1
|
Diet, Secondhand Smoke, and Glycated Hemoglobin (HbA1c) Levels among Singapore Chinese Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245148. [PMID: 31861047 PMCID: PMC6950101 DOI: 10.3390/ijerph16245148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022]
Abstract
The combination of poor diet and exposure to secondhand smoke may increase hemoglobin A1c (HbA1c) levels, but few studies have explored this interaction. We explored an interaction among 574 never-smoking adults from the Singapore Chinese Health Study. At baseline (age 59 ± 8 years), intakes of omega-3 polyunsaturated fatty acids, vitamin C, vitamin E and fiber were estimated using a modified food frequency questionnaire. At follow-up (age 64 ± 9 years), HbA1c and cotinine were measured. A product term between cotinine (above or below the median value) and each nutrient (high or low intake) was included in separate linear regression models with HbA1c as the outcome. HbA1c among those with high cotinine and low omega-3 polyunsaturated fatty acids intakes were higher than would be expected due to the individual effects alone (p-for-interaction = 0.05). Among those with lower intakes of omega-3 polyunsaturated fatty acids, high cotinine levels were associated with 0.54% higher HbA1c levels (95% confidence interval [CI]: 0.02, 1.06). Conversely, among those with higher intakes of omega-3 polyunsaturated fatty acids, HbA1c differ not differ by exposure (−0.09%; 95% CI: −0.45, 0.30). No evidence of interaction was observed for other nutrients. Diets high in omega-3 polyunsaturated fatty acids may ameliorate secondhand smoke-induced increases in HbA1c.
Collapse
|
2
|
Siti Hajar MH, Zulkefli S, Juwita S, Norhayati MN, Siti Suhaila MY, Rasool AHG, Harmy MY. Metabolic, inflammatory, and oxidative stress markers in women exposed to secondhand smoke. PeerJ 2018; 6:e5758. [PMID: 30356972 PMCID: PMC6196072 DOI: 10.7717/peerj.5758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Secondhand smoke (SHS) exposure has adverse effects on the cardiovascular system. This study aimed to determine the effects of SHS on the cardiovascular disease biomarkers, namely the metabolic, inflammatory, and oxidative stress markers in healthy adult women. Methods This comparative cross-sectional study was conducted among healthy women. The cases included those women exposed to SHS, and the controls included those women not exposed to SHS. SHS exposure was defined as being exposed to SHS for at least 15 min for 2 days per week. Venous blood was taken to measure the metabolic markers (high molecular weight adiponectin, insulin level, insulin resistance, and nonesterified fatty acids), oxidative stress markers (oxidized low density lipoprotein cholesterol and 8-isoprostane), and inflammatory markers (high-sensitivity C-reactive protein and interleukin-6). A hair nicotine analysis was also performed. An analysis of covariance and a simple linear regression analysis were conducted. Results There were 101 women in the SHS exposure group and 91 women in the non-SHS exposure group. The mean (with standard deviation) of the hair nicotine levels was significantly higher in the SHS exposure group when compared to the non-SHS exposure group [0.22 (0.62) vs. 0.04 (0.11) ng/mg; P = 0.009]. No significant differences were observed in the high molecular weight adiponectin, insulin and insulin resistance, nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, interleukin-6, and high-sensitivity C-reactive protein between the two groups. The serum high molecular weight adiponectin was negatively associated with the insulin level and insulin resistance in the women exposed to SHS. However, no significant relationships were seen between the high molecular weight adiponectin and nonesterified fatty acids, 8-isoprostane, oxidized low density lipoprotein cholesterol, high-sensitivity C-reactive protein in the SHS group. Discussion There were no significant differences in the metabolic, oxidative stress, and inflammatory markers between the SHS exposure and non-SHS exposure healthy women. A low serum level of high molecular weight adiponectin was associated with an increased insulin level and resistance in the women exposed to SHS.
Collapse
Affiliation(s)
- Mohd Hanaffi Siti Hajar
- Department of Family Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Sanip Zulkefli
- Central Research Laboratory, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Shaaban Juwita
- Department of Family Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Noor Norhayati
- Department of Family Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yusoff Siti Suhaila
- Department of Family Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Pharmacology Vascular Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohamed Yusoff Harmy
- Faculty of Medicine and Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
3
|
Wu X, Lintelmann J, Klingbeil S, Li J, Wang H, Kuhn E, Ritter S, Zimmermann R. Determination of air pollution-related biomarkers of exposure in urine of travellers between Germany and China using liquid chromatographic and liquid chromatographic-mass spectrometric methods: a pilot study. Biomarkers 2017; 22:525-536. [DOI: 10.1080/1354750x.2017.1306753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiao Wu
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
| | - Sophie Klingbeil
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jie Li
- Department of Environmental Health, Shandong University, Jinan, China
| | - Hao Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Evelyn Kuhn
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Sebastian Ritter
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
| | - Ralf Zimmermann
- Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum Muenchen – German Research Centre for Environmental Health GmbH, Neuherberg, Germany
- HICE – Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health: Aerosol and Health, Neuherberg, Germany
- Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
5
|
Basu S. The enigma ofin vivooxidative stress assessment: isoprostanes as an emerging target. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [PMCID: PMC2607004 DOI: 10.1080/17482970701411642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of MedicineUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Tewari S, Brousse V, Piel FB, Menzel S, Rees DC. Environmental determinants of severity in sickle cell disease. Haematologica 2015; 100:1108-16. [PMID: 26341524 PMCID: PMC4800688 DOI: 10.3324/haematol.2014.120030] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022] Open
Abstract
Sickle cell disease causes acute and chronic illness, and median life expectancy is reduced by at least 30 years in all countries, with greater reductions in low-income countries. There is a wide spectrum of severity, with some patients having no symptoms and others suffering frequent, life-changing complications. Much of this variability is unexplained, despite increasingly sophisticated genetic studies. Environmental factors, including climate, air quality, socio-economics, exercise and infection, are likely to be important, as demonstrated by the stark differences in outcomes between patients in Africa and USA/Europe. The effects of weather vary with geography, although most studies show that exposure to cold or wind increases hospital attendance with acute pain. Most of the different air pollutants are closely intercorrelated, and increasing overall levels seem to correlate with increased hospital attendance, although higher concentrations of atmospheric carbon monoxide may offer some benefit for patients with sickle cell disease. Exercise causes some adverse physiological changes, although this may be off-set by improvements in cardiovascular health. Most sickle cell disease patients live in low-income countries and socioeconomic factors are undoubtedly important, but little studied beyond documenting that sickle cell disease is associated with decreases in some measures of social status. Infections cause many of the differences in outcomes seen across the world, but again these effects are relatively poorly understood. All the above factors are likely to account for much of the pathology and variability of sickle cell disease, and large prospective studies are needed to understand these effects better.
Collapse
Affiliation(s)
- Sanjay Tewari
- Department of Molecular Haematology, King's College London School of Medicine, King's College Hospital, London, England
| | - Valentine Brousse
- Reference Centre for Sickle Cell Disease, Pediatric Department, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris; Université Paris Descartes, France
| | | | - Stephan Menzel
- Department of Molecular Haematology, King's College London School of Medicine, King's College Hospital, London, England
| | - David C Rees
- Department of Molecular Haematology, King's College London School of Medicine, King's College Hospital, London, England
| |
Collapse
|
7
|
Theodorou AA, Paschalis V, Kyparos A, Panayiotou G, Nikolaidis MG. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus? Biochem Biophys Res Commun 2014; 454:131-6. [PMID: 25450369 DOI: 10.1016/j.bbrc.2014.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/04/2023]
Abstract
The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena.
Collapse
Affiliation(s)
| | - Vassilis Paschalis
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus; School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Antonios Kyparos
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - George Panayiotou
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus
| | - Michalis G Nikolaidis
- School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
8
|
Cohen RT, Strunk RC, Field JJ, Rosen CL, Kirkham FJ, Redline S, Stocks J, Rodeghier MJ, DeBaun MR. Environmental tobacco smoke and airway obstruction in children with sickle cell anemia. Chest 2014; 144:1323-1329. [PMID: 23681054 DOI: 10.1378/chest.12-1569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The contribution of environmental tobacco smoke (ETS) exposure to pulmonary morbidity in children with sickle cell anemia (SCA) is poorly understood. We tested the hypothesis that children with SCA and ETS exposure would have an increased prevalence of obstructive lung disease and respiratory symptoms compared with children with SCA and no ETS exposure. METHODS Parent reports of ETS and respiratory symptom frequency were obtained for 245 children with SCA as part of a multicenter prospective cohort study. One hundred ninety-six children completed pulmonary function testing. Multivariable regression models were used to evaluate the associations between ETS exposure at different time points (prenatal, infant [birth to 2 years], preschool [2 years to first grade], and current) and lung function and respiratory symptoms. RESULTS Among the 245 participants, a high prevalence of prior (44%) and current (29%) ETS exposure was reported. Of the 196 children who completed pulmonary function testing, those with parent-reported infant and current ETS exposure were more likely to have airway obstruction (defined as an FEV1/FVC ratio below the lower limit normal) compared with unexposed children (22.0% vs 3.1%, P < .001). Those with ETS exposure also had a lower forced expiratory flow, midexpiratory phase/FVC ratio (0.82 vs 0.97, P = .001) and were more likely to have evidence of bronchodilator responsiveness (23% vs 11%, P = .03). Current and prior ETS exposure and in utero smoke exposure were associated with increased frequency of respiratory symptoms. CONCLUSIONS ETS exposure is associated with evidence of lower airway obstruction and increased respiratory symptoms in SCA.
Collapse
Affiliation(s)
- Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, MA
| | - Robert C Strunk
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Joshua J Field
- Blood Research Institute, Blood Center of Wisconsin, Medical College of Wisconsin, Milwaukee, WI
| | - Carol L Rosen
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Janet Stocks
- Portex Respiratory Unit, UCL Institute of Child Health, London, England
| | | | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, TN.
| |
Collapse
|
9
|
Oates JC, Mashmoushi AK, Shaftman SR, Gilkeson GS. NADPH oxidase and nitric oxide synthase-dependent superoxide production is increased in proliferative lupus nephritis. Lupus 2013; 22:1361-70. [PMID: 24106214 PMCID: PMC3839955 DOI: 10.1177/0961203313507988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Lupus nephritis (LN) is an immune complex-mediated glomerulonephritis. Proliferative LN (PLN, ISN/RPS classes III and IV)) often leads to renal injury or failure despite traditional induction and maintenance therapy. Successful targeted therapeutic development requires insight into mediators of inflammation in PLN. Superoxide (SO) and its metabolites are mediators of the innate immune response through their ability to mediate reduction-oxidation signaling. Endothelial nitric oxide synthase (eNOS) modulates inflammatory responses in endothelial cells. We hypothesized that markers of SO production would be increased in active PLN and that SO production would be dependent on the activity of select enzymes in the renal cortex. METHODS Patients with systemic lupus erythematosus were enrolled at the time of renal biopsy for active LN of all classes. Serum collected at baseline was analyzed by HPLC with electrochemical detection for markers of SO production (durable modifications of serum protein Tyr ultimately requiring SO as a substrate). Renal cortex from MRL/MpJ-FAS(lpr) (MRL/lpr) mice with and without functional eNOS was analyzed during active disease for superoxide (SO) production with and without inhibitors of SO-producing enzymes. RESULTS Serum protein modifications indicative of total SO production were significantly higher in patients with PLN. These markers were increased in association with more active, inflammatory PLN. Mice lacking functional eNOS had 80% higher levels of renal cortical SO during active disease, and inhibitors of nitric oxide synthase and NADPH oxidase reduced these levels by 60% and 77%, respectively. CONCLUSION These studies demonstrate that SO production is unique to active PLN in a NOS and NADPH oxidase-dependent fashion. These findings suggest the emulating or augmenting eNOS activity or inhibiting NADPH oxidase SO production may be targets of therapy in patients with PLN. The markers of SO production used in this study could rationally be used to select SO-modulating therapies and serve as pharmacodynamic indicators for dose titration.
Collapse
Affiliation(s)
- Jim C. Oates
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Ahmad K. Mashmoushi
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC
| | - Stephanie R. Shaftman
- Department of Biostatistics, Bioinformatics & Epidemiology, Medical University of South Carolina, Charleston, SC
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
10
|
Eder A, Koegl E, von Duvillard SP, Sinzinger H, Berent R. Influence of cigarette smoking on synthesis of eicosanoids, isoprostanes and lipoxygenase metabolites in apical periodontitis. Arch Oral Biol 2012; 57:1133-40. [PMID: 22682033 DOI: 10.1016/j.archoralbio.2012.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 01/15/2023]
Abstract
UNLABELLED Arachidonic acid (AA) is metabolized to eicosanoids and isoprostanes (IPs) via different pathways. The presence of granuloma in apical periodontitis (AP) is linked with inflammation and the synthesis of metabolites of AA. OBJECTIVE We investigated the conversion rate of (14)C labelled arachidonic acid ((14)C-AA), the lipoxygenases (LOX) products and the endogenous synthesis of eicosanoids and IPs in extracted granuloma. Furthermore, we assessed if there are markers for bone destruction and the influence of cigarette smoking. PATIENTS AND METHODS In 46 patients with symptoms and corresponding radiological signs of AP, teeth were extracted including the periapical granuloma. The endogenous synthesis of eicosanoids and IPs, the conversion rate of (14)C-AA and LOX products in extracted granuloma were analyzed. RESULTS We found that smoking increases significantly the synthesis of IPs and LOX-metabolites in granuloma. Furthermore, smoking may have contributed to significant differences in qualitative and quantitative profile of eicosanoids, IPs and the conversion rate of (14)C-AA independent of the size of the granuloma. CONCLUSIONS Our data demonstrate that in smokers with granuloma due to AP products of lipid peroxidation as 8-iso-PGF(2α) and products of the LOX-pathway are increased at the expense of cyclooxygenase products. The size of granuloma did not influence the amount of synthesized eicosanoids, IPs or LOX-metabolites out of (14)C-AA whereas cigarette smoking was a significantly influencing and modifiable risk factor.
Collapse
Affiliation(s)
- Andreas Eder
- Department for Conservative Dentistry, University Dental Medical School Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Daughton CG. Using biomarkers in sewage to monitor community-wide human health: isoprostanes as conceptual prototype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:16-38. [PMID: 22425170 DOI: 10.1016/j.scitotenv.2012.02.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/10/2012] [Accepted: 02/18/2012] [Indexed: 04/14/2023]
Abstract
Timely assessment of the aggregate health of small-area human populations is essential for guiding the optimal investment of resources needed for preventing, avoiding, controlling, or mitigating exposure risks. Seeking those interventions yielding the greatest benefit with respect to allocation of resources is essential for making progress toward community sustainability, promoting social justice, and maintaining or improving health and well-being. More efficient approaches are needed for revealing cause-effect linkages between environmental stressors and human health and for measuring overall aggregate health of small-area populations. A new concept is presented--community health assessment via Sewage Chemical Information Mining (SCIM)--for quickly gauging overall, aggregate health status or trends for entire small-area populations. The approach--BioSCIM--would monitor raw sewage for specific biomarkers broadly associated with human disease, stress, or health. A wealth of untapped chemical information resides in raw sewage, a portion comprising human biomarkers of exposure and effects. BioSCIM holds potential for capitalizing on the presence of biomarkers in sewage for accomplishing any number of objectives. One of the many potential applications of BioSCIM could use various biomarkers of stress resulting from the collective excretion from all individuals in a local population. A prototype example is presented using a class of biomarkers that measures collective, systemic oxidative stress--the isoprostanes (prostaglandin-like free-radical catalyzed oxidation products from certain polyunsaturated fatty acids). Sampling and analysis of raw sewage hold great potential for quickly determining aggregate biomarker levels for entire communities. Presented are the basic principles of BioSCIM, together with its anticipated limitations, challenges, and potential applications in assessing community-wide health. Community health assessment via BioSCIM could allow rapid assessments and intercomparisons of health status among distinct populations, revealing hidden or emerging trends or disparities and aiding in evaluating correlations (or hypotheses) between stressor exposures and disease.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, US Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| |
Collapse
|
12
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
13
|
Isoprostanes and asthma. Biochim Biophys Acta Gen Subj 2011; 1810:1091-5. [PMID: 21596100 DOI: 10.1016/j.bbagen.2011.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/06/2011] [Accepted: 04/28/2011] [Indexed: 12/12/2022]
Abstract
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F₂-isoprostane production while under conditions with deficient antioxidant capacity, D₂- and E₂-isoprostanes are formed. F₂-isoprostanes (F₂-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F₂-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F₂-isoP functions as a marker of oxidative stress in asthma, and that F₂-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
|
14
|
Basu S. Bioactive eicosanoids: role of prostaglandin F(2α) and F₂-isoprostanes in inflammation and oxidative stress related pathology. Mol Cells 2010; 30:383-91. [PMID: 21113821 DOI: 10.1007/s10059-010-0157-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022] Open
Abstract
Oxidative stress and inflammation are supposed to be the key players of several acute and chronic diseases, and also for progressive aging process. Eicosanoids, especially prostaglandin F(2α) (PGF(2α)) and F₂-isoprostanes are endogenous compounds that are involved both in physiology and the above mentioned pathologies. These compounds are biosynthesized mainly from esterified arachidonic acid through both enzymatic and non-enzymatic free radical-catalysed reactions in vivo, respectively. They have shown to possess potent biological activities in addition to their application as biomarkers of oxidative stress and inflammation. Recent advancement of methodologies has made it possible to quantify these compounds more reliably and apply them in various in vivo studies successfully. Today, experimental and clinical studies have revealed that both PGF(2α) and F₂-isoprostanes are involved in severe acute or chronic inflammatory conditions such as rheumatic diseases, asthma, risk factors of atherosclerosis, diabetes, ischemia-reperfusion, septic shock and many others. These evidences promote that assessment of bioactive PGF(2α) and F₂-isoprostanes simultaneously in body fluids offers unique non-invasive analytical opportunity to study the function of these eicosanoids in physiology, oxidative stress-related and inflammatory diseases, and also in the determination of potency of various radical scavengers, anti-inflammatory compounds, drugs, antioxidants and diet.
Collapse
Affiliation(s)
- Samar Basu
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden,
| |
Collapse
|
15
|
AMES PAULR, BATUCA JOANAR, CIAMPA ANTONIO, IANNACCONE LUIGI, DELGADO ALVES JOSE. Clinical Relevance of Nitric Oxide Metabolites and Nitrative Stress in Thrombotic Primary Antiphospholipid Syndrome. J Rheumatol 2010; 37:2523-30. [DOI: 10.3899/jrheum.100494] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective.To assess the role of nitrite (NO2−), nitrate (NO3−), and nitrative stress in thrombotic primary antiphospholipid syndrome (PAPS).Methods.We investigated 46 patients with PAPS: 21 asymptomatic but persistent carriers of antiphospholipid antibodies (PCaPL), 38 patients with inherited thrombophilia (IT), 33 patients with systemic lupus erythematosus (SLE), and 29 healthy controls (CTR). IgG anticardiolipin (aCL), IgG anti-beta2-glycoprotein I (anti-ß2-GPI), IgG anti-high density lipoprotein (aHDL), IgG anti-apolipoprotein A-I (aApoA-I), crude nitrotyrosine (NT) (an indicator of nitrative stress), and high sensitivity C-reactive protein (CRP) were measured by immunoassays. Plasma nitrite (NO2−), nitrate (NO3−), and total antioxidant capacity (TAC) were measured by colorimetric spectroscopic assays.Results.Average plasma NO2−was lower in PAPS, PCaPL, and IT (p < 0.0001); average NO3−was highest in SLE (p < 0.0001), whereas average NT was higher in PAPS and SLE (p = 0.01). In thrombotic PAPS, IgG aCL titer and number of vascular occlusions negatively predicted NO2−(p = 0.03 and p = 0.001, respectively), whereas arterial occlusions and smoking positively predicted NO3−(p = 0.05 and p = 0.005), and CRP positively predicted NT (p = 0.004). In the PCaPL group IgG aCL negatively predicted NO3−(p = 0.03). In the SLE group IgG aCL negatively predicted NO2−(p = 0.03) and NO3−(p = 0.02).Conclusion.PAPS is characterized by decreased NO2−in relation to type and number of vascular occlusions and to aPL titers. Nitrative stress and low grade inflammation are linked phenomena in PAPS and may have implications for thrombosis and atherosclerosis.
Collapse
|
16
|
Abstract
Oxidative stress is implicated as one of the key causes underlying many diseases. Free radicals are important constituents of basal physiology. Assessment of free radicals or the end products of their action has proved to be difficult. Consequently, authentication of the contribution of free radicals to physiology and pathology has usually been equivocal. Isoprostanes are biosynthesized in vivo, predominantly through free radical attack on arachidonic acid and are now regarded as robust biomarkers of oxidative stress in vivo. Isoprostanes are associated with many human diseases, and their concentration is altered over the course of normal human pregnancy, but their (patho)physiological roles have not yet been clearly defined. Measurement of F(2)-isoprostanes in body fluids could offer a unique analytical opportunity to study the role of free radicals in physiology and pathophysiology in order to comprehend both oxidative strain and oxidative stress.
Collapse
Affiliation(s)
- Samar Basu
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 2009; 46:241-81. [DOI: 10.3109/10408360903142326] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Distinct pathophysiologic pathways induced by in vitro infection and cigarette smoke in normal human fetal membranes. Am J Obstet Gynecol 2009; 200:334.e1-8. [PMID: 19254594 DOI: 10.1016/j.ajog.2008.12.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/28/2008] [Accepted: 12/29/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was to document distinct pathways that are initiated by lipopolysaccharide and cigarette smoke stimulation of normal term fetal membranes. STUDY DESIGN Fetal membranes from nonsmoking women at term, not in labor, from cesarean deliveries were placed in an organ explant system and stimulated with cigarette smoke extracts (CSEs), lipopolysaccharide, or lipopolysaccharide + CSE. Media were assayed for an interleukin (IL)-1beta, -1 receptor antagonist, -6, -8, -10, tumor necrosis factor alpha, soluble tumor necrosis factor receptors 1 and 2, and matrix metalloproteinases 1, 2, 3, 8, 9, and 12. Tissue homogenates were assayed for apoptotic markers (p53, caspase 3 activity, and cleaved poly [ADP-ribose] polymerase-1). RESULTS Lipopolysaccharide stimulation resulted in higher cytokine and matrix metalloproteinase concentrations, whereas it was lower after CSE and CSE + lipopolysaccharide stimulations, compared with control specimens. Apoptotic factors were several folds higher after CSE or CSE + lipopolysaccharide stimulation, compared with control specimens or lipopolysaccharide stimulations. CONCLUSION Cigarette smoke showed immunoinhibitory properties that potentially were mediated by apoptosis and lipopolysaccharide-induced proinflammatory response. This study demonstrated 2 independent pathophysiologic pathways that may alter pregnancy outcome.
Collapse
|
19
|
Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008; 10:1405-34. [PMID: 18522490 DOI: 10.1089/ars.2007.1956] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is implicated as one of the major underlying mechanisms behind many acute and chronic diseases, and involved in normal aging. However, the measurement of free radicals or their end products is complicated. Thus, proof of association of free radicals in pathologic conditions has been absent. Isoprostanes are prostaglandin-like bioactive compounds that are biosynthesized in vivo independent of cyclooxygenases, principally through free-radical catalyzation of arachidonic acid. Isoprostanes are now considered to be reliable biomarkers of oxidative stress, as evidenced by an autonomous study organized recently by the National Institutes of Health (NIH) in the United States. A number of these compounds have potent biologic activities such as vasoconstrictive and certain inflammatory properties. Isoprostanes are involved in many human diseases. Additionally, elevated levels of F(2)-isoprostanes have been seen in normal human pregnancy and after intake of some fatty acids, but their physiologic assignments have not yet been distinctive. This evidence indicates that measurement of bioactive F(2)-isoprostanes in body fluids offers a unique noninvasive analytic utensil to study the role of free radicals in physiology, oxidative stress-related diseases, experimental acute or chronic inflammatory conditions, and also in the assessment of various antioxidants, radical scavengers, and drugs.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Rossner P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat Res 2008; 642:21-7. [PMID: 18436262 DOI: 10.1016/j.mrfmmm.2008.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/29/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (p<0.01); summer 2006, 0.62 versus 0.60 (p=0.90); winter 2006, 0.76 versus 0.51 (p<0.001); carbonyl levels (nmol/ml plasma): winter 2005, 14.1 versus 12.9 (p=0.001); summer 2006, 17.5 versus 16.6 (p=0.26); winter 2006, 13.5 versus 11.7 (p<0.001). Multivariate logistic regression identified PM levels measured by stationary monitors over a period 25-27 days before urine collection as a factor positively associated with lipid peroxidation, while protein oxidation levels correlated negatively with both c-PAHs and PM levels. In conclusion, markers of oxidative damage to lipids and proteins were increased in bus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.
Collapse
Affiliation(s)
- Pavel Rossner
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine, AS CR vvi, Vídenská 1083, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
21
|
Chen C, Arjomandi M, Balmes J, Tager I, Holland N. Effects of chronic and acute ozone exposure on lipid peroxidation and antioxidant capacity in healthy young adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1732-7. [PMID: 18087591 PMCID: PMC2137098 DOI: 10.1289/ehp.10294] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 09/11/2007] [Indexed: 05/04/2023]
Abstract
BACKGROUND There is growing evidence for the role of oxidative damage in chronic diseases. Although ozone (O3) is an oxidant pollutant to which many people are exposed, few studies have examined whether O3 induces oxidative stress in humans. OBJECTIVES This study was designed to assess the effect of short-and long-term O(3) exposures on biomarkers of oxidative stress in healthy individuals. METHODS Biomarkers of lipid peroxidation, 8-isoprostane (8-iso-PGF), and antioxidant capacity ferric reducing ability of plasma (FRAP) were analyzed in two groups of healthy college students with broad ranges of ambient O3 exposure during their lifetimes and previous summer recess either in Los Angeles (LA, n = 59) or the San Francisco Bay Area (SF, n = 61). RESULTS Estimated 2-week, 1-month, and lifetime O3 exposures were significantly correlated with elevated 8-iso-PGF. Elevated summertime exposures resulted in the LA group having higher levels of 8-iso-PGF than the SF group (p = 0.02). Within each location, males and females had similar 8-iso-PGF. No regional difference in FRAP was observed, with significantly higher FRAP in males in both groups (SF: p = 0.002; LA: p = 0.004). An exposure chamber substudy (n = 15) also showed a significant increase in 8-iso-PGF as well as an inhibition of FRAP immediately after a 4-hr exposure to 200 ppb O3, with near normalization by 18 hr in both biomarkers. CONCLUSIONS Long-term exposure to O3 is associated with elevated 8-iso-PGF, which suggests that 8-iso-PGF is a good biomarker of oxidative damage related to air pollution.
Collapse
Affiliation(s)
- Connie Chen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
| | - Mehrdad Arjomandi
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| | - John Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Ira Tager
- Division of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, USA
- Address correspondence to N. Holland, Environmental Health Sciences, School of Public Health, University of California, Berkeley, 733 University Hall, Berkeley, CA 94720-7360 USA. Telephone: (510) 455-0561. Fax: (510) 643-5426. E-mail:
| |
Collapse
|
22
|
Tomey KM, Sowers MR, Li X, McConnell DS, Crawford S, Gold EB, Lasley B, Randolph JF. Dietary fat subgroups, zinc, and vegetable components are related to urine F2a-isoprostane concentration, a measure of oxidative stress, in midlife women. J Nutr 2007; 137:2412-9. [PMID: 17951478 PMCID: PMC2730459 DOI: 10.1093/jn/137.11.2412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Smoking, diet, and physical activity may impact chronic diseases in part by promoting or attenuating oxidative stress. We evaluated associations between lifestyle factors and urine F(2a)-isoprostanes, a marker of oxidative stress in 1610 participants of the Study of Women's Health Across the Nation (SWAN). Dietary intake and physical activity were assessed at baseline and the 5th year 05 (Y05). These data were related to Y05 urinary F(2a)-isoprostane concentration with regression analyses. Median urine F(2a)-isoprostane concentration was 433 ng/L overall, 917 ng/L in smokers [inter-quartile range (IQR): 467, 1832 ng/L], and 403 ng/L in nonsmokers (IQR: 228, 709 ng/L; P < 0.0001 for difference). Higher trans fat intake was associated with higher urine F(2a)-isoprostane concentration; partial Spearman correlations (rho(x|y)) between Y05 urine F(2a)-isoprostane concentration and trans fatty acids was 0.19 (P = 0.03) in smokers and 0.13 (P < 0.0001) in nonsmokers. Increased log trans fat intake from baseline to Y05 was associated with higher concentration of log urine F(2a)-isoprostanes in nonsmokers (beta = 0.131, SE = 0.04, P = 0.0003). In nonsmokers, the partial correlation (rho(x|y)) between lutein and urine F(2a)-isoprostane concentration was -0.13 (P < 0.0001). Increased intake of log lutein from baseline to Y05 was also associated with lower log urine F(2a)-isoprostane concentration (beta = -0.096, SE = 0.03, P = 0.0005) in nonsmokers. Increased zinc intake from baseline to Y05 was associated with lower log urine F(2a)-isoprostane concentration in smokers and nonsmokers (beta = -0.346, SE = 0.14, P = 0.01), and -0.117, 0.04 (P = 0.001), respectively]. In conclusion, diet (fat subtypes, zinc, and vegetable components) and smoking were associated with urine F(2a)-isoprostanes, a marker of oxidative stress.
Collapse
Affiliation(s)
- Kristin M. Tomey
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104
| | - MaryFran R. Sowers
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104
| | - Xizhao Li
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104
| | - Daniel S. McConnell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48104
| | - Sybil Crawford
- Department of Medicine, University of Massachusetts, Worcester, MA 01655
| | | | - Bill Lasley
- University of California, Davis, California 95616
| | - John F. Randolph
- Department of Obstetrics and Gynecology, University of Michigan Health System
| |
Collapse
|
23
|
Barnoya J, Glantz SA. Cardiovascular effects of second-hand smoke help explain the benefits of smoke-free legislation on heart disease burden. J Cardiovasc Nurs 2007; 21:457-62. [PMID: 17293735 DOI: 10.1097/00005082-200611000-00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Second-hand smoke (SHS) increases the risk of heart disease by approximately 30% in nonsmokers. Recent evidence from cities that have implemented 100% smoke-free laws has shown that myocardial infarction admissions rapidly declined after law implementation. This decline is, in part, explained by the acute and substantial cardiovascular effects of SHS, many of which are rapid and nearly as large as smoking. The cardiovascular effects of SHS include platelet activation, endothelial dysfunction, inflammation, atherosclerosis development and progression, increased oxidative stress, decreased energy metabolism, and increased insulin resistance. These effects are, on average, 80% to 90% that of chronic active smoking. However, cardiovascular function is partially recovered after SHS exposure ends. Given the evidence, cardiovascular nurses should advise their patients and relatives to avoid SHS exposure and demand smoke-free workplaces and homes.
Collapse
Affiliation(s)
- Joaquin Barnoya
- Department of Pediatrics, Unidad de Cirugía Cardiovascular de Guatemala, Guatemala.
| | | |
Collapse
|
24
|
Michoulas A, Tong V, Teng XW, Chang TKH, Abbott FS, Farrell K. Oxidative stress in children receiving valproic acid. J Pediatr 2006; 149:692-6. [PMID: 17095346 DOI: 10.1016/j.jpeds.2006.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/07/2006] [Accepted: 08/04/2006] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine whether valproic acid (VPA) influences urinary levels of 15-F2t -isoprostane (15-F2t -IsoP), a marker of oxidative stress, in children. STUDY DESIGN Morning urine samples were collected from children with epilepsy receiving VPA (n = 25), carbamazepine (n = 16), or clobazam (n = 12) for > or = 4 weeks and from age-matched control subjects (n = 39). Urinary 15-F2t -IsoP levels were determined by enzyme-linked immunosorbent assay. RESULTS The mean (+/- standard deviation) urine 15-F2t -IsoP levels (nmol/mmol Cr) were: valproic acid (0.36 +/- 0.15); carbamazepine (0.24 +/- 0.10); clobazam (0.23 +/- 0.10); control group (0.20 +/- 0.09). Patients treated with VPA had significantly elevated 15-F2t -IsoP levels when compared with the control, carbamazepine, and clobazam groups (P < .05). Multiple linear regression analysis demonstrated that younger patient age and exposure to second-hand smoke were significant predictors of elevated urine 15-F2t -IsoP levels within the control group (r2 = 0.261, P = .05 and P = .01, respectively). Subjects not exposed to second-hand smoke receiving valproic acid therapy had a significantly elevated mean urine 15-F2t -IsoP level compared to subjects not exposed to second-hand smoke in the carbamazepine, clobazam and control groups (P < .05). CONCLUSIONS These data demonstrate that treatment of children with VPA is associated with higher urinary levels of 15-F2t -IsoP, a marker of oxidative stress.
Collapse
Affiliation(s)
- Aspasia Michoulas
- Division of Neurology, Department of Pediatrics, and the Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kato T, Inoue T, Morooka T, Yoshimoto N, Node K. Short-term passive smoking causes endothelial dysfunction via oxidative stress in nonsmokers. Can J Physiol Pharmacol 2006; 84:523-9. [PMID: 16902597 DOI: 10.1139/y06-030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that passive smoking impairs vascular endothelial function and induces oxidative stress in humans. However, in most of the previous human data regarding tobacco-induced pathophysiology, vascular endothelial dysfunction and oxidative stress have been separately assessed. This study was designed to determine the association between the acute effect of passive smoking on vascular endothelial function and in-vivo oxidative stress status. We studied 30 healthy male Japanese volunteers (32 +/- 7 years) including 15 habitual smokers and 15 nonsmokers. After baseline echocardiographic, hemodynamic recording, and blood sampling, subjects were exposed to passive smoking for 30 min. Endothelium-dependent vasodilation was measured by using % flow-mediated vasodilation (%FMD) of the brachial artery and plasma levels of 8-isoprostane was measured by enzyme immunoassay before and after the passive smoking exposure. Baseline %FMD was lower (4.3% +/- 1.2% vs. 10.9% +/- 3.1%, p < 0.001) and baseline plasma 8-isoprostane level was higher (41.5 +/- 5.8 pg/mL vs. 26.9 +/- 5.4 pg/mL, p < 0.001) in smokers than those in nonsmokers. The %FMD and 8-isoprostane level did not change after passive smoking in smokers. In nonsmokers, however, the %FMD decreased (to 5.0% +/- 1.9%, p < 0.001) and the 8-isoprostane level increased (to 37.8 +/- 9.6 pg/mL, p < 0.001) significantly after 30 min passive smoking exposure, equivalently to the levels of smokers. Sixty corrected samples before and after passive smoking exposure in all patients showed a significant negative correlation between the % FMD and the plasma 8-isoprostane levels (n = 60, r = -0.69, p < 0.001). Even 30 min of passive smoking rapidly impairs vascular endothelial function, which is associated with oxidative stress. Our data provide the pathophysiological insight for the recent epidemiological evidence about the increased risk of coronary heart disease among nonsmokers exposed to passive smoking.
Collapse
Affiliation(s)
- Toru Kato
- Department of Cardiovascular and Renal Medicine, Saga University Faculty of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | |
Collapse
|
26
|
Abstract
F(2)-isoprostanes are a complex family of compounds produced from arachidonic acid via a free radical-catalyzed mechanism. Their quantification as a pathophysiological biomarker provides a unique opportunity to investigate lipid peroxidation in vascular diseases. Their measurement also provides an interesting biomarker for the rational dose selection of antioxidants in vascular diseases where oxidative stress might be involved. In addition to their use as biomarkers, some isoprostanes possess a biological activity. The 15-series F(2)- and E(2)-isoprostanes mediate vasoconstriction in different vascular beds and species. In addition, 15-F(2t)-IsoP induces smooth muscle cells mitogenesis and monocyte adhesion to endothelial cells. The data available supports but does not prove the hypothesis that isoprostanes are involved in vascular physiology and pathogenesis.
Collapse
Affiliation(s)
- Jean-Luc Cracowski
- Laboratoire de Pharmacologie, Inserm ESPRI, HP2 EA 3745, Faculté de Médecine de Grenoble, France.
| | | |
Collapse
|
27
|
Foronjy R, D'Armiento J. The Effect of Cigarette Smoke-derived Oxidants on the Inflammatory Response of the Lung. ACTA ACUST UNITED AC 2006; 6:53-72. [PMID: 23997664 DOI: 10.1016/j.cair.2006.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inhalation of cigarette smoke triggers a marked cellular influx in the lung and this inflammation is believed to play a central role in the development of smoke-related lung diseases such as asthma and COPD. Studies demonstrate that smoke-derived oxidants are a major factor in this inflammatory reaction to cigarette smoke. These oxidants can overwhelm the lung's antioxidant defenses and they can up regulate inflammation by a number of mechanisms. Free radicals directly stimulate the production of chemotactic compounds such as 8-isoprostane. In addition, smoke-derived oxidants can activate several intracellular signaling cascades including NF-κB, MAPK and AP-1. This transcriptional activation induces the expression of cytokines and intracellular adhesion molecules that facilitates the trafficking of neutrophils, macrophages and lymphocytes into the lung. Moreover, oxidants can promote chromatin remodeling that facilitates the expression of proinflammatory genes by stimulating the acetylation of histone residues in the nucleosome. This leads to conformational changes that enhance expression by rendering the gene more accessible to binding to transcriptional factors. Thus, the oxidant-antioxidant imbalance generated by cigarette smoke can promote inflammation which is critical to the functional decline that occurs in both asthma and COPD patients. Future research is needed to better define the effects of smoke-derived oxidants on lung inflammation and to determine the most efficacious strategies for generating significant antioxidant protection in the lung.
Collapse
Affiliation(s)
- Robert Foronjy
- Columbia University Medical Center, Divisions of Molecular Medicine and Pulmonary and Critical Care Medicine, New York, New York 10032
| | | |
Collapse
|