteristics are desirable if NAQ is pursued for opioid abuse treatment development.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States.
| |
Collapse
|
4
|
Hao L, Wen D, Gou H, Yu F, Cong B, Ma C. Over-expression of CCK1 Receptor Reverse Morphine Dependence. Int J Pept Res Ther 2018; 24:471-477. [PMID: 30147637 PMCID: PMC6096524 DOI: 10.1007/s10989-018-9696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
Studies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence. Therefore, CCK1R and CCK2R function differently in chronic morphine dependence, but the mechanism is still unclear. In this study, HEK-293 cells co-transfected with µ-opioid receptors (HEK293-hMOR) and CCK1R or CCK2R were established. Cells were treated with 10 µM morphine for 6, 12, 16, 24 h and 100 µM naloxone precipitation for 15 min. cAMP overshoot was appeared at 12 h and was increased time dependently after morphine exposure in HEK293-hMOR cells. The cAMP overshoot did not appear in CCK1R-overexpressing HEK293-hMOR cells, while still appeared in CCK2R-overexpressing HEK293-hMOR cells. Over-expression of CCK1R reversed CREB and ERK1/2 activation in HEK293-hMOR cells exposed to morphine. Our study identifies over-expression of CCK1R significantly blocked morphine dependence, which was related with phosphorylation of CREB, and ERK1/2 signaling activation. While over-expression of CCK2R promoted morphine dependence, which was related with phosphorylation of CREB but not ERK1/2 signaling activation.
Collapse
Affiliation(s)
- Lijing Hao
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China.,2Department of Anesthesiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051 People's Republic of China
| | - Di Wen
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Hongyan Gou
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China.,CUHK Shenzhen Research Institute, 2 Yuexing Road, Nanshan District, Shenzhen, 518057 People's Republic of China
| | - Feng Yu
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Bin Cong
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| | - Chunling Ma
- 1Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, 050017 Hebei Province People's Republic of China
| |
Collapse
|
5
|
Gein SV. Dynorphins in regulation of immune system functions. BIOCHEMISTRY (MOSCOW) 2015; 79:397-405. [PMID: 24954590 DOI: 10.1134/s0006297914050034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dynorphins constitute a family of opioid peptides manifesting the highest affinity for κ-opiate receptors. Immune system cells are known to express a κ-receptor similar to that in the central nervous system, and as a consequence dynorphins are involved in the interaction between cells of the nervous and immune systems. In this review, data on dynorphin structure are analyzed and generalized, the κ-opiate receptor is characterized, and data on the regulation by dynorphins of functioning of the innate and adaptive immunity cells are summarized.
Collapse
Affiliation(s)
- S V Gein
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
6
|
Gein SV, Baeva TA, Nebogatikov VO. Effects of β-Endorphin on Functional Activity of Mouse Splenocytes under Conditions of In Vivo Blockade of μ,δ-Opioid Receptors. Bull Exp Biol Med 2015; 158:356-60. [DOI: 10.1007/s10517-015-2761-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Indexed: 11/30/2022]
|
7
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
8
|
Zhang Y, Braithwaite A, Yuan Y, Streicher JM, Bilsky EJ. Behavioral and cellular pharmacology characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan (NAQ) as a mu opioid receptor selective ligand. Eur J Pharmacol 2014; 736:124-30. [PMID: 24815322 PMCID: PMC4073486 DOI: 10.1016/j.ejphar.2014.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022]
Abstract
Mu opioid receptor (MOR) selective antagonists and partial agonists have been used for the treatment of opioid abuse and addiction. Our recent efforts on the identification of MOR antagonists have provided several novel leads displaying interesting pharmacological profiles. Among them, 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl)acetamido]morphinan (NAQ) showed sub-nanomolar binding affinity to the MOR with significant selectivity over the delta opioid receptor (DOR) and the kappa opioid receptor (KOR). Its central nervous system penetration capacity together with marginal agonism in the MOR-GTPγS binding assay made it a very interesting molecule for developing novel opioid abuse and addiction therapeutic agents. Therefore, further pharmacological characterization was conducted to fully understand its biological profile. At the molecular and cellular level, NAQ not only induced no translocation of β-arrestin2 to the MOR, but also efficaciously antagonized the effect of DAMGO in MOR-βarr2eGFP-U2OS cells in the β-arrestin2 recruitment assay. At the in vivo level, NAQ displayed a potent inhibition of the analgesic effect of morphine in the tail-flick assay (ID50=1.19 mg/kg). NAQ (10 mg/kg) also significantly decreased the hyper-locomotion induced by acute morphine without inducing any vertical jumps. Meanwhile NAQ precipitated lesser withdrawal symptoms in morphine dependent mice than naloxone. In conclusion, NAQ may represent a new chemical entity for opioid abuse and addiction treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States.
| | - Amanda Braithwaite
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - John M Streicher
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| |
Collapse
|
9
|
Wen D, Ma CL, Zhang YJ, Meng YX, Ni ZY, Li SJ, Cong B. Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence. BMC Neurosci 2012; 13:63. [PMID: 22682150 PMCID: PMC3407485 DOI: 10.1186/1471-2202-13-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Background Cholecystokinin octapeptide (CCK-8), the most potent endogenous anti-opioid peptide, has been shown to regulate the processes of morphine dependence. In our previous study, we found that exogenous CCK-8 attenuated naloxone induced withdrawal symptoms. To investigate the precise effect of exogenous CCK-8 and the role of cholecystokinin (CCK) 1 and/or 2 receptors in morphine dependence, a SH-SY5Y cell model was employed, in which the μ-opioid receptor, CCK1/2 receptors, and endogenous CCK are co-expressed. Results Forty-eight hours after treating SH-SY5Y cells with morphine (10 μM), naloxone (10 μM) induced a cAMP overshoot, indicating that cellular morphine dependence had been induced. The CCK receptor and endogenous CCK were up-regulated after chronic morphine exposure. The CCK2 receptor antagonist (LY-288,513) at 1–10 μM inhibited the naloxone-precipitated cAMP overshoot, but the CCK1 receptor antagonist (L-364,718) did not. Interestingly, CCK-8 (0.1-1 μM), a strong CCK receptor agonist, dose-dependently inhibited the naloxone-precipitated cAMP overshoot in SH-SY5Y cells when co-pretreated with morphine. The L-364,718 significantly blocked the inhibitory effect of exogenous CCK-8 on the cAMP overshoot at 1–10 μM, while the LY-288,513 did not. Therefore, the CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence in SH-SY5Y cells. An additional inhibitory effect of CCK-8 at higher concentrations appears to involve the CCK1 receptor. Conclusions This study reveals the difference between exogenous CCK-8 and endogenous CCK effects on the development of morphine dependence, and provides the first evidence for the participation of the CCK1 receptor in the inhibitory effects of exogenous CCK-8 on morphine dependence.
Collapse
Affiliation(s)
- Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Xia M, Guo V, Huang R, Shahane SA, Austin CP, Nirenberg M, Sharma SK. Inhibition of morphine-induced cAMP overshoot: a cell-based assay model in a high-throughput format. Cell Mol Neurobiol 2011; 31:901-7. [PMID: 21598037 DOI: 10.1007/s10571-011-9689-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 11/24/2022]
Abstract
Opiates are not only potent analgesics but also drugs of abuse mainly because they produce euphoria. Chronic use of opiates results in the development of tolerance and dependence. Dr Marshall Nirenberg's group at the National Institutes of Health (NIH) was the first to use a cellular model system of Neuroblastoma × Glioma hybrid cells (NG108-15) to study morphine addiction. They showed that opiates affect adenylyl cyclase (AC) by two opposing mechanisms mediated by the opiate receptor. Although the cellular mechanisms that cause addiction are not yet completely understood, the most observed correlative biochemical adaptation is the upregulation of AC. This model also provides the opportunity to look for compounds which could dissociate the acute effect of opiates from the delayed response, upregulation of AC, and thus lead to the discovery of non-addictive drugs. To identify small molecule compounds that can inhibit morphine-induced cAMP overshoot, we have validated and optimized a cell-based assay in a high throughput format that measures cellular cAMP production after morphine withdrawal. The assay performed well in the 1536-well plate format. The LOPAC library of 1,280 compounds was screened in this assay on a quantitative high-throughput screening (qHTS) platform. A group of compounds that can inhibit morphine-induced cAMP overshoot were identified. The most potent compounds are eight naloxone-related compounds, including levallorphan tartrate, naloxonazine dihydrochloride, naloxone hydrochloride, naltrexone hydrochloride, and naltriben methanesulfonate. The qHTS approach we used in this study will be useful in identifying novel inhibitors of morphine induced addiction from a larger scale screening.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Marinho BG, Miranda LSM, Gomes NM, Matheus ME, Leitão SG, Vasconcellos MLAA, Fernandes PD. Antinociceptive action of (±)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid in mice. Eur J Pharmacol 2006; 550:47-53. [PMID: 17030031 DOI: 10.1016/j.ejphar.2006.06.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 11/16/2022]
Abstract
The objective of this study was to investigate spinal and supraspinal antinociceptive effects of a new synthetic compound, (+/-)-cis-(6-ethyl-tetrahydropyran-2-yl)-formic acid (tetrahydropyran derivative). Its activity was compared with those from morphine. In peripheral models of inflammation and hyperalgesia, tetrahydropyran derivative significantly reduced nociceptive effect induced by acetic acid or formalin in mice. Tetrahydropyran derivative developed antinociceptive effect on the tail-flick and hot-plate tests with a long-acting curve maintaining the effect for 4 h longer than morphine. The opioid receptor antagonist naloxone totally reverted tetrahydropyran derivative effects on both models. Morphine as well as tetrahydropyran derivative induced tolerance and sedation in mice. However, tetrahydropyran derivative-induced tolerance had its onset retarded and the sedative activity was lower when compared to that induced by morphine. These results indicate that this new substance develops an antinociceptive activity and may be used in the future as a substitute for traditional opioids.
Collapse
Affiliation(s)
- Bruno G Marinho
- Departamento de Farmacologia Básica e Clínica/ICB, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Caixa Postal 68016, 21944-970, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Tetrault J, Wang W, Loh HH, Law PY. Short- and long-term regulation of adenylyl cyclase activity by delta-opioid receptor are mediated by Galphai2 in neuroblastoma N2A cells. Mol Pharmacol 2006; 69:1810-9. [PMID: 16525132 DOI: 10.1124/mol.105.021352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the opioid receptor results in short-term inhibition of intracellular cAMP levels followed by receptor desensitization and subsequent increase of cAMP above the control level (adenylyl cyclase superactivation). Using adenovirus to deliver pertussis toxin-insensitive mutants of the alpha-subunits of G(i/o) that are expressed in neuroblastoma Neuro2A cells (Galpha(i2), Galpha(i3), and Galpha(o)), we examined the identities of the G proteins involved in the short- and long-term action of the delta-opioid receptor (DOR). Pertussis toxin pretreatment completely abolished the ability of [d-Pen(2), d-Pen(5)]-enkephalin (DPDPE) to inhibit forskolin-stimulated intracellular cAMP production. Expression of the C352L mutant of Galpha(i2), and not the C351L mutants of Galpha(i3) or Galpha(o), rescued the short-term effect of DPDPE after pertussis toxin treatment. The ability of Galpha(i2) in mediating DOR inhibition of adenylyl cyclase activity was also reflected in the ability of Galpha(i2), not Galpha(i3) or Galpha(o), to coimmunoprecipitate with DOR. Coincidently, after long-term DPDPE treatment, pertussis toxin treatment eliminated the antagonist naloxone-induced superactivation of adenylyl cyclase activity. Again, only the C352L mutant of Galpha(i2) restored the adenylyl cyclase superactivation after pertussis toxin treatment. More importantly, the C352L mutant of Galpha(i2) remained associated with DOR after long-term agonist and pertussis toxin treatment whereas the wild-type Galpha(i2) did not. These data suggest that Galpha(i2) serves as the signaling molecule in both DOR-mediated short- and long-term regulation of adenylyl cyclase activity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Cyclic AMP/metabolism
- Enkephalin, D-Penicillamine (2,5)-/antagonists & inhibitors
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- GTP-Binding Protein alpha Subunit, Gi2/antagonists & inhibitors
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- GTP-Binding Protein alpha Subunit, Gi2/metabolism
- Immunoprecipitation
- Mice
- Naloxone/pharmacology
- Neuroblastoma
- Pertussis Toxin/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, Medical School, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|