1
|
Allam EAH, Assi AA, Badary DM, Farrag MMY, Nicola MA. Memantine versus Ginkgo biloba Extract: A Comparative Study on Cognitive Dysfunction Treatment in a Novel Rat Model. PLANTA MEDICA 2024; 90:286-297. [PMID: 38286405 DOI: 10.1055/a-2245-3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Extracellular senile plaques and intraneuronal neurofibrillary tangles are two devastating brain proteinopathies that are indicative of Alzheimer's disease, the most prevalent type of dementia. Currently, no effective medications are available to stop or reverse Alzheimer's disease. Ginkgo biloba extract, commonly referred to as EGb 761, is a natural product made from the leaves of the G. biloba tree. It has long been demonstrated to have therapeutic benefits in Alzheimer's disease. The current study assessed the beneficial effects of EGb 761 against Alzheimer's disease in comparison with memantine, a standard treatment for Alzheimer's disease. The scopolamine-heavy metals mixture rat Alzheimer's disease model is a newly created model to study the effects of EGb 761 oral therapy on cognitive performance and other Alzheimer's disease-like changes over a 28-day experimental period. This new Alzheimer's disease model provides better criteria for Alzheimer's disease hallmarks than the conventional scopolamine model. The EGb 761 reversed memory and learning deficits induced by the scopolamine-heavy metals mixture. These outcomes were linked to a more pronounced inhibitory effect on acetylcholinesterase, caspase-3, hippocampal amyloid-beta protein (Aβ1 - 42), phosphorylated tau protein counts, and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) compared to the memantine-treated group. Furthermore, EGb 761 treatment considerably reduced lipid peroxidation (malondialdehyde) and improved reduced glutathione levels compared to memantine. Our results suggest EGb 761's potential in treating central nervous system disorders. It's a promising candidate for future Alzheimer's disease therapeutic exploration. This study also highlights the need for future research to focus on the positive benefits of herbal medicines.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dalia M Badary
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Magda M Y Farrag
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Liu GZ, Niu TT, Yu Q, Xu BL, Li XQ, Yuan BY, Yuan GB, Yang TT, Li HQ, Sun Y. Ginkgolide attenuates memory impairment and neuroinflammation by suppressing the NLRP3/caspase-1 pathway in Alzheimer's disease. Aging (Albany NY) 2023; 15:10237-10252. [PMID: 37793010 PMCID: PMC10599747 DOI: 10.18632/aging.205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 10/06/2023]
Abstract
The NLRP3 inflammasome is involved in the neuroinflammatory pathway of Alzheimer's disease (AD). The aim of this study is to explore the roles and underlying mechanisms of ginkgolide (Baiyu®) on amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and a murine microglial cell line, BV-2. In the present study, the APP/PS1 mice were administered with ginkgolide, followed by a Morris water maze test. The mice were then euthanized to obtain brain tissue for histological and Aβ analysis. Additionally, BV-2 cells were pretreated with ginkgolide and then incubated with Aβ1-42 peptide. NLRP3, ASC, and caspase-1 mRNA and protein expression in brain tissue of mice and BV-2 cells were quantified by real-time PCR and western blotting, as well as reactive oxygen species (ROS) production, interleukin (IL)-1β and IL-18 levels by lucigenin technique and ELISA. Compared with the APP/PS1 mice, ginkgolide-treated mice demonstrated the shortened escape latency, reduced plaques, less inflammatory cell infiltration and neuron loss in the hippocampi of APP/PS1 mice. The levels of NLRP3, ASC, caspase-1, ROS, IL-1β, and IL-18 were also decreased in the brain tissue of APP/PS1 mice or Aβ1-42-treated BV-2 cells following ginkgolide treatment. Ginkgolide exerted protective effects on AD, at least partly by inactivating the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tian-Tong Niu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Yu
- Beijing D.A. Medical Laboratory, Beijing 102600, China
| | - Bao-Lei Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hui-Qin Li
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| | - Yi Sun
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| |
Collapse
|
3
|
The Multifaceted Role of Neuroprotective Plants in Alzheimer’s Disease Treatment. Geriatrics (Basel) 2022; 7:geriatrics7020024. [PMID: 35314596 PMCID: PMC8938774 DOI: 10.3390/geriatrics7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder characterized by impaired cognition, memory loss, and altered personality. Many of the available pharmaceutical treatments do not alter the onset of disease progression. Recently, alternatives to developed drug candidates have been explored including medicinal plants and herbal treatments for the treatment of AD. This article examines the role of herbal plant extracts and the neuroprotective effects as alternative modes of intervention for AD progression. These extracts contain key metabolites that culminate alterations in AD progression. The traditional plant extracts explored in this article induce a variety of beneficial properties, including antioxidants, anti-inflammatory, and enhanced cognition, while also inducing activity on AD drug targets such as Aβ degradation. While these neuroprotective aspects for AD are relatively recent, there is great potential in the drug discovery aspect of these plant extracts for future use in AD treatment.
Collapse
|
4
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
5
|
Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells 2022; 11:cells11030479. [PMID: 35159288 PMCID: PMC8833923 DOI: 10.3390/cells11030479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against AD; however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.
Collapse
|
6
|
KIM SH, YIM SH. Effects of Bilobol from the Fruit Pulp of Ginkgo biloba on Cell Viability. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Jiménez-Martin J, Fonseca-Fonseca LA, Hernández-Enseñat D, Nonose Y, Valdés O, Mondelo-Rodriguez A, Ortiz-Miranda Y, Bergado G, Carmenate T, Soto Del Valle RM, Pardo-Andreu G, Outeiro TF, Padrón-Yaquis AS, Martimbianco de Assis A, O Souza D, Nuñez-Figueredo Y. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021; 87:70-85. [PMID: 34481871 DOI: 10.1016/j.neuro.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanay Montano-Peguero
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Jeney Ramírez-Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Javier Jiménez-Martin
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand
| | - Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Daniela Hernández-Enseñat
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yasmine Nonose
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Abel Mondelo-Rodriguez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yaquelin Ortiz-Miranda
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Gretchen Bergado
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Tania Carmenate
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | | | - Gilberto Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317, e/ 23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Alejandro Saúl Padrón-Yaquis
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Adriano Martimbianco de Assis
- University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba.
| |
Collapse
|
8
|
Elfiky AM, Mahmoud AA, Elreedy HA, Ibrahim KS, Ghazy MA. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer's disease rat model. Life Sci 2021; 285:119964. [PMID: 34537230 DOI: 10.1016/j.lfs.2021.119964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by declined cognitive functions in the elderly. Quercetin (Q) is a potent flavonol that has neuroprotective effects on AD derangements. The present study aimed to evaluate the α-secretase stimulatory function of Q through activation of ADAM10 and ADAM17 gene expression in the aluminum chloride (AlCl3)-induced AD rat model. MAIN METHODS After induction of AD in rats by oral administration of AlCl3 (50 mg/kg) for 28 days, the Q doses (25 and 50 mg/kg) were orally administered for 28 days. Rats performed the behavioral assessments during the last week of the treatment period. Hippocampi were harvested for assessments of the neurochemical and histopathological examinations and gene expression analysis. KEY FINDINGS Administration of Q to AlCl3-induced AD rat model attenuated behavioral deficits, improved cholinergic and dopaminergic dysfunctions, and diminished insoluble amyloid β (Aβ) plaques aggregation in the hippocampus. These ameliorative effects of Q were associated with down-regulation of APP, BACE1, APH1, and PSEN1 and up-regulation of ADAM10 and ADAM17 gene expression levels in the hippocampus. SIGNIFICANCE The present study suggests that Q might attenuate neurotransmission impairment, Aβ aggregation in the hippocampus, and behavioral deficits in the AlCl3-induce AD rat model via up-regulating ADAM 10 and ADAM 17 (α-secretase) gene expression, leading to the inhibition of the amyloidogenic pathway. In support of the present finding, we suggest that ADAM10 and ADAM17 activation might be potential drug targets for AD to counteract the Aβ aggregation and cognitive deterioration.
Collapse
Affiliation(s)
- Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala A Elreedy
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Khadiga S Ibrahim
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt; Biotechnology Program, Basic and applied Science Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
9
|
Qian X, Zhang S, Duan L, Yang F, Zhang K, Yan F, Ge S. Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1785-1800. [PMID: 33459718 DOI: 10.3233/jad-201007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although periodontitis is reportedly associated with increased cognitive decline in Alzheimer's disease, the mechanisms underlying this process remain unknown. Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) is an endotoxin associated with periodontal disease. OBJECTIVE We investigated the effect of periodontitis on learning capacity and memory of amyloid-β protein precursor (AβPP)/presenilin (PS1) transgenic mice along with the mechanisms underlying these effects. METHODS Mice were randomly assigned to three groups, namely AβPP/PS1 (control), P.g-LPS Injection, and P.g-LPS Injection + Ligation. Mice from the P.g-LPS Injection group were injected with P.g-LPS in the periodontal tissue three times per week for 8 weeks, while mice from the P.g-LPS Injection + Ligation group were injected with P.g-LPS and subjected to ligation of the gingival sulcus of the maxillary second molar. RESULTS Expression of gingival proinflammatory cytokines as well as alveolar bone resorption in P.g-LPS-injected and ligatured mice was increased compared to that in control mice. Mice in the P.g-LPS Injection + Ligation group exhibited cognitive impairment and a significant reduction in the number of neurons. Glial cell activation in the experimental groups with significantly increased amyloid-β (Aβ) levels was more pronounced relative to the control group. Induction of periodontitis was concurrent with an increase in cyclooxygenase-2, inducible nitric oxide synthase, AβPP, and beta-secretase 1 expression and a decrease in A disintegrin and metalloproteinase domain-containing protein 10 expression. CONCLUSION These findings indicated that periodontitis exacerbated learning and memory impairment in AβPP/PS1 mice and augmented Aβ and neuroinflammatory responses. Our study provides a theoretical basis for risk prediction and early intervention of Alzheimer's disease and periodontitis.
Collapse
Affiliation(s)
- Xueshen Qian
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lian Duan
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fengchun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kun Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Song Ge
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
10
|
Verma S, Sharma S, Ranawat P, Nehru B. Modulatory Effects of Ginkgo biloba Against Amyloid Aggregation Through Induction of Heat Shock Proteins in Aluminium Induced Neurotoxicity. Neurochem Res 2020; 45:465-490. [PMID: 31894463 DOI: 10.1007/s11064-019-02940-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/27/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023]
Abstract
Protein misfolding and aggregation of amyloid beta (Aβ) peptide, as well as formation of neurofibrillary tangles (NFTs) are the signature hallmarks of Alzheimer's disease (AD) pathology. To prevent this, molecular chaperones come into play as they facilitate the refolding of the misfolded proteins and cell protection under stress. Here, we have evaluated the possible effects of Ginkgo biloba (GBE) against aggregation of the Aβ through activation of heat shock proteins (HSPs) in the Aluminium (Al) induced AD based model. GBE (100 mg/kg body weight) was administered per oral to the female SD rats in conjunction with intraperitoneal (i.p.) injection of Al lactate (10 mg/kg body weight) for six weeks. Pretreated animals were administered GBE for additional two weeks prior to any exposure of Al. GBE administration resulted in decrease in Aβ aggregation, ubiquitin deposition, accompanying a significant decline in APP & Tau protein hyperphosphorylation which can be attributed to activation of Heat shock factor (HSF-1) and upregulation in the protein expression of HSPs. Histopathological investigation studies have also shown the decrease in aggregation of Aβ peptide by GBE administration. Additionally, the decrease in ROS levels and Aβ aggregation by GBE administration prohibited the decline in the neurotransmitter levels and monoamine oxidase levels in hippocampus and cortex. This further caused improvement in learning and memory of the animals. In conclusion, our results indicate that GBE prevents the symptoms of Al induced AD like pathophysiology by upregulating the HSPs levels and decreasing the aggregation load.
Collapse
Affiliation(s)
- Sonia Verma
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Sheetal Sharma
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
11
|
Verma S, Ranawat P, Sharma N, Nehru B. Ginkgo biloba attenuates aluminum lactate-induced neurotoxicity in reproductive senescent female rats: behavioral, biochemical, and histopathological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27148-27167. [PMID: 31321719 DOI: 10.1007/s11356-019-05743-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/11/2019] [Indexed: 05/27/2023]
Abstract
Extensive use of aluminum (Al) in industry, cooking utensils, and wrapping or freezing the food items, due to its cheapness and abundance in the environment, has become a major concern. Growing evidence supports that environmental pollutant Al promotes the aggregation of amyloid beta (Aβ) in the brain, which is the main pathological marker of Alzheimer's disease (AD). Further, AD- and Al-induced neurotoxic effects are more common among women following reproductive senescence due to decline in estrogen. Though clinically Ginkgo biloba extract (GBE) has been exploited as a memory enhancer, its role in Al-induced neurotoxicity in reproductive senescent female rats needs to be evaluated. Animals were exposed to intraperitoneal dose (10 mg/kg b.wt) of Al and oral dose (100 mg/kg b.wt.) of GBE daily for 6 weeks. A significant decline in the Al-induced Aβ aggregates was observed in hippocampal and cortical regions of the brain with GBE supplementation, as confirmed by thioflavin (ThT) and Congo red staining. GBE administration significantly decreased the reactive oxygen species, lipid peroxidation, nitric oxide, and citrulline levels in comparison to Al-treated rats. On the contrary, a significant increase in the reduced glutathione, GSH/GSSG ratio as well as in the activities of antioxidant enzymes was observed with GBE administration. Based on the above results, GBE prevented the neuronal loss in the hippocampus and cortex, hence caused significant improvement in the learning and memory of the animals in terms of AChE activity, serotonin levels, Morris water maze, and active and passive avoidance tests. In conclusion, GBE has alleviated the behavioral, biochemical, and histopathological alterations due to Al toxicity in rats. However, molecular studies are going on to better understand the mechanism of GBE protection against the environmental toxicant Al exposure. Graphical abstract .
Collapse
Affiliation(s)
- Sonia Verma
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Neha Sharma
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India
| | - Bimla Nehru
- Department of Biophysics, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Omidkhoda SF, Razavi BM, Hosseinzadeh H. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation: A comprehensive review. Phytother Res 2019; 33:2821-2840. [PMID: 31429152 DOI: 10.1002/ptr.6469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022]
Abstract
Nowadays in our developing and industrial world, humans' health or even their life is threatened by exposure to poisons. In this situation, detecting a protective compound could be helpful and interesting. In the present article, we collected and reviewed all studies, which have been conducted so far about the protective effects of Ginkgo biloba L. (GB), one of the most ancient medicinal tree species, against toxicities induced by chemical toxic agents, natural toxins, and also radiation. In overall, investigations showed that GB exerts the antioxidant, antiinflammatory, antiapoptotic, and antigenotoxicity effects in different toxicities. There are also some special mechanisms about its protective effects against some specific toxic agents, such as acetylcholine esterase inhibition in the aluminium neurotoxicity or membrane-bond phosphodiesterase activation in the triethyltin toxicity. Ginkgolide A was the most investigated active ingredient of G. biloba leaf extract as a protective compound against toxicities, which had the similar effects of total extract. A few clinical studies have been conducted in this field, which demonstrated the beneficial effects of GB against toxic agents. However, the promising effects of this valuable herbal extract will practically remain useless without carrying out more clinical studies and proving its effects on human beings.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - BiBi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Wang L, Zhao X, Yang F, Wu W, Liu Y, Wang L, Wang L, Wang Z. Enhanced bioaccessibility
in vitro
and bioavailability of Ginkgo biloba extract nanoparticles prepared by liquid anti‐solvent precipitation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lingling Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Fengjian Yang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Weiwei Wu
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Yanjie Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Li Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Lu Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| | - Zijian Wang
- Key Laboratory of Forest Plant Ecology Ministry of Education Northeast Forestry University Harbin Heilongjiang 150040 China
| |
Collapse
|
14
|
Lebda MA, Sadek KM, Tohamy HG, Abouzed TK, Shukry M, Umezawa M, El-Sayed YS. Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 2018; 212:251-260. [PMID: 30304694 DOI: 10.1016/j.lfs.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
Abstract
AIMS This study explored whether silver nanoparticles (AgNPs) can disrupt tight-junctions integrity resulted in blood-brain barrier dysfunction along with oxidative stress, pro-inflammation, and apoptosis induction. Additionally, neuroprotective activities of α-lipoic acid (LA) and Ginkgo biloba (GB) were investigated. MAIN METHODS Forty adults rats were enrolled into; Control, AgNPs (50 mg/kg), LA (100 mg/kg) + AgNPs, and GB (120 mg/kg) + AgNPs. After 30 days, neuronal changes were assessed biochemically and histopathologically. Brain tissues oxidative indices, mRNA expression of proinflammatory cytokines and tight-junction proteins and pro-apoptotic biomarker, caspase-3 were investigated. KEY FINDINGS AgNPs exposure enhanced lipid peroxidation (+195%) along with declines in glutathione (-43%), glutathione peroxidase (-34%), glutathione S-transferase (-31%), catalase (-43%), and superoxide dismutase (-38%) activities in brain tissues. The apparent brain oxidative damage was associated with obvious neuronal dysfunction that was ascertained by neuropathological lesions. AgNPs lowered serum acetylcholine esterase, iron and copper levels, and increased creatine phosphokinase and creatine phosphokinase-brain type activities. Following AgNPs exposure, brain silver and iron contents were increased, but the copper level was decreased. AgNPs up-regulated TNF-α (6.5-fold) and IL-1β (8.9-fold) transcript levels, and simultaneously over-expressed the caspase-3 protein in cerebrum and cerebellum inducing cell apoptosis. Moreover, AgNPs down-regulated the transcript levels of tight-junction proteins; JP-1 (0.65-fold) and JAM-3(0.81-fold). SIGNIFICANCE LA and relatively GB improved the serious effects of AgNPs on the blood-brain barrier function and tight-junction proteins through their antioxidants, anti-inflammatory, and anti-apoptotic efficacies. Co-treatment with LA or GB may be favorable in ameliorating the neurotoxic side effects of AgNPs.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Mostafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Japan.
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| |
Collapse
|
15
|
Mohamed NES, Abd El-Moneim AE. Ginkgo biloba extract alleviates oxidative stress and some neurotransmitters changes induced by aluminum chloride in rats. Nutrition 2017; 35:93-99. [DOI: 10.1016/j.nut.2016.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
|
16
|
Zhuo Y, Guo H, Cheng Y, Wang C, Wang C, Wu J, Zou Z, Gan D, Li Y, Xu J. Inhibition of phosphodiesterase-4 reverses the cognitive dysfunction and oxidative stress induced by Aβ25-35 in rats. Metab Brain Dis 2016; 31:779-91. [PMID: 26920899 DOI: 10.1007/s11011-016-9814-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/23/2016] [Indexed: 02/05/2023]
Abstract
Phosphodiesterase-4 (PDE4) inhibitors prevent the breakdown of the second messenger cAMP and have been demonstrated to improve learning in several animal models of cognition. In this study, we explored the antioxidative effects of rolipram in Alzheimer's disease (AD) by using bilateral Aβ25-35 injection into the hippocampus of rats, which were used as an AD model. Rats received 3 intraperitoneal (i.p.) doses of rolipram (0.1, 0.5 and 1.25 mg/kg) daily after the injection of Aβ25-35 for 25 days. Chronic administration of rolipram prevented the memory impairments induced by Aβ25-35, as assessed using the passive avoidance test and the Morris water maze test. Furthermore, rolipram significantly reduced the oxidative stress induced by Aβ25-35, as evidenced by the decrease in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and restored the reduced GSH levels and superoxide dismutase (SOD) activity. Moreover, western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis showed that rolipram remarkably upregulated thioredoxin (Trx) and inhibited the inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathway in the hippocampus. These results demonstrated that rolipram improved the learning and memory abilities in an Aβ25-35-induced AD rat model. The mechanism underlying these effects may be due to the noticeable antioxidative effects of rolipram.
Collapse
Affiliation(s)
- Yeye Zhuo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- The first affiliated hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Haibiao Guo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yufang Cheng
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
| | - Canmao Wang
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Jingang Wu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengqiang Zou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Danna Gan
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518000, China
| | - Yiwen Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiangping Xu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
17
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Protection Efficacy of the Extract of Ginkgo biloba against the Learning and Memory Damage of Rats under Repeated High Sustained +Gz Exposure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6320586. [PMID: 27069491 PMCID: PMC4812286 DOI: 10.1155/2016/6320586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/29/2023]
Abstract
Repeated high sustained positive Gz (+Gz) exposures are known for the harmful pathophysiological impact on the brain of rats, which is reflected as the interruption of normal performance of learning and memory. Interestingly, extract of Ginkgo biloba (EGb) has been reported to have neuroprotective effects and cognition-enhancing effects. In this study, we are interested in evaluating the protective effects of EGb toward the learning and memory abilities. Morris Water Maze Test (MWM) was used to evaluate the cognitive function, and the physiological status of the key components in central cholinergic system was also investigated. Our animal behavioral tests indicated that EGb can release the learning and memory impairment caused by repeated high sustained +Gz. Administration of EGb to rats can diminish some of the harmful physiological effects caused by repeated +Gz exposures. Moreover, EGb administration can increase the biological activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) but reduce the production of malondialdehyde (MDA). Taken together, our study showed that EGb can ameliorate the impairment of learning and memory abilities of rats induced by repeated high sustained +Gz exposure; the underlying mechanisms appeared to be related to the signal regulation on the cholinergic system and antioxidant enzymes system.
Collapse
|
19
|
Chen CL, Chang KY, Pan TM. Monascus purpureus NTU 568 fermented product improves memory and learning ability in rats with aluminium-induced Alzheimer's disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
20
|
Akinola OB, Biliaminu SA, Adediran RA, Adeniye KA, Abdulquadir FC. Characterization of prefrontal cortex microstructure and antioxidant status in a rat model of neurodegeneration induced by aluminium chloride and multiple low-dose streptozotocin. Metab Brain Dis 2015; 30:1531-6. [PMID: 26307418 DOI: 10.1007/s11011-015-9719-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/17/2015] [Indexed: 01/24/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for Alzheimer's disease (AD), and several individuals with AD are diabetic. Most non-transgenic animal models of AD make use of oral treatment with aluminium chloride (AlCl(3)) to induce brain lesions pathognomonic of the disease. Moreover, streptozotocin (STZ) can induce pathological features of either AD or DM depending on the mode of treatment. In the present study, we characterised prefrontal microanatomy and antioxidant defence system in a rat model of AD confounded by DM, with the objective of assessing the suitability of this model in the study of sporadic AD with DM co-morbidity. Adult Wistar rats were randomly assigned to receive either intraperitoneal STZ (30 mg/kg/day for 3 days; to induce DM), oral AlCl(3) (500 mg/kg/day for 4 weeks; to induce some brain lesions characteristic of AD); or both STZ and AlCl(3) (to induce AD with DM co-morbidity). Untreated rats served as controls. During treatment, blood glucose levels and body weights were evaluated repeatedly in all rats. At euthanasia, prefrontal cortex was homogenized in phosphate buffer solution and the supernatants assayed for some antioxidant enzymes (catalase, CAT; superoxide dismutase, SOD; and reduced glutathione, GSH). Moreover, following perfusion-fixation of the brain, frontal lobes were processed by the haematoxylin and eosin (H&E) or Congo red technique. Our findings showed that in rats co-administered AlCl(3) and STZ (AD + DM rats), prefrontal levels of GSH reduced significantly (p < 0.05), while reductions in SOD and CAT were not significant (p > 0.05) compared with the controls. Moreover, in this model of AD with DM co-morbidity, extensive neuronal cell loss was observed in the prefrontal cortex, but Congophilic deposits were not present. The neurodegenerative lesions and antioxidant deficits characteristic of this AlCl(3) + STZ (AD + DM) rat model were more pronounced than similar lesions associated with mono-treatment with either STZ (DM) or AlCl(3) (AD) alone; and this makes the AlCl(3) + STZ model a suitable option for the study of neurodegenerative diseases (such as AD) with DM co-morbidity.
Collapse
Affiliation(s)
- Oluwole B Akinola
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Sikiru A Biliaminu
- Chemical Pathology and Immunology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rianat A Adediran
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde A Adeniye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Fatimah C Abdulquadir
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
21
|
Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol Toxicol 2015; 31:15-27. [PMID: 25575676 DOI: 10.1007/s10565-014-9291-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Nano-Mg(OH)2 is efficiently used in pollutant adsorption and removal due to its high adsorption capability, low-cost, and recyclability. A recent research from our group showed that Mg(OH)2 nanoflakes are not evidently internalized by cancer cells and are not cytotoxic. But the biocompatibility and potential toxicity of nano-Mg(OH)2 in a normal biological system are largely unclear. Nanoparticles could affect the function of endothelial cells, and endothelial dysfunction represents an early sign of lesion within the vasculature. Here, we applied the human umbilical vein vascular endothelial cells (HUVECs) as an in vitro model of the endothelium to study the cytotoxicity of nano-Mg(OH)2. Our results showed that nano-Mg(OH)2 at 200 μg/ml impaired proliferation and induced dysfunction of HUVECs, but did not result in cell necrosis and apoptosis. Transmission electron microscopy images and immunofluorescence results showed that the nano-Mg(OH)2 could enter HUVECs through caveolin-1-mediated endocytosis. Nano-Mg(OH)2 at high concentrations decreased the level of caveolin-1 and increased the activity of endothelial nitric oxide synthase (eNOS), thus leading to the production of excess nitric oxide (NO). In this work, we provide the cell damage concentrations of nano-Mg(OH)2 nanoparticles, and we propose a mechanism of injury induced by nano-Mg(OH)2 in HUVECs.
Collapse
|
22
|
Belviranlı M, Okudan N. The effects of Ginkgo biloba extract on cognitive functions in aged female rats: the role of oxidative stress and brain-derived neurotrophic factor. Behav Brain Res 2014; 278:453-61. [PMID: 25446810 DOI: 10.1016/j.bbr.2014.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the effects of Ginkgo biloba extract (GBE) on cognitive functions as well as oxidative stress and brain-derived neurotrophic factor (BDNF) levels in aged female rats. Rats were divided into 4 groups according to age (young vs. aged) and treatment (GBE vs. vehicle). GBE or vehicle was given for 30 d, and a series of behavioral tests were performed. Following behavioral testing, blood samples and brain tissues were obtained for analysis of BDNF, malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and glutathione levels, and superoxide dismutase activity. Locomotor activity and anxiety levels were lower in the aged rats. Based on Morris water maze probe trial findings, GBE supplementation increased the number of platform crossings in the aged rats. MDA and 8-OHdG levels were lower in the brain tissue, and BDNF levels were higher in plasma in the rates treated with GBE. Based on these findings, we concluded that GBE supplementation improved cognitive functions by decreasing oxidative damage and increasing the BDNF level in aged female rats.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
23
|
Belaïd-Nouira Y, Bakhta H, Samoud S, Trimech M, Haouas Z, Ben Cheikh H. A novel insight on chronic AlCl3 neurotoxicity through IL-6 and GFAP expressions: modulating effect of functional food fenugreek seeds. Nutr Neurosci 2014; 16:218-24. [PMID: 23928220 DOI: 10.1179/1476830512y.0000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE This study was designed to review the effect of chronic aluminium exposure on interleukin-6 (IL-6) secretion in the posterior brain and test the putative modulating effect of fenugreek seeds. METHODS Female Wistar rats were divided into four groups: control; AlCl3 during 5 months (500 mg/kg body weight, intragastric for 1 month then 1600 ppm via the drinking water); AlCl3 plus fenugreek seed powder (FSP) (5%) during the last 2 months and FSP alone. RESULTS Oral administration of aluminium chloride during 5 months caused hypoproduction of IL-6 together with a decrease in GFAP reactivity and an alteration of antioxidant status in the posterior brain. On the other hand, fenugreek seeds supplementation was able to enhance IL-6 expression, re-increase GFAP reactivity, and modulate the pro-oxidant-related effect. DISCUSSION In the context of recent researches, IL-6 hypoproduction in the posterior brain could be a novel mechanism of Al chronic toxicity with a direct effect on glial cells. Using FSP as a diet supplement could offer a neuroprotective effect against Al toxicity. This could be mediated by astroglial cells protection, antioxidant and immunomodulatory actions.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
24
|
Belaïd-Nouira Y, Bakhta H, Haouas Z, Flehi-Slim I, Ben Cheikh H. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats. Nutr Res Pract 2013; 7:466-74. [PMID: 24353832 PMCID: PMC3865269 DOI: 10.4162/nrp.2013.7.6.466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 05/17/2013] [Accepted: 06/27/2013] [Indexed: 12/17/2022] Open
Abstract
Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride (AlCl3). Oral AlCl3 administration during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) led to plasma biochemical changes, an inhibition of alkaline phosphatase (ALP), a decrease of total antioxidant status (TAS), and an induction of lipid peroxidation (LPO) in the blood and brain, in addition to kidney atrophy and morphological alterations at the level of Bowman's capsule, the glomerulus and different sorts of tubules, reminiscent of some known kidney disease. The treatment with the whole fenugreek seed powder (FSP) (5% in the diet) during the last 2 months showed its effectiveness in restoring normal plasma values of urea, creatinine, ALP and glucose, as well as re-increasing the TAS, inhibiting LPO and alleviating histopathological changes in the injured kidneys. This study highlights the induced nephrotoxicicity, as well as the related toxicity in the brain and bone, by chronic oral ingestion of the aluminum salts. However, the maintenance of a diet supplemented with fenugreek seeds could offer protection for the kidney, bone and brain, at the same time.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000 Monastir, Tunisia
| | - Hayfa Bakhta
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000 Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000 Monastir, Tunisia
| | - Imen Flehi-Slim
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000 Monastir, Tunisia
| | - Hassen Ben Cheikh
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000 Monastir, Tunisia
| |
Collapse
|
25
|
Malik J, Frankova A, Drabek O, Szakova J, Ash C, Kokoska L. Aluminium and other elements in selected herbal tea plant species and their infusions. Food Chem 2013; 139:728-34. [PMID: 23561167 DOI: 10.1016/j.foodchem.2013.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 02/05/2023]
Abstract
The determination of Al, B, Cu, Fe, Mn, Ni, P, Zn and Ca, K, Mg by inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS), respectively, in digests and infusions of Hibiscus sabdariffa (petals), Rosa canina (receptacles), Ginkgo biloba (leaves), Cymbopogon citratus (leaves), Aloe vera (leaves) and Panax ginseng (roots) was carried out in this study. Particular attention has been given to Al and heavy metals for the identification of possible raw material contaminants, their transformation into the infusion and for predicting their eventual role in the human diet during daily consumption. Additionally, Ion Chromatography (IC) speciation of Al in the leachates was carried out. In dry herbs, hibiscus and ginkgo appeared to contain the greatest contents of Al, Fe, K, Mn, Ni, Zn and B, Mg, P, respectively. A. vera contained the highest amount of Ca and highest values of Cu and P were observed in ginseng. In infusions, the topmost concentrations of Al, B, Cu, Fe, P, K, Mn, Ni, Zn were detected in those prepared from hibiscus petals, Ca from aloe leaves and Mg from leaves of ginkgo. According to a possible daily consumption exceeding 1 L, hibiscus decoction was identified as potentially dietetically significant in the content of certain elements. It seems to be possibly one of the top contributors of B from food (up to 5.5±0.2 mg/L). The Mg contained in the infusion (up to 106±5 mg/L) may be a contributor in the attenuation of blood pressure. A high amount of accessible Mn (up to 17.4±1.1 mg/L) can probably have an adverse effect in humans. The total Al allowance (up to 1.2±0.1 mg/L) suggests that no more than 1 L of the hibiscus infusion should be consumed per day by sensitive individuals including pregnant women and should be completely excluded from the diet of children under 6 months of age and children with chronic renal failure.
Collapse
Affiliation(s)
- Jan Malik
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 129 Kamycka, 165 21 Prague 6-Suchdol, Czech Republic.
| | | | | | | | | | | |
Collapse
|
26
|
Belaïd-Nouira Y, Bakhta H, Haouas Z, Flehi-Slim I, Neffati F, Najjar MF, Cheikh HB. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Vet Res 2013; 9:22. [PMID: 23363543 PMCID: PMC3568417 DOI: 10.1186/1746-6148-9-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Background Having considered how bioavailable aluminium (Al) may affect ecological systems and animals living there, especially cattle, and in search for a preventive dietary treatment against Al toxicity, we aimed to test the protective role of fenugreek seeds against chronic liver injury induced by aluminum chloride (AlCl3) in Wistar rats. Results Five months of AlCl3 oral exposure (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) caused liver atrophy, an inhibition of aspartate transaminase (AST), alanine transaminase (ALT) and glutamyl transpeptidase (GGT), an enhancement of both lipid peroxidation and lactate dehydrogenase (LDH) activity and an increase of total protein level in liver. Moreover, histopathological and histochemical examinations revealed moderate alterations in the hepatic parenchyma in addition to a disrupted iron metabolism. Co-administration of fenugreek seed powder (FSP) at 5% in pellet diet during two months succeeded to antagonize the harmful effects of AlCl3 by restoring all tested parameters. Conclusion This study highlighted the hepatotoxicity of AlCl3 through biochemical and histological parameters in one hand and the hepatoprotective role of fenugreek seeds on the other hand. Thus this work could be a pilot study which will encourage farmers to use fenugreek seeds as a detoxifying diet supplement for domestic animals.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Laboratory of Histology and Cytogenetic (Research unit of Genetic 02/UR/08-03), Faculty of Medicine, Avenue Ibnou Sina 5000, Monastir, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Willhite CC, Ball GL, McLellan CJ. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit Rev Toxicol 2012; 42:358-442. [DOI: 10.3109/10408444.2012.674101] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Belaïd-Nouira Y, Bakhta H, Bouaziz M, Flehi-Slim I, Haouas Z, Ben Cheikh H. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl₃ mediated neurotoxicity. Modulatory effect of fenugreek seeds. Lipids Health Dis 2012; 11:16. [PMID: 22280491 PMCID: PMC3296590 DOI: 10.1186/1476-511x-11-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxidation of lipid (LPO) membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl₃). Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made. RESULTS Oral administration of AlCl₃ to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water) enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH) activities, total cholesterol (TC), triglycerides (TG) and LDL-C (Low Density Lipoproteins) levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP) or fenugreek seed extract (FSE). A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver. CONCLUSION Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.
Collapse
Affiliation(s)
- Yosra Belaïd-Nouira
- Research unit of Genetic (02/UR/08-03), Laboratory of Histology and Cytogenetic, Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | | | |
Collapse
|
29
|
Ding BJ, Ma WW, He LL, Zhou X, Yuan LH, Yu HL, Feng JF, Xiao R. Soybean isoflavone alleviates β-amyloid 1-42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-κB activity in rats. Int J Dev Neurosci 2011; 29:537-42. [PMID: 21515354 DOI: 10.1016/j.ijdevneu.2011.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 02/06/2023] Open
Abstract
β-amyloid 1-42 (Aβ1-42)-induced learning and memory impairment in rats is believed to be associated with inflammation. Cytokine production is a key pathologic event in the progression of inflammatory processes. In this rat study, soybean isoflavones (SIF) was used to investigate it's protective effects on inflammation caused by β-amyloid 1-42 (Aβ1-42), which is associated with learning and memory impairment in Alzheimer disease. We characterized the learning and memory ability. cytokine profiles of circulating interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) in the serum and the expression of Toll like receptor4 (TLR4) and nuclear factor-κB p65 (NF-κB p65) mRNA and protein in the brain tissue following intracerebroventricular administration of Aβ1-42 by miniosmotic pump for 14 days. The results showed that functional deficits of learning and memory in SIF treatment groups were significantly improved compared to the control group without SIF treatment in water maze test. The serum IL-1β and TNF-α level were significantly increased, and the expressions of TLR4 and NF-κB p65 mRNA and protein in the brain were up-regulated, indicating inflammation response was initiated following administration of Aβ1-42. After intragastric pre-treatment with SIF, inflammatory cytokines was significantly reduced and also SIF reversed the Aβ1-42 induced up-regulation of TLR4 and NF-κB p65 mRNA and protein expression in the brain and expression of NF-κB p65 in nuclei. These results suggested that SIF reduced the cytokine cascade and inflammatory response induced by Aβ1-42 which could result in the improvement of spatial learning and memory ability impairment in the rats.
Collapse
Affiliation(s)
- B J Ding
- Department of Nutrition & Food Hygiene, School of Public Health and Family Medicine, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of the dorsal hippocampus on the Ginkgo biloba facilitation effect of fear extinction as assessed with fear-potentiated startle. Psychopharmacology (Berl) 2011; 215:403-11. [PMID: 21404038 DOI: 10.1007/s00213-011-2244-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/21/2011] [Indexed: 11/27/2022]
Abstract
RATIONALE Ginkgo biloba extract, EGb761, is widely used as herbal supplements throughout Western society. It has been used in the treatment of various common geriatric complaints including short-term memory loss. Our previous study has shown that acute systemic administration of EGb761 enhanced extinction of fear-potentiated startle (FPS) in rats. Little is known about the behavioral effects of hippocampally administered EGb761 on the extinction of FPS. OBJECTIVE The current study was performed to evaluate the involvement of the dorsal hippocampus (DH) in the EGb761 facilitation effect on the extinction of FPS. METHODS AND RESULT Male adult SD rats were used. EGb761 (28 ng/side, bilaterally) was infused into DH bilaterally 10 min prior to extinction training. Animals were then tested for FPS 24 h later. Results showed that intra-hippocampal infusion of EGb761 prior to extinction training facilitated extinction, which was not due to impairments of expression of conditioned fear. Intra-hippocampal injection of ERK1/2 inhibitor PD98059 partially attenuates the above EGb761 effect. Therefore, acute EGb761 administration modulated extinction of conditioned fear, which might be mediated by more than one signal cascade. CONCLUSIONS These results suggest that DH may participate in the facilitation effect of EGb761 on the extinction of conditioned fear. In addition to ERK1/2, another signal cascade may also be involved in the EGb761 facilitation effect on extinction.
Collapse
|
31
|
Guo J, Li F, Wu Q, Gong Q, Lu Y, Shi J. Protective effects of icariin on brain dysfunction induced by lipopolysaccharide in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:950-955. [PMID: 20382007 DOI: 10.1016/j.phymed.2010.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/26/2010] [Accepted: 03/04/2010] [Indexed: 05/29/2023]
Abstract
In this study we examined the protective effects of icariin, a flavonol isolated from Herba epimedii, on learning and memory in a rat model with brain inflammation induced by lipopolysaccharide (LPS). Injecting LPS into the lateral ventricle caused rat brain dysfunction, as evidenced by deficits of spatial learning and memory in the Morris water maze. With administration of icariin (30, 60, 120mg/kg body wt./day) for 17 consecutive days, spatial learning and memory abilities were markedly altered. Escape latency and searching distance decreased, and the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) of brain were significantly reduced as observed by real-time RT-PCR and immunohistochemistry. This study used ibuprofen (40mg/kg body wt./day) as positive control. In conclusion, this study suggested that icariin can improve spatial learning and memory abilities in rats with brain dysfunction induced by LPS, an effect which may be due to decreased expressions of TNF-α, IL-1β and COX-2 in the hippocampus.
Collapse
Affiliation(s)
- J Guo
- Department of Pharmacology, Zunyi Medical College, 201 Dalian Road, Zunyi 563003, PR China
| | | | | | | | | | | |
Collapse
|
32
|
Li F, Gong QH, Wu Q, Lu YF, Shi JS. Icariin isolated from Epimedium brevicornum Maxim attenuates learning and memory deficits induced by d-galactose in rats. Pharmacol Biochem Behav 2010; 96:301-5. [DOI: 10.1016/j.pbb.2010.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 05/07/2010] [Accepted: 05/22/2010] [Indexed: 11/16/2022]
|
33
|
S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates beta-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-κB pathway in rats. Amino Acids 2010; 40:601-10. [DOI: 10.1007/s00726-010-0685-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/30/2010] [Indexed: 01/01/2023]
|
34
|
Gong QH, Wang Q, Pan LL, Liu XH, Huang H, Zhu YZ. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: A pro-inflammatory pathway in rats. Pharmacol Biochem Behav 2010; 96:52-8. [DOI: 10.1016/j.pbb.2010.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
35
|
Ding XP, Wang XT, Xu T, Qi J, Wang H, Yu BY. Comparison of Two On-Line Analysis Techniques Used for the Screening of Antioxidants in EGb 761. Chromatographia 2010. [DOI: 10.1365/s10337-010-1470-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Gong QH, Li F, Jin F, Shi JS. Resveratrol Attenuates Neuroinflammation-mediated Cognitive Deficits in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi-Hai Gong
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Fei Li
- Department of Pharmacology, Zunyi Medical College
| | - Feng Jin
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| | - Jing-Shan Shi
- Department of Pharmacology, Zunyi Medical College
- The Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College
| |
Collapse
|
37
|
Potential of lithium to reduce aluminium-induced cytotoxic effects in rat brain. Biometals 2009; 23:197-206. [DOI: 10.1007/s10534-009-9278-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 11/06/2009] [Indexed: 11/30/2022]
|
38
|
Nie J, Luo Y, Huang XN, Gong QH, Wu Q, Shi JS. Icariin inhibits beta-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur J Pharmacol 2009; 626:213-8. [PMID: 19782061 DOI: 10.1016/j.ejphar.2009.09.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 09/02/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to investigate the protective effects of icariin on the learning and memory abilities in Alzheimer's disease model rats and explore its protection mechanisms. Beta-amyloid peptide (Abeta) is a key etiology in Alzheimer's disease and targeting on Abeta production and assembly is a new therapeutic strategy. Six-month (400-600 g) Wistar rats were unilaterally injected with amyloid beta-protein fragment 25-35 (Abeta(25-35)) 10 microg (5 g/l, 2 microl) into the right hippocampus. The day following Abeta injection, icariin 30, 60 or 120 mg/kg was administered by gavage for 14 days. The ability of spatial learning and memory of the animals was tested by the Morris water maze. In place navigation test, icariin significantly decreased the mean escape latency and searching distance. In the space probing test, icariin increased remarkably the searching time and searching distance in the quadrant where the platform was originally located. All tests indicated icariin improved the ability of spatial learning and memory in Alzheimer's disease model rats. Furthermore, immunohistochemistry and real time RT-PCR analysis showed that icariin significantly reduced the contents of Abeta(1-40) and the mRNA levels of beta-secretase in the hippocampus and increased the mRNA level of superoxide dismutase-2, but it had no apparent effects on the immunostain and mRNA level of amyloid protein precursor. These results demonstrate that icariin can improve the learning and memory abilities in Abeta(25-35)-induced Alzheimer's disease rats. The mechanisms appear to be due to the decreased production of insoluble fragments of Abeta through suppression of beta-secretase expression.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacology, Zunyi Medical College, Zunyi 563000, PR China.
| | | | | | | | | | | |
Collapse
|
39
|
Xu RX, Wu Q, Luo Y, Gong QH, Yu LM, Huang XN, Sun AS, Shi JS. PROTECTIVE EFFECTS OF ICARIIN ON COGNITIVE DEFICITS INDUCED BY CHRONIC CEREBRAL HYPOPERFUSION IN RATS. Clin Exp Pharmacol Physiol 2009; 36:810-5. [DOI: 10.1111/j.1440-1681.2009.05149.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Sarkaki A, Asl SZ, Assaei R. Effect of intrahippocampal injection of aluminum on active avoidance learning in adult male rats. Pak J Biol Sci 2009; 12:40-45. [PMID: 19579916 DOI: 10.3923/pjbs.2009.40.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Aim of this research was to study the effect of intrahippocampal injection of different doses of AlCl3 in adult male rats on active avoidance learning. Thirty five adult male Wistar rats (250-300 g) were used into five groups: (1) Control, (2) Test-I received daily 1 microL AlCl3 1%, pH = 7.2, 3); Test-II received daily 1 microL AlCl3 0.5%, pH = 3.4, 4); Sham-I received daily 1 microL aCSF, pH = 7.2, 5); Sham-II received daily 1 microL aCSF, pH = 3.4. All rats in test and sham groups treated 10 min before training. Animals were anaesthetized with ketamine HCl/xylazine (90/10 mg kg(-1) b.wt.(-1), i.p.) and underwent a stereotaxic surgery for implant of two stainless steel guide cannula into the hippocampus bilaterally. Every day 10 min after above treatments all rats were used to assess the spatial learning performing using Y-maze. Criterion Correct Response (CCR) was 90% in last session of training. There were no significant differences between training sessions to receiving CCR in control, Sham-I and Sham-II groups. Cognition in animals received AlCl3 1%, pH = 7.2 was impaired significantly with compare to other groups (*p<0.0001). Present results show that intrahippocampal injection of AlCl3 1%, causes active avoidance learning impairment significantly. The exact mechanism of Al3 effect on brain and cognition is remains unknown.
Collapse
Affiliation(s)
- A Sarkaki
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahwaz Jondishapour University of Medical Sciences, 61357-15794, P.O. Box 45, Ahwaz, Iran
| | | | | |
Collapse
|
41
|
Intra-amygdaloid infusion of Ginkgo biloba leaf extract (EGb761) facilitates fear-potentiated startle in rats. Psychopharmacology (Berl) 2009; 202:187-96. [PMID: 18563393 DOI: 10.1007/s00213-008-1138-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 03/04/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Ginkgo biloba extract, EGb761, is one of the most commonly used herbal supplements throughout Western society. It has been used in the treatment of various common geriatric complaints including short-term memory loss. We showed that acute systemic administration of EGb761 enhanced fear-potentiated startle (FPS) in rats. Little is known about the behavioral effects of centrally administered EGb761 on FPS. OBJECTIVE The current study was performed to evaluate the involvement of basolateral nucleus of amygdala (BLA) in the EGb761 facilitation effect on FPS. METHODS AND RESULT Male adult SD rats were used. EGb761 was infused into cerebroventricle or basolateral nucleus of amygdala 10 min prior to fear conditioning. Animals were then tested for FPS 24 h later. Results showed that (1) intra-cerebroventricular infusion of EGb761 (0.1, 1.0, or 3.0 microg/3.0 microl per side, bilaterally) and intra-amygdaloid infusion of EGb761 (1.0, 14.0, or 28.0 ng/microl per side, bilaterally) 30 and 10 min prior to fear conditioning, respectively, facilitated FPS in a dose-dependent manner. (2) Administration of EGb761 did not impair an animal's basal startle response or pain perception. (3) Subsequent control experiment's results indicated that the facilitation effect of EGb761 on the acquisition was not due to anxiogenic effect or non-specific effect. CONCLUSIONS These results suggested that a single dose of EGb761 also has memory-enhancing effects in young animals. In addition, BLA is the central locus for EGb761 facilitation effect on FPS.
Collapse
|
42
|
Sharma D, Sethi P, Hussain E, Singh R. Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 2008; 10:489-502. [DOI: 10.1007/s10522-008-9195-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/28/2008] [Indexed: 12/23/2022]
|
43
|
Takuma K, Hoshina Y, Arai S, Himeno Y, Matsuo A, Funatsu Y, Kitahara Y, Ibi D, Hayase M, Kamei H, Mizoguchi H, Nagai T, Koike K, Inoue M, Yamada K. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience 2007; 149:256-62. [PMID: 17869007 DOI: 10.1016/j.neuroscience.2007.07.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/23/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
We have recently found that a combination of ovariectomy (OVX) and chronic restraint stress causes cognitive dysfunction and reduces hippocampal CA3 neurons in female rats and that estrogen replacement suppresses the OVX/stress-induced behavioral and morphological changes. In this study, we examined the effect of Ginkgo biloba extract (EGb 761), a popular herbal supplement, on the cognitive dysfunction and neuromorphological change in OVX/stress-subjected rats. Female Fisher 344 rats were randomly divided into three groups: vehicle-treated OVX, EGb 761 (50 mg/kg) -treated OVX and vehicle-treated sham-operated control groups. Two months after ovariectomy, all animals received restraint stress for 21 days (6 h/day), and were then subjected to a novel object recognition test followed by morphological examination by Nissl staining. EGb 761 was orally administered once daily until the behavioral analysis was done. Treatment with EGb 761 improved memory impairment and neuronal loss of hippocampus in the OVX/stress-subjected group in the same ways as 17beta-estradiol. On the other hand, EGb 761 did not affect the loss of bone mineral density and increase in body weight after OVX, although 17beta-estradiol attenuated them. These results have important implications for neuroprotective and cognition enhancing effects of EGb 761 in postmenopausal women and suggest that the effects are mediated by a different mechanism from estrogen.
Collapse
Affiliation(s)
- K Takuma
- Laboratory of Neuropsychopharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Luo Y, Nie J, Gong QH, Lu YF, Wu Q, Shi JS. PROTECTIVE EFFECTS OF ICARIIN AGAINST LEARNING AND MEMORY DEFICITS INDUCED BY ALUMINIUM IN RATS. Clin Exp Pharmacol Physiol 2007; 34:792-5. [PMID: 17600559 DOI: 10.1111/j.1440-1681.2007.04647.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The present study examined the protective effects of icariin against the learning and memory deficits in aluminium-treated rats and its potential mechanisms of action. 2. Qualified rats were treated with 1600 p.p.m. AlCl(3) in drinking water for 8 months and the ability of spatial learning and memory was tested by the Morris water maze. In the place navigation test, aluminium administration significantly increased the mean escape latency and searching distance. In space probing test, aluminium markedly decreased the searching time and searching distance in the quadrant where the platform was originally located. All tests indicated deficits in rat spatial learning and memory induced by aluminium. Icariin treatment (60 and 120 mg/kg, by gavage for 3 months) dose-dependently protected against the development of aluminium-induced spatial learning and memory deficits. 3. To examine the mechanisms responsible for the protection afforded by icariin, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the hippocampus were assayed biochemically and the level of Abeta(1-40) in the hippocampus was determined immunohistochemically. Icariin treatment significantly increased SOD activity and decreased MDA and Abeta(1-40) content in the hippocampus of aluminium-intoxicated rats. 4. In conclusion, the present study demonstrates that icariin is effective in improving the spatial learning and memory of aluminium-intoxicated rats. The mechanisms responsible appear to be due, at least in part, to an increased anti-oxidant capacity and decreased lipid peroxidation and Abeta(1-40) levels in the rat hippocampus.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, Zunyi Medical College, Zunyi, Guizhou, China
| | | | | | | | | | | |
Collapse
|
45
|
Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KSJ. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model. ACTA ACUST UNITED AC 2006; 52:275-92. [PMID: 16782202 DOI: 10.1016/j.brainresrev.2006.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/29/2022]
Abstract
Lack of an adequate animal model for Alzheimer's disease (AD) has limited an understanding of the pathogenesis of the disease and the development of therapeutic agents targeting key pathophysiological processes. There are undoubtedly few satisfactory animal models for exploring therapies targeting at amyloid beta (Abeta) secretion, deposition, aggregation, and probably the inflammatory response. However, an understanding of the complex events--tau, Abeta, oxidative stress, redox active iron, etc.--involved in the neuronal cell loss is still unclear due to the lack of a suitable animal model system. The use of neurotoxic agents particularly aluminum-organic complexes, especially Al-maltolate, expands the scope of AD research by providing new animal models exhibiting neurodegenerative processes relevant to AD neuropathology. Examination of different species of aged animals including the rapidly advancing transgenic mouse models revealed very limited AD-like pathology. Most other animal models have single event expression such as extracellular Abeta deposition, intraneuronal neurofilamentous aggregation of proteins akin to neurofibrillary tangles, oxidative stress or apoptosis. To date, there are no paradigms of any animal in which all the features of AD were evident. However, the intravenous injection of Al-maltolate into aged New zealand white rabbits results in conditions which mimics a number of neuropathological, biochemical and behavioral changes observed in AD. Such neurodegenerative effects include the formation of intraneuronal neurofilamentous aggregates that are tau positive, immunopositivity of Abeta, presence of redox active iron, oxidative stress and apoptosis, adds credence to the value of this animal model system. The use of this animal model should not be confused with the ongoing controversy regarding the possible role of Al in the neuropathogenesis, a debate which by no means has been concluded. Above all this animal model involving neuropathology induced by Al-maltolate provides a new information in understanding the mechanism of neurodegeneration.
Collapse
|
46
|
Shif O, Gillette K, Damkaoutis CM, Carrano C, Robbins SJ, Hoffman JR. Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol Biochem Behav 2006; 84:17-25. [PMID: 16740301 DOI: 10.1016/j.pbb.2006.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/05/2006] [Accepted: 04/18/2006] [Indexed: 11/24/2022]
Abstract
Ginkgo biloba is reported to improve learning and memory in animals. However, many studies do not directly test the effects of Ginkgo on memory because the drug is administered during the learning phase of the experiments. In this study, we examined the effect of 10 mg/kg, 20 mg/kg, or 40 mg/kg G. biloba extract on spatial memory by administering the drug in the interval between training and testing. Rats were tested for long-term reference memory retention in the radial arm maze and in the Morris water maze during daily probe trials in which the hidden platform was removed. G. biloba had no effect on reference memory in either the water maze or radial arm maze. To test short-term working spatial memory using the radial arm maze, animals were removed after receiving the reward from 4 of the 8 arms and were returned to complete the maze 2 h later. While Ginkgo had no effect on working memory, over time animals exposed to Ginkgo learned task better than control animals. Thus, Ginkgo appears to enhance neither short-term working memory nor long-term reference memory, but it may promote learning of spatial information.
Collapse
Affiliation(s)
- Olga Shif
- Department of Biology, Arcadia University, 450 South Easton Road, Glenside, PA 19038, USA
| | | | | | | | | | | |
Collapse
|
47
|
Nedzvetsky VS, Tuzcu M, Yasar A, Tikhomirov AA, Baydas G. Effects of vitamin E against aluminum neurotoxicity in rats. BIOCHEMISTRY (MOSCOW) 2006; 71:239-44. [PMID: 16545059 DOI: 10.1134/s0006297906030023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study examined the protective effects of vitamin E against aluminum-induced neurotoxicity in rats. Wistar rats were given daily aluminum via their drinking water containing 1600 mg/liter aluminum chloride for six weeks. Aluminum induced a significant increase in lipid peroxidation (LPO) in hippocampus and frontal cortex. Furthermore, aluminum caused marked elevation in the levels of the glial markers (glial fibrillary acidic protein (GFAP) and S100B) and proinflammatory cytokines (TNF-alpha and IL-1beta) in both brain areas. Vitamin E treatment reduced the contents of glial markers and cytokines and the levels of LPO. In conclusion, this study demonstrates that vitamin E ameliorates glial activation and reduces release of proinflammatory cytokines induced by aluminum.
Collapse
Affiliation(s)
- V S Nedzvetsky
- Department of Biophysics and Biochemistry, Faculty of Biology, Dnepropetrovsk National University, Ukraine.
| | | | | | | | | |
Collapse
|
48
|
Gong QH, Wu Q, Huang XN, Sun AS, Nie J, Shi JS. Protective effect of Ginkgo biloba leaf extract on learning and memory deficit induced by aluminum in model rats. Chin J Integr Med 2006; 12:37-41. [PMID: 16571282 DOI: 10.1007/bf02857428] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the protective effect of Ginkgo biloba leaf extract (GbE) on learning and memory deficit induced by aluminum chloride (AlCl(3)), and explore its mechanisms. METHODS The rat models with learning and memory deficit were induced by administering via gastrogavage and drinking of AlCl(3) solution. And the model rats were treated with GbE at the dose of 50, 100, 200 mg/kg every day for 2 months accompanied with drinking of AlCl(3) solution, respectively. Their abilities of spatial learning and memory were tested by Morris water maze, and the acetylcholinesterase (AChE) activity in serum was assayed with chemical method, the AChE expression in hippocampus was observed by immunohistochemistry assay, and then quantitative analysis was done by BI 2000 image analysis system. RESULTS Learning and memory deficit of rats could be induced by AlCl(3) solution (P < 0.01), and AChE expressions in rats hippocampus were increased (P < 0.01); GbE ameliorated learning and memory deficit and reduced AChE expression in rats hippocampus in a dose-dependent manner, while GbE significantly increased serum AChE activity at the dose of 200 mg/kg each day (P < 0.05). CONCLUSION GbE can ameliorate learning and memory deficit induced by AlCl(3), which may be due to its inhibition of the AChE expression in hippocampus.
Collapse
|
49
|
Stefanovits-Bányai E, Szentmihályi K, Hegedus A, Koczka N, Váli L, Taba G, Blázovics A. Metal ion and antioxidant alterations in leaves between different sexes of Ginkgo biloba L. Life Sci 2006; 78:1049-56. [PMID: 16423371 DOI: 10.1016/j.lfs.2005.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/10/2005] [Indexed: 11/21/2022]
Abstract
A comparative study was carried out to determine some valuable phytochemical components, macro- and microelement and redox parameters in leaves of male and female Ginkgo biloba trees and in extracts made from them. G. biloba extracts have become more popular as a therapeutic agent in the modern pharmacology in neurodegenerative diseases, in which increased brain metal levels can be observed and free radical reactions are involved. Macro- and microelement components, total phenol content, H-donating activity and reducing power as well as total scavenger capacity were determined in the samples. Well detectable differences were obtained for micro- and macroelement contents between male and female samples, but no toxic elements could be detected in the extracts. Male extracts contained more hazardous metals (e.g. Fe) compared to the female ones, while extracts from female leaves had higher levels of ions, which are known to have beneficial effects in neurodegenerative diseases. The ethanolic extracts of male leaves showed the highest H-donating activity, reducing power and total phenol content, as well as the best total scavenger activity. Ginkgo extracts due to the antioxidant properties may have favourable effects as dietary supplements in several neurodegenerative diseases, but this study draws the attention that critical evaluation is required in view of the potential hazard induced by their metal ion constitution. Our results lead us to the conclusion that although the aqueous extracts of female leaves are characterized by relatively lower antioxidant properties, they may be more eligible for these purposes due to their favourable metal ion constitution.
Collapse
Affiliation(s)
- Eva Stefanovits-Bányai
- Department of Applied Chemistry, Faculty of Food Science, Corvinus University of Budapest, P.O. Box 53, Budapest, Hungary, H-1518
| | | | | | | | | | | | | |
Collapse
|
50
|
Ao Q, Sun XH, Wang AJ, Fu PF, Gong K, Zuo HC, Zuo HZ, Gong YD, Zhang XF. Protective effects of extract of Ginkgo biloba (EGb 761) on nerve cells after spinal cord injury in rats. Spinal Cord 2006; 44:662-7. [PMID: 16415923 DOI: 10.1038/sj.sc.3101900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN An experimental animal model was used to assess spinal cord injury following lateral hemitransection at thoracic spinal cord level. OBJECTIVE To determine whether extract of Ginkgo biloba (EGb) could have a neuroprotective effect in spinal cord injury (SCI) in rats. SETTING Department of Biological Sciences and Biotechnology, Tsinghua University, China. METHODS A total of 72 adult rats were divided randomly into three groups: the EGb group, normal saline (NS) group, and sham operation group (sham group). After thoracic spinal cord hemitransection was performed at the level of the 9th thoracic vertebra (T9), rats in the EGb group were given 100 mg/kg EGb 761 daily, while rats in the NS group received NS. The rats in the sham group only underwent laminectomy without spinal cord hemitransection. At various time points after surgery, thoracic spinal cords were sampled and sliced for histochemistry, immunohistochemistry of inducible nitric oxide synthase (iNOS), and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) of apoptotic cells. RESULTS Myelin staining showed that the area of cavities was small and the demyelinated zones were limited at and around the injury site of the spinal cord in the EGb group, while the area of cavities was large and the demyelinated zones were serious in the NS group. Nissl staining showed that the ratio of bilateral ventral horn neurons (transection side/uninjured side) in the EGb group was higher than that in the NS group (P<0.05). The apoptotic index and the percentage of iNOS-positive cells were lower in the EGb group than in the NS group. Furthermore, the percentage of iNOS-positive cells positively correlated with the apoptotic index (r( 2)=0.729, P<0.01) after SCI. CONCLUSION This study demonstrated that EGb 761 could inhibit iNOS expression and have neuroprotective effect by preventing nerve cells from apoptosis after SCI in rats.
Collapse
Affiliation(s)
- Q Ao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|