1
|
Cochran SJ, Dunigan-Russell K, Hutton GM, Nguyen H, Schladweiler MC, Jones DP, Williams WC, Fisher AA, Gilmour MI, Dye JA, Smith MR, Miller CN, Gowdy KM. Repeated exposure to eucalyptus wood smoke alters pulmonary gene and metabolic profiles in male Long-Evans rats. Toxicol Sci 2024; 199:332-348. [PMID: 38544285 PMCID: PMC11131017 DOI: 10.1093/toxsci/kfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.
Collapse
Affiliation(s)
- Samuel J Cochran
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Katelyn Dunigan-Russell
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Grace M Hutton
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Wanda C Williams
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ian Gilmour
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Janice A Dye
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Healthcare System, Decatur, Georgia 30033, USA
| | - Colette N Miller
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Bednarczuk N, Milner A, Greenough A. The Role of Maternal Smoking in Sudden Fetal and Infant Death Pathogenesis. Front Neurol 2020; 11:586068. [PMID: 33193050 PMCID: PMC7644853 DOI: 10.3389/fneur.2020.586068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Maternal smoking is a risk factor for both sudden infant death syndrome (SIDS) and sudden intrauterine unexplained death syndrome (SIUDS). Both SIDS and SIUDS are more frequently observed in infants of smoking mothers. The global prevalence of smoking during pregnancy is 1.7% and up to 8.1% of women in Europe smoke during pregnancy and worldwide 250 million women smoke during pregnancy. Infants born to mothers who smoke have an abnormal response to hypoxia and hypercarbia and they also have reduced arousal responses. The harmful effects of tobacco smoke are mainly mediated by release of carbon monoxide and nicotine. Nicotine can enter the fetal circulation and affect multiple developing organs including the lungs, adrenal glands and the brain. Abnormalities in brainstem nuclei crucial to respiratory control, the cerebral cortex and the autonomic nervous system have been demonstrated. In addition, hypodevelopment of the intermediolateral nucleus in the spinal cord has been reported. It initiates episodic respiratory movements that facilitate lung development. Furthermore, abnormal maturation and transmitter levels in the carotid bodies have been described which would make infants more vulnerable to hypoxic challenges. Unfortunately, smoking cessation programs do not appear to have significantly reduced the number of pregnant women who smoke.
Collapse
Affiliation(s)
- Nadja Bednarczuk
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Anthony Milner
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,The Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's & St Thomas' National Health Service (NHS) Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
3
|
Porzionato A, Macchi V, De Caro R. Central and peripheral chemoreceptors in sudden infant death syndrome. J Physiol 2018; 596:3007-3019. [PMID: 29645275 PMCID: PMC6068209 DOI: 10.1113/jp274355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of sudden infant death syndrome (SIDS) has been ascribed to an underlying biological vulnerability to stressors during a critical period of development. This paper reviews the main data in the literature supporting the role of central (e.g. retrotrapezoid nucleus, serotoninergic raphe nuclei, locus coeruleus, orexinergic neurons, ventral medullary surface, solitary tract nucleus) and peripheral (e.g. carotid body) chemoreceptors in the pathogenesis of SIDS. Clinical and experimental studies indicate that central and peripheral chemoreceptors undergo critical development during the initial postnatal period, consistent with the age range of SIDS (<1 year). Most of the risk factors for SIDS (gender, genetic factors, prematurity, hypoxic/hyperoxic stimuli, inflammation, perinatal exposure to cigarette smoke and/or substance abuse) may structurally and functionally affect the developmental plasticity of central and peripheral chemoreceptors, strongly suggesting the involvement of these structures in the pathogenesis of SIDS. Morphometric and neurochemical changes have been found in the carotid body and brainstem respiratory chemoreceptors of SIDS victims, together with functional signs of chemoreception impairment in some clinical studies. However, the methodological problems of SIDS research will have to be addressed in the future, requiring large and highly standardized case series. Up-to-date autopsy protocols should be produced, involving substantial, and exhaustive sampling of all potentially involved structures (including peripheral arterial chemoreceptors). Morphometric approaches should include unbiased stereological methods with three-dimensional probes. Prospective clinical studies addressing functional tests and risk factors (including genetic traits) would probably be the gold standard, allowing markers of intrinsic or acquired vulnerability to be properly identified.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Veronica Macchi
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| | - Raffaele De Caro
- Section of Anatomy, Department of NeuroscienceUniversity of PadovaItaly
| |
Collapse
|
4
|
Porzionato A, Macchi V, Stecco C, De Caro R. The carotid body in Sudden Infant Death Syndrome. Respir Physiol Neurobiol 2012; 185:194-201. [PMID: 22613076 DOI: 10.1016/j.resp.2012.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 12/01/2022]
Abstract
The aim of the present study is to provide a review of cytochemical, clinical and experimental data indicating disruption of perinatal carotid body maturation as one of the possible mechanisms underlying SIDS pathogenesis. SIDS victims have been reported to show alterations in respiratory regulation which may partly be ascribed to peripheral arterial chemoreceptors. Carotid body findings in SIDS victims, although not entirely confirmed by other authors, have included reductions in glomic tissue volume and cytoplamic granules of type I cells, changes in cytological composition (higher percentages of progenitor and type II cells) and increases in dopamine and noradrenaline contents. Prematurity and environmental factors, such as exposure to tobacco smoke, substances of abuse, hyperoxia and continuous or intermittent hypoxia, increase the risk of SIDS and are known to affect carotid body functional and structural maturation adversely, supporting a role for peripheral arterial chemoreceptors in SIDS.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Italy.
| | | | | | | |
Collapse
|