1
|
Wang KC, Lerche MH, Ardenkjær-Larsen JH, Jensen PR. Formate Metabolism in Shigella flexneri and Its Effect on HeLa Cells at Different Stages during the Infectious Process. Microbiol Spectr 2023; 11:e0063122. [PMID: 37042762 PMCID: PMC10269805 DOI: 10.1128/spectrum.00631-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Shigellosis caused by Shigella is one of the most important foodborne illnesses in global health, but little is known about the metabolic cross talk between this bacterial pathogen and its host cells during the different stages of the infection process. A detailed understanding of the metabolism can potentially lead to new drug targets remedying the pressing problem of antibiotic resistance. Here, we use stable isotope-resolved metabolomics as an unbiased and fast method to investigate how Shigella metabolizes 13C-glucose in three different environments: inside the host cells, adhering to the host cells, and alone in suspension. We find that especially formate metabolism by bacteria is sensitive to these different environments. The role of formate in pathogen metabolism is sparsely described in the literature compared to the roles of acetate and butyrate. However, its metabolic pathway is regarded as a potential drug target due to its production in microorganisms and its absence in humans. Our study provides new knowledge about the regulatory effect of formate. Bacterial metabolism of formate is pH dependent when studied alone in culture medium, whereas this effect is less pronounced when the bacteria adhere to the host cells. Once the bacteria are inside the host cells, we find that formate accumulation is reduced. Formate also affects the host cells resulting in a reduced infection rate. This was correlated to an increased immune response. Thus, intriguingly formate plays a double role in pathogenesis by increasing the virulence of Shigella and at the same time stimulating the immune response of the host. IMPORTANCE Bacterial infection is a pressing societal concern due to development of resistance toward known antibiotics. Central carbon metabolism has been suggested as a potential new target for drug development, but metabolic changes upon infection remain incompletely understood. Here, we used a cellular infection model to study how the bacterial pathogen Shigella adapts its metabolism depending on the environment starting from the extracellular medium until Shigella successfully invaded and proliferated inside host cells. The mixed-acid fermentation of Shigella was the major metabolic pathway during the infectious process, and the glucose-derived metabolite formate surprisingly played a divergent role in the pathogen and in the host cell. Our data show reduced infection rate when both host cells and bacteria were treated with formate, which correlated with an upregulated immune response in the host cells. The formate metabolism in Shigella thus potentially provides a route toward alternative treatment strategies for Shigella prevention.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pernille Rose Jensen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Liu PF, Du Y, Meng L, Li X, Liu Y. Proteomic analysis in kidneys of Atlantic salmon infected with Aeromonas salmonicida by iTRAQ. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:140-153. [PMID: 28235584 DOI: 10.1016/j.dci.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida is a major etiologic agent which induces furunculosis and is globally harmful in salmonid and turbot cultures, especially in Atlantic salmon (Salmo salar) farming. In order to improve knowledge of its poorly understood pathogenesis, we utilized high-throughput proteomics to display differentially expressed proteins in the kidney of Atlantic salmon challenged with high and low infection dose of A. salmonicida at 7 and 14 days. In quantitative proteomic assays, isobaric tags for relative and absolute quantitation (iTRAQ) combined with 2D LC-MS/MS is emerging as a powerful methodology in the search for disease-specific targets and biomarkers. In this study, 4009 distinct proteins (unused ≥ 1.3, which is a confidence ≥ 95%) were identified in three two-dimensional LC/MS/MS analyses. Then we chose 140 proteins (fold change ratio ≥ 1.5 and P < 0.01) combined with protein-protein interaction analysis to ultimately obtain 39 proteins in network which could be considered as potential biomarkers for Atlantic salmon immune responses. Nine significant differentially expressed proteins were consistent with those at the proteomic level used to validate genes at the transcriptomic level by qPCR. Collectively, these data was first reported using an iTRAQ approach to provide additional elements for consideration in the pathophysiology of A. salmonicida and pave the way to resolve the influence of this disease in Atlantic salmon.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Yishuai Du
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingjie Meng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ying Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Dalian Ocean University, Dalian, China.
| |
Collapse
|
3
|
Abaker JA, Xu TL, Jin D, Chang GJ, Zhang K, Shen XZ. Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J Dairy Sci 2016; 100:666-678. [PMID: 27865500 DOI: 10.3168/jds.2016-10871] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022]
Abstract
The aims of this study were to measure oxidative stress parameters and to investigate the molecular mechanism triggered by grain-induced subacute ruminal acidosis in mid-lactation cows. Twelve Holstein-Friesian cows with an average weight of 455±28kg were divided into 2 groups and subjected to 2 diets over 18wk: either a low-grain (forage-to-concentrate ratio=6:4) or a high-grain (forage-to-concentrate ratio=4:6) diet based on dry matter. Being fed a long-term high-grain diet resulted in a significant decrease in rumen pH and a significant increase in ruminal lipopolysaccharide (LPS) at 4 h postfeeding in the morning. The increase was also observed in LPS concentrations in the portal vein, hepatic vein, and jugular vein blood plasma as well as reduced milk yield in a high-grain diet. Cows fed a high-grain diet had lower levels of catalase and glutathione peroxidase (GPx) activity and total antioxidant capacity than cows fed a low-grain diet; however, super oxide dismutase (SOD) activity and malondialdehyde (MDA) levels were higher in both the liver and the plasma of high-grain than in low-grain cows. Positive correlations were observed between plasma LPS versus hepatic MDA, plasma MDA, and hepatic SOD activity, whereas hepatic GPx and plasma GPx were negatively correlated with plasma LPS. The relative mRNA abundances of GPX1 and CAT were significantly lower in the liver of cows fed a high-grain diet than those fed a low-grain diet, whereas SOD1 was significantly higher in cows fed a high-grain diet than cows fed a low-grain diet. The expression levels of Nrf2, NQO1, MT1E, UGT1A1, MGST3, and MT1A were downregulated, whereas NF-kB was upregulated, in cows fed a high-grain diet. Furthermore, nuclear factor E2-related factor 2 (Nrf2) total protein and mRNA levels were significantly lower than in low-grains. Our results demonstrate the relationship between the translocated LPS and the suppression of cellular antioxidant defense capacity, which lead to increased oxidative stress and suggests that the Nrf2-dependent antioxidant response may be affected by higher levels of LPS translocated to the bloodstream.
Collapse
Affiliation(s)
- J A Abaker
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - T L Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - D Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - G J Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - K Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - X Z Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
4
|
Lü A, Hu X, Wang Y, Shen X, Li X, Zhu A, Tian J, Ming Q, Feng Z. iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2014; 36:229-239. [PMID: 24269520 DOI: 10.1016/j.fsi.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The gills are large mucosal surfaces and very important portals for pathogen entry in fish. The aim of this study was to determine the gill immune response at the protein levels, the differential proteomes of the zebrafish gill response to Aeromonas hydrophila infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1338 proteins were identified and classified into the categories primarily related to cellular process (15.36%), metabolic process (11.95%) and biological regulation (8.29%). Of these, 82 differentially expressed proteins were reliably quantified by iTRAQ analysis, 57 proteins were upregulated and 25 proteins were downregulated upon bacterial infection. Gene ontology (GO) enrichment analysis showed that approximately 33 (8.8%) of the differential proteins in gills were involved in the stress and immune responses. Several upregulated proteins were observed such as complement component 5, serpin peptidase inhibitor clade A member 7, annexin A3a, histone H4, glyceraldehyde 3-phosphate dehydrogenase, creatine kinase, and peroxiredoxin. These protein expression changes were further validated at the transcript level using microarray analysis. Moreover, complement and coagulation cascades, pathogenic Escherichia coli infection and phagosome were the significant pathways identified by KEGG enrichment analysis. This is first report on proteome of fish gills against A. hydrophila infection, which contribute to understanding the defense mechanisms of the gills in fish.
Collapse
Affiliation(s)
- Aijun Lü
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xiucai Hu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Wang
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaojing Shen
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Li
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Aihua Zhu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Tian
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Qinglei Ming
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhaojun Feng
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Feng Y, Zhang JC, Xi RX. Clinical significance of inflammation factors in acute coronary syndrome from pathogenic toxin. Chin J Integr Med 2009; 15:307-12. [PMID: 19688322 DOI: 10.1007/s11655-009-0307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Indexed: 11/26/2022]
Abstract
The inflammation factors and roles of them in acute coronary syndrome (ACS) were explored. The similarity between the theory of pathogenic toxin in Chinese Medicine and the inflammation response theory in ACS was discussed. The exploration of new inflammatory factors may be helpful for Chinese Medicine in the research of ACS.
Collapse
Affiliation(s)
- Yan Feng
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | | | | |
Collapse
|
6
|
Characterization of ovine hepatic gene expression profiles in response to Escherichia coli lipopolysaccharide using a bovine cDNA microarray. BMC Vet Res 2006; 2:34. [PMID: 17134499 PMCID: PMC1684251 DOI: 10.1186/1746-6148-2-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 11/29/2006] [Indexed: 11/13/2022] Open
Abstract
Background During systemic gram-negative bacterial infections, lipopolysaccharide (LPS) ligation to the hepatic Toll-like receptor-4 complex induces the production of hepatic acute phase proteins that are involved in the host response to infection and limit the associated inflammatory process. Identifying the genes that regulate this hepatic response to LPS in ruminants may provide insight into the pathogenesis of bacterial diseases and eventually facilitate breeding of more disease resistant animals. The objective of this research was to profile the expression of ovine hepatic genes in response to Escherichia coli LPS challenge (0, 200, 400 ng/kg) using a bovine cDNA microarray and quantitative real-time PCR (qRT-PCR). Results Twelve yearling ewes were challenged iv with E. coli LPS (0, 200, 400 ng/kg) and liver biopsies were collected 4–5 hours post-challenge to assess hepatic gene expression profiles by bovine cDNA microarray and qRT-PCR analyses. The expression of CD14, C3, IL12R, NRAMP1, SOD and IGFBP3 genes was down regulated, whereas the expression of ACTHR, IFNαR, CD1, MCP-1 and GH was increased during LPS challenge. With the exception of C3, qRT-PCR analysis of 7 of these genes confirmed the microarray results and demonstrated that GAPDH is not a suitable housekeeping gene in LPS challenged sheep. Conclusion We have identified several potentially important genes by bovine cDNA microarray and qRT-PCR analyses that are differentially expressed during the ovine hepatic response to systemic LPS challenge. Their potential role in regulating the inflammatory response to LPS warrants further investigation.
Collapse
|