1
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
2
|
Nguyen M, Le Mignon M, Schnellbächer A, Wehsling M, Braun J, Baumgaertner J, Grabner M, Zimmer A. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front Bioeng Biotechnol 2023; 11:1230422. [PMID: 37680342 PMCID: PMC10482334 DOI: 10.3389/fbioe.2023.1230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions.
Collapse
Affiliation(s)
- Melanie Nguyen
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Maria Wehsling
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Julian Braun
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Jens Baumgaertner
- Biomolecule Analytics and Proteomics, Merck KGaA, Darmstadt, Germany
| | | | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
3
|
Alkandari AF, Madhyastha S, Rao MS. N-Acetylcysteine Amide against Aβ-Induced Alzheimer's-like Pathology in Rats. Int J Mol Sci 2023; 24:12733. [PMID: 37628913 PMCID: PMC10454451 DOI: 10.3390/ijms241612733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress with a depletion of glutathione is a key factor in the initiation and progression of Alzheimer's disease (AD). N-Acetylcysteine (NAC), a glutathione precursor, provides neuroprotective effects in AD animal models. Its amide form, N-Acetylcysteine amide (NACA), has an extended bioavailability compared to NAC. This study evaluates the neuroprotective effects of NACA against Aβ1-42 peptide-induced AD-like pathology in rats. Male Wistar rats (2.5 months old) were divided into five groups: Normal Control (NC), Sham (SH), Aβ, Aβ + NACA and NACA + Aβ + NACA (n = 8 in all groups). AD-like pathology was induced by the intracerebroventricular infusion of Aβ1-42 peptide into the lateral ventricle. NACA (75 mg/kg) was administered either as a restorative (i.e., injection of NACA for 7 consecutive days after inducing AD-like pathology (Aβ + N group)), or as prophylactic (for 7 days before and 7 days after inducing the pathology (N + Aβ + N group)). Learning and memory, neurogenesis, expression of AD pathology markers, antioxidant parameters, neuroprotection, astrogliosis and microgliosis were studied in the hippocampus and the prefrontal cortex. All data were analyzed with a one-way ANOVA test followed by Bonferroni's multiple comparison test. NACA treatment reversed the cognitive deficits and reduced oxidative stress in the hippocampus and prefrontal cortex. Western blot analysis for Tau, Synaptophysin and Aβ, as well as a histopathological evaluation through immunostaining for neurogenesis, the expression of neurofibrillary tangles, β-amyloid peptide, synaptophysin, neuronal morphology and gliosis, showed a neuroprotective effect of NACA. In conclusion, this study demonstrates the neuroprotective effects of NACA against β-amyloid induced AD-like pathology.
Collapse
Affiliation(s)
| | - Sampath Madhyastha
- Department of Anatomy, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (A.F.A.); (M.S.R.)
| | | |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Cataract is one of the leading causes of blindness worldwide and surgery is the only available treatment. Pharmacological therapy has emerged as a potential approach to combat the global shortage of surgery due to a lack of access and resources. This review summarizes recent findings in pharmacological treatment and delivery, focusing on drugs that target oxidative stress and the aggregation of crystallins. RECENT FINDINGS Antioxidants and oxysterols have been shown to improve or reverse lens opacity in cataract models. N-acetylcysteine amide and N-acetylcarnosine are two compounds that have increased bioavailability over their precursors, alleviating the challenges that have come with topical administration. Studies have shown promising results, with topical N-acetylcarnosine clinically decreasing lens opacity. Furthermore, lanosterol, and more recently 5-cholesten-3b,25-diol (VP1-001), have been reported to combat the aggregation of crystallins in vivo and ex vivo . Delivery has improved with the use of nanotechnology, but further research is needed to solidify these compounds' therapeutic effects on cataracts and improve delivery methods to the lens. SUMMARY Although further research in drug dosage, delivery, and mechanisms will need to be conducted, pharmacologic therapies have provided new strategies and treatments for the reversal of cataracts.
Collapse
|
5
|
Pfaff A, Chernatynskaya A, Vineyard H, Ercal N. Thiol antioxidants protect human lens epithelial (HLE B-3) cells against tert-butyl hydroperoxide-induced oxidative damage and cytotoxicity. Biochem Biophys Rep 2022; 29:101213. [PMID: 35128081 PMCID: PMC8808075 DOI: 10.1016/j.bbrep.2022.101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- ATCC, American Type Culture Collection
- Antioxidant
- Carboxy-H2DCFDA, 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate
- Cataract
- EMEM, Eagle's minimum essential medium
- FBS, fetal bovine serum
- FDA, United States Food and Drug Administration
- GSH, glutathione
- GSSG, glutathione disulfide
- Glutathione
- H2O2, hydrogen peroxide
- HLE B-3, human (eye) lens epithelial cell line B-3
- Lens
- MPG, N-(2-mercaptopropionyl)glycine
- MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
- NAC, N-acetylcysteine
- NACA, N-acetylcysteine amide
- OH•, hydroxyl radical
- Oxidative stress
- PBS, phosphate-buffered saline
- ROS, reactive oxygen species
- Thiol
- tBHP, tert-butyl hydroperoxide
Collapse
Affiliation(s)
| | | | - Hannah Vineyard
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, 104 Schrenk Hall, 400 W. 11th Street, Rolla, MO, 65409, USA
| |
Collapse
|
6
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
7
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
8
|
Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 2021; 55:595-625. [PMID: 34181503 DOI: 10.1080/10715762.2021.1876854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
9
|
Schmidt C, Wehsling M, Le Mignon M, Wille G, Rey Y, Schnellbaecher A, Zabezhinsky D, Fischer M, Zimmer A. Lactoyl leucine and isoleucine are bioavailable alternatives for canonical amino acids in cell culture media. Biotechnol Bioeng 2021; 118:3395-3408. [PMID: 33738790 PMCID: PMC8453549 DOI: 10.1002/bit.27755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 11/08/2022]
Abstract
Increasing demands for protein-based therapeutics such as monoclonal antibodies, fusion proteins, bispecific molecules, and antibody fragments require researchers to constantly find innovative solutions. To increase yields and decrease costs of next generation bioprocesses, highly concentrated cell culture media formulations are developed but often limited by the low solubility of amino acids such as tyrosine, cystine, leucine, and isoleucine, in particular at physiological pH. This study sought to investigate highly soluble and bioavailable derivatives of leucine and isoleucine that are applicable for fed-batch processes. N-lactoyl-leucine and N-lactoyl-isoleucine sodium salts were tested in cell culture media and proved to be beneficial to increase the overall solubility of cell culture media formulations. These modified amino acids proved to be bioavailable for various Chinese hamster ovary (CHO) cells and were suitable for replacement of canonical amino acids in cell culture feeds. The quality of the final recombinant protein was studied in bioprocesses using the derivatives, and the mechanism of cleavage was investigated in CHO cells. Altogether, both N-lactoyl amino acids represent an advantageous alternative to canonical amino acids to develop highly concentrated cell culture media formulations to support next generation bioprocesses.
Collapse
Affiliation(s)
| | | | | | - Gregor Wille
- Merck Life Science, Process Development, Buchs, Switzerland
| | - Yannick Rey
- Merck Life Science, Process Development, Buchs, Switzerland
| | | | | | - Markus Fischer
- Merck Life Science, Process Development, Buchs, Switzerland
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Darmstadt, Germany
| |
Collapse
|
10
|
Mantawy EM, Said RS, Kassem DH, Abdel-Aziz AK, Badr AM. Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against ϒ-radiation-induced premature ovarian failure in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111190. [PMID: 32871518 DOI: 10.1016/j.ecoenv.2020.111190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Radiotherapy represents a critical component in cancer treatment. However, premature ovarian failure (POF) is a major hurdle of deleterious off-target effects in young females, which, therefore, call for an effective radioprotective agent. The present study aimed to explore the molecular mechanism underlying the protective effects of N-acetyl-L-cysteine (NAC) against γ-radiation-provoked POF. Immature female Sprague-Dawley rats were orally-administered NAC (50 mg/kg) and were exposed to a single whole-body dose of 3.2 Gy ϒ-radiation. NAC administration remarkably reversed abnormal serum estradiol and anti-Müllerian hormone levels by 73% and 40%, respectively while ameliorating the histopathological and ultrastructural alterations-triggered by γ-radiation. Mechanistically, NAC alleviated radiation-induced oxidative damage through significantly increased glutathione peroxidase activity by 102% alongside with decreasing NADPH oxidase subunits (p22 and NOX4) gene expressions by 48% and 38%, respectively compared to the irradiated untreated group. Moreover, NAC administration achieved its therapeutic effect by inhibiting ovarian apoptosis-induced by radiation through downregulating p53 and Bax levels by 33% and 16%, respectively while increasing the Bcl-2 mRNA expression by 135%. Hence, the Bax/Bcl2 ratio and cytochrome c expression were subsequently reduced leading to decreased caspase 3 activity by 43%. Importantly, the anti-apoptotic property of NAC could be attributed to inactivation of MAPK signaling molecules; p38 and JNK, and enhancement of the ovarian vascular endothelial growth factor (VEGF) expression. Taken together, our results suggest that NAC can inhibit radiotherapy-induced POF while preserving ovarian function and structure through upregulating VEGF expression and suppressing NOX4/MAPK/p53 apoptotic signaling.
Collapse
Affiliation(s)
- Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amira Mohamed Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Schmidt C, Seibel R, Wehsling M, Le Mignon M, Wille G, Fischer M, Zimmer A. Keto leucine and keto isoleucine are bioavailable precursors of their respective amino acids in cell culture media. J Biotechnol 2020; 321:1-12. [DOI: 10.1016/j.jbiotec.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/13/2023]
|
12
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|
13
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
14
|
Reis CG, Mocelin R, Benvenutti R, Marcon M, Sachett A, Herrmann AP, Elisabetsky E, Piato A. Effects of N-acetylcysteine amide on anxiety and stress behavior in zebrafish. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:591-601. [PMID: 31768573 DOI: 10.1007/s00210-019-01762-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.
Collapse
Affiliation(s)
- Carlos G Reis
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ricieri Mocelin
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Radharani Benvenutti
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Matheus Marcon
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil
| | - Ana P Herrmann
- Programa de Pós-graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-graduação em Ciência Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Sarmento Leite, 500/305, Porto Alegre, RS, 90050-170, Brazil. .,Programa de Pós-graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms 2019; 7:microorganisms7040097. [PMID: 30987157 PMCID: PMC6518429 DOI: 10.3390/microorganisms7040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.
Collapse
|
16
|
Malhotra P, Gupta AK, Singh D, Mishra S, Singh SK, Kumar R. N-Acetyl-tryptophan glucoside (NATG) protects J774A.1 murine macrophages against gamma radiation-induced cell death by modulating oxidative stress. Mol Cell Biochem 2018; 447:9-19. [PMID: 29372532 DOI: 10.1007/s11010-018-3289-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022]
Abstract
Immune system is amongst the most radiosensitive system to radiation-induced cellular and molecular damage. Present study was focused on the evaluation of radioprotective efficacy of a novel secondary metabolite, N-acetyl tryptophan glucoside (NATG), isolated from a radioresistant bacterium Bacillus sp. INM-1 using murine macrophage J774A.1 cells experimental model. Radioprotective efficacy of NATG against radiation-induced DNA damage and apoptosis was estimated using phosphatidyl-serine-externalization Annexin V-PI and Comet assay analysis. Radiation-induced cell death is the outcome of oxidative stress caused by free radicals. Therefore, perturbations in antioxidant enzymes i.e., superoxide dismutase (SOD), catalase, glutathione-s-transferase (GST) and GSH activities in irradiated and NATG pre-treated irradiated J774A.1 cells were studied. Results of the present study demonstrated that NATG pre-treated (0.25 µg/ml) irradiated (20 Gy) cells showed significant (p < 0.05) reduction in apoptotic cells index at 4-48 h as compared to radiation alone cells. Comet assay exhibited significant protection to radiation-induced DNA damage in J774A.1 cells. Significantly shortened DNA tail length, increased % Head DNA contents and lower olive tail moment was observed in NATG pre-treated irradiated cells as compared to radiation alone cells. Further, significant increase in catalase (~ 3.9 fold), SOD (67.52%), GST (~ 1.9 fold), and GSH (~ 2.5 fold) levels was observed in irradiated cells pre-treated with NATG as compared to radiation-alone cells. In conclusion, current study suggested that NATG pre-treatment to irradiated cells enhanced antioxidant enzymes in cellular milieu that may contribute to reduce oxidative stress and decrease DNA damage which resulted to significant reduction in the cell death of irradiated macrophages.
Collapse
Affiliation(s)
- Poonam Malhotra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Ashutosh K Gupta
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Darshana Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Saurabh Mishra
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Shravan K Singh
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Raj Kumar
- Division of Radioprotective Drug Development and Research, Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India. .,Radiation Biotechnology Group, Radiation Biosciences Division, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
17
|
Ha TK, Hansen AH, Kol S, Kildegaard HF, Lee GM. Baicalein Reduces Oxidative Stress in CHO Cell Cultures and Improves Recombinant Antibody Productivity. Biotechnol J 2017; 13:e1700425. [DOI: 10.1002/biot.201700425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Tae Kwang Ha
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kgs. Lyngby Denmark
| | - Anders Holmgaard Hansen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kgs. Lyngby Denmark
| | - Stefan Kol
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kgs. Lyngby Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kgs. Lyngby Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kgs. Lyngby Denmark
- Department of Biological Sciences; KAIST; Daejeon Republic of Korea
| |
Collapse
|
18
|
Maria OM, Eliopoulos N, Muanza T. Radiation-Induced Oral Mucositis. Front Oncol 2017; 7:89. [PMID: 28589080 PMCID: PMC5439125 DOI: 10.3389/fonc.2017.00089] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Faculty of Medicine, Surgery Department, McGill University, Montreal, QC, Canada
| | - Thierry Muanza
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
The Protective Effect of N-Acetylcysteine on Ionizing Radiation Induced Ovarian Failure and Loss of Ovarian Reserve in Female Mouse. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4176170. [PMID: 28607932 PMCID: PMC5457747 DOI: 10.1155/2017/4176170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022]
Abstract
Ionizing radiation may cause irreversible ovarian failure, which, therefore, calls for an effective radioprotective reagent. The aim of the present study was to evaluate the potential radioprotective effect of N-acetylcysteine (NAC) on ionizing radiation induced ovarian failure and loss of ovarian reserve in mice. Kun-Ming mice were either exposed to X-irradiation (4 Gy), once, and/or treated with NAC (300 mg/kg), once daily for 7 days before X-irradiation. We examined the serum circulating hormone levels and the development of ovarian follicles as well as apoptosis, cell proliferation, and oxidative stress 24 hours after X-irradiation. In addition, morphological observations on the endometrial luminal epithelium and the fertility assessment were performed. We found that NAC successfully restored the ovarian and uterine function, enhanced the embryo implantation, improved the follicle development, and altered the abnormal hormone levels through reducing the oxidative stress and apoptosis level in granulosa cells while promoting the proliferation of granulosa cells. In conclusion, the radioprotective effect of NAC on mice ovary from X-irradiation was assessed, and our results suggested that NAC can be a potential radioprotector which is capable of preventing the ovarian failure occurrence and restoring the ovarian reserve.
Collapse
|
20
|
Maddirala Y, Tobwala S, Karacal H, Ercal N. Prevention and reversal of selenite-induced cataracts by N-acetylcysteine amide in Wistar rats. BMC Ophthalmol 2017; 17:54. [PMID: 28446133 PMCID: PMC5405552 DOI: 10.1186/s12886-017-0443-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The present study sought to evaluate the efficacy of N-acetylcysteine amide (NACA) eye drops in reversing the cataract formation induced by sodium selenite in male Wistar rat pups. METHODS Forty male Wistar rat pups were randomly divided into a control group, an N-acetylcysteine amide-only group, a sodium selenite-induced cataract group, and a NACA-treated sodium selenite-induced cataract group. Sodium selenite was injected intraperitoneally on postpartum day 10, whereas N-acetylcysteine amide was injected intraperitoneally on postpartum days 9, 11, and 13 in the respective groups. Cataracts were evaluated at the end of week 2 (postpartum day 14) when the rat pups opened their eyes. N-acetylcysteine amide eye drops were administered beginning on week 3 until the end of week 4 (postpartum days 15 to 30), and the rats were sacrificed at the end of week 4. Lenses were isolated and examined for oxidative stress parameters such as glutathione, lipid peroxidation, and calcium levels along with the glutathione reductase and thioltransferase enzyme activities. Casein zymography and Western blot of m-calpain were performed using the water soluble fraction of lens proteins. RESULTS Morphological examination of the lenses in the NACA-treated group indicated that NACA was able to reverse the cataract grade. In addition, glutathione level, thioltransferase activity, m-calpain activity, and m-calpain level (as assessed by Western blot) were all significantly higher in the NACA-treated group than in the sodium selenite-induced cataract group. Furthermore, sodium selenite- injected rat pups had significantly higher levels of malondialdehyde, glutathione reductase enzyme activity, and calcium levels, which were reduced to control levels upon treatment with NACA. CONCLUSIONS The data suggest that NACA has the potential to significantly improve vision and decrease the burden of cataract-related loss of function. Prevention and reversal of cataract formation could have a global impact. Development of pharmacological agents like NACA may eventually prevent cataract formation in high-risk populations and may prevent progression of early-stage cataracts. This brings a paradigm shift from expensive surgical treatment of cataracts to relatively inexpensive prevention of vision loss.
Collapse
Affiliation(s)
- Yasaswi Maddirala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Shakila Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| | - Humeyra Karacal
- Department of Ophthalmology, Washington University, St. Louis, MO 63110 USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409 USA
| |
Collapse
|
21
|
Liu RM, Li YB, Liang XF, Liu HZ, Xiao JH, Zhong JJ. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system. Chem Biol Interact 2015; 240:134-44. [PMID: 26282491 DOI: 10.1016/j.cbi.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents.
Collapse
Affiliation(s)
- Ru-Ming Liu
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China
| | - Ying-Bo Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Feng Liang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hui-Zhou Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jian-Hui Xiao
- Guizhou Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, PR China.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, PR China.
| |
Collapse
|
22
|
Mishra S, Bansal DD, Malhotra P, K Reddy DS, Jamwal VS, Patel DD, Gupta AK, Singh PK, Javed S, Kumar R. Semiquinone fraction isolated from Bacillus sp. INM-1 protects hepatic tissues against γ-radiation induced toxicity. ENVIRONMENTAL TOXICOLOGY 2014; 29:1471-1478. [PMID: 23766268 DOI: 10.1002/tox.21877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Present study was focused on evaluation of a semiquinone glucoside derivative (SQGD) isolated from radioresistant bacterium Bacillus sp. INM-1 for its ability against γ radiation induced oxidative stress in irradiated mice. Animals were divided into four group, i.e., (i) untreated control mice; (ii) SQGD treated (50 mg/kg b. wt. i.p.) mice; (iii) irradiated (10 Gy) mice; and (iv) irradiated mice which were pre-treated (-2 h) with SQGD (50 mg/kg b. wt. i.p.). Following treatment, liver homogenates of the treated mice were subjected to endogenous antioxidant enzymes estimation. Result indicated that SQGD pre-treatment, significantly (P < 0.05) induced superoxide dismutase (SOD) (19.84 ± 2.18% at 72 h), catalase (CAT) (26.47 ± 3.11% at 12 h), glutathione (33.81 ± 1.99% at 24 h), and glutathione-S-transferase (24.40 ± 2.65% at 6 h) activities in the liver of mice as compared with untreated control. Significant (P < 0.05) induction in SOD (50.04 ± 5.59% at 12 h), CAT (62.22 ± 7.50 at 72 h), glutathione (42.92 ± 2.28% at 24 h), and glutathione-S-transferase (46.65 ± 3.25 at 12 h) was observed in irradiated mice which were pre-treated with SQGD compared with only irradiated mice. Further, significant induction in ABTS(+) radicals (directly proportional to decrease mM Trolox equivalent) was observed in liver homogenate of H2 O2 treated mice which were found to be significantly inhibited in H2 O2 treated mice pre-treated with SQGD. Thus, it can be concluded that SQGD treatment neutralizes oxidative stress caused by irradiation not only by enhancing endogenous antioxidant enzymes but also by improving total antioxidant status of cellular system and thus cumulative effect of the phenomenon may contributes to radioprotection.
Collapse
Affiliation(s)
- Saurabh Mishra
- Radiation Biotechnology Laboratory, Department of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Consequences of lethal-whole-body gamma radiation and possible ameliorative role of melatonin. ScientificWorldJournal 2014; 2014:621570. [PMID: 25431791 PMCID: PMC4238234 DOI: 10.1155/2014/621570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/07/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023] Open
Abstract
Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity.
Collapse
|
24
|
Sunitha K, Hemshekhar M, Thushara RM, Santhosh MS, Yariswamy M, Kemparaju K, Girish KS. N-Acetylcysteine amide: a derivative to fulfill the promises of N-Acetylcysteine. Free Radic Res 2013; 47:357-67. [DOI: 10.3109/10715762.2013.781595] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Deshmukh R, Trivedi V. Methemoglobin exposure produces toxicological effects in macrophages due to multiple ROS spike induced apoptosis. Toxicol In Vitro 2012; 27:16-23. [PMID: 23041250 DOI: 10.1016/j.tiv.2012.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/28/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
Abstract
Macrophages are an integral part of the immune system, required to produce a robust immune response against an infectious organism. Presence of methemoglobin in body fluids such as blood, cerebrospinal fluid and urine is associated with tissue damage. We tested cytotoxic effects of MetHb and underlying molecular events in mouse macrophage cell line J774A.1. MetHb exposure dose dependently reduced macrophage viability in an MTT assay. Light microscopy and scanning electron microscopic (SEM) observation of MetHb treated macrophage indicated death (less number of cells per field), severe damage to membrane structure and accumulation of particulate matter in the cytosol. The macrophage death during MetHb exposure was due to induction of apoptosis as indicated by annexin-V/FITC staining and DNA fragmentation analysis. MetHb treatment generated a periodic ROS spikes with time in the macrophage cytosol to develop oxidative stress. Scavenging ROS spikes with NAC, mannitol or PBN dose dependently protected macrophages against MetHb induced toxicity, apoptosis and cellular membrane damage. Our work highlighted the contributions of MetHb mediated toxicity toward macrophage and its potential role in tissue damage and immune depression during malaria and other hemolytic disorders.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Malaria Research Group, Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
| | | |
Collapse
|
26
|
Demirkol O, Zhang X, Ercal N. Oxidative effects of Tartrazine (CAS No. 1934-21-0) and New Coccin (CAS No. 2611-82-7) azo dyes on CHO cells. J Verbrauch Lebensm 2012. [DOI: 10.1007/s00003-012-0782-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhang X, Tobwala S, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice. Hum Exp Toxicol 2012; 31:931-44. [DOI: 10.1177/0960327112438287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH), a highly addictive drug used worldwide, induces oxidative stress in various animal organs, especially the brain. This study evaluated oxidative damage caused by METH to tissues in CD-1 mice and identified a therapeutic drug that could protect against METH-induced toxicity. Male CD-1 mice were pretreated with a novel thiol antioxidant, N-acetylcysteine amide (NACA, 250 mg/kg body weight) or saline. Following this, METH (10 mg/kg body weight) or saline intraperitoneal injections were administered every 2 h over an 8-h period. Animals were killed 24 h after the last exposure. NACA-treated animals exposed to METH experienced significantly lower oxidative stress in their kidneys, livers, and brains than the untreated group, as indicated by their levels of glutathione, malondialdehyde, and protein carbonyl and their catalase and glutathione peroxidase activity. This suggests that METH induces oxidative stress in various organs and that a combination of NACA as a neuro- or tissue-protective agent, in conjunction with current treatment, might effectively treat METH abusers.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - S Tobwala
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - N Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
28
|
W. Carey J, Tobwala S, Zhang X, Banerjee A, Ercal N, Y. Pinarci E, Karacal H. N-acetyl-L-cysteine amide protects retinal pigment epithelium against methamphetamine-induced oxidative stress. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbpc.2012.32012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Shirazi A, Mihandoost E, Mohseni M, Ghazi-Khansari M, Rabie Mahdavi S. Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med 2011; 29:65-74. [PMID: 22177584 DOI: 10.1016/j.ejmp.2011.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/15/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022] Open
Abstract
During radiotherapy, ionizing irradiation interacts with biological systems to produce free radicals, which attacks various cellular components. The hematopoietic system is well-known to be radiosensitive and its damage may be life-threatening. Melatonin synergistically acts as an immunostimulator and antioxidant. In this study we used a total of 120 rats with 20 rats in each group. Group 1 did not receive melatonin or irradiation (Control group), Group 2 received only 10 mg/kg melatonin (Mel group), Group 3 exposed to dose of 2 Gy irradiation (2 Gy Rad group), Group 4 exposed to 8 Gy irradiation (8 Gy Rad group), Group 5 received 2 Gy irradiation plus 10 mg/kg melatonin (Mel +2 Gy Rad group) and Group 6 received 8 Gy irradiation plus 10 mg/kg melatonin (Mel+8 Gy Rad group). Following exposure to radiation, five rats from each group were sacrificed at 4, 24, 48 and 72 h. Exposure to different doses of irradiation resulted in a dose-dependent decline in the antioxidant enzymes activity and lymphocyte count (LC) and an increase in the nitric oxide (NO) levels of the serum. Pre-treatment with melatonin (10 mg/kg) ameliorates harmful effects of 2 and 8 Gy irradiation by increasing lymphocyte count(LC) as well as antioxidant enzymes activity and decreasing NO levels at all time-points. In conclusion 10 mg/kg melatonin is likely to be a threshold concentration for significant protection against lower dose of 2 Gy gamma irradiation compared to higher dose of 8 Gy. Therefore, it seems that radio-protective effects of melatonin are dose-dependent.
Collapse
Affiliation(s)
- Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Keshavarz Blvd., Poursina Ave., Tehran 468, Iran.
| | | | | | | | | |
Collapse
|
30
|
Kim JK, Han M, Nili M. Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation. CHEMOSPHERE 2011; 85:1635-1638. [PMID: 21962883 DOI: 10.1016/j.chemosphere.2011.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 05/31/2023]
Abstract
Organisms are exposed to natural radiations from cosmic or terrestrial origins. Furthermore the combined action of radiation with various chemicals is an inevitable feature of modern life. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. N-acetyl-L-cysteine (NAC) is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been reported. Synergistic effects of radiation and mercury chloride on human cells was previously reported by the authors. Based on the previous report, this study was designed to assess the synergistic effects of radiation and mercury chloride on fish hepatoma cells, as well as to investigate the protective effects of NAC on the cells. The cytotoxicity of radiation was enhanced in the presence of mercury chloride. NAC in lower concentrations prevented cells from death after irradiation with lower doses (<300 Gy) while it did not prevent cells from radiation-induced death after irradiation with higher doses (300, 500 Gy). The intracellular glutathione (GSH) levels significantly decreased after irradiation while the combined treatment of NAC and radiation alleviated the decrease in the GSH levels. The investigations give a clue for the action mechanism of synergistic or protective effects of NAC on the cells. Due to their high resistance to ionizing radiation, the PLHC-1 cells can be effectively used as a screening tool for assessing the combined effects of radiation with toxic chemicals.
Collapse
Affiliation(s)
- Jin Kyu Kim
- Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup 580-185, Republic of Korea.
| | | | | |
Collapse
|
31
|
Ferreira LF, Campbell KS, Reid MB. Effectiveness of sulfur-containing antioxidants in delaying skeletal muscle fatigue. Med Sci Sports Exerc 2011; 43:1025-31. [PMID: 20980926 DOI: 10.1249/mss.0b013e3182019a78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Reactions involving thiol biochemistry seem to play a crucial role in skeletal muscle fatigue. N-acetylcysteine amide (NACA) and L-ergothioneine (ERGO) are thiol-based antioxidants available for human use that have not been evaluated for effects on muscle fatigue. PURPOSE To test the hypothesis that NACA and ERGO delay skeletal muscle fatigue. METHODS We exposed mouse diaphragm fiber bundles to buffer (CTRL), NACA, ERGO, or N-acetylcysteine (NAC; positive control). Treatments were performed in vitro using 10 mM for 60 min at 37 °C. After treatment, we determined the muscle force-frequency and fatigue characteristics. RESULTS The force-frequency relationship was shifted to the left by ERGO and to the right by NACA compared with CTRL and NAC. Maximal tetanic force was similar among groups. The total force-time integral (FTI; N · s · cm) during the fatigue trial was decreased by NACA (420 ± 35, P < 0.05), unaffected by ERGO (657 ± 53), and increased by NAC (P < 0.05) compared with CTRL (581 ± 54). The rate of contraction (dF/dtMAX) during the fatigue trial was not affected by any of the treatments tested. NAC, but not NACA or ERGO, delayed the slowing of muscle relaxation (dF/dtMIN) during fatigue. CONCLUSIONS In summary, NACA and ERGO did not delay skeletal muscle fatigue in vitro. We conclude that these antioxidants are unlikely to improve human exercise performance.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
32
|
Mechanism and kinetics of the hydroxyl and hydroperoxyl radical scavenging activity of N-acetylcysteine amide. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0958-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Izigov N, Farzam N, Savion N. S-allylmercapto-N-acetylcysteine up-regulates cellular glutathione and protects vascular endothelial cells from oxidative stress. Free Radic Biol Med 2011; 50:1131-9. [PMID: 21281712 DOI: 10.1016/j.freeradbiomed.2011.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/10/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress and/or low cellular glutathione (GSH) levels are associated with the development and progression of numerous pathological conditions. Cells possess various antioxidant protection mechanisms, including GSH and phase II detoxifying enzymes. N-acetylcysteine (NAC) supplies cells with cysteine to increase GSH level but its efficacy is relatively low because of its limited tissue penetration. Allicin (diallyl thiosulfinate), a reactive sulfaorganic compound, increases cellular GSH and phase II detoxifying enzymes in vascular endothelial cells (EC). A novel compound was designed: S-allylmercapto-N-acetylcysteine (ASSNAC), a conjugate of S-allyl mercaptan (a component of allicin) and NAC. Both ASSNAC and NAC increased cellular GSH of ECs, reaching a maximum of up to four- and threefold increase after exposure for 24 or 6 h at a concentration of 0.2 or 1 mM, respectively. ASSNAC induced nuclear translocation of the activated transcription factor Nrf2 and expression of phase II detoxifying enzymes. EC exposure to tBuOOH resulted in 75% cytotoxicity, and pretreatment of cultures with 0.2 mM ASSNAC or 2mM NAC reduced cytotoxicity to 20 and 42%, respectively. In conclusion, ASSNAC is superior to NAC in protecting cells from oxidative stress because of its ability to up-regulate both GSH and the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Nira Izigov
- Goldschleger Eye Research Institute, Tel Hashomer 52621, Israel
| | | | | |
Collapse
|
34
|
Schimel AM, Abraham L, Cox D, Sene A, Kraus C, Dace DS, Ercal N, Apte RS. N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2032-43. [PMID: 21457933 DOI: 10.1016/j.ajpath.2011.01.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a critical role in accelerating retinal pigment epithelial dysfunction and death in degenerative retinal diseases, including age-related macular degeneration. Given the key role of oxidative stress-induced retinal pigment epithelial cell death and secondary photoreceptor loss in the pathogenesis of age-related macular degeneration, we hypothesized that a novel thiol antioxidant, N-acetylcysteine amide (NACA), might ameliorate cellular damage and subsequent loss of vision. Treatment of human retinal pigment epithelial cells with NACA protected against oxidative stress-induced cellular injury and death. NACA acted mechanistically by scavenging existing reactive oxygen species while halting production of reactive oxygen species by reversing lipid peroxidation. Furthermore, NACA functioned by increasing the levels of reduced glutathione and the phase II detoxification enzyme glutathione peroxidase. Treatment of mice exposed to phototoxic doses of light with NACA maintained retinal pigment epithelial cell integrity and prevented outer nuclear layer cell death as examined by histopathologic methods and rescued photoreceptor function as measured by electroretinography. These observations indicate that NACA protects against oxidative stress-induced retinal pigment epithelial and photoreceptor cell death in vitro and in vivo. The data suggest that NACA may be a novel treatment in rescuing retinal function and preventing vision loss secondary to retinal degenerative diseases, including age-related macular degeneration.
Collapse
Affiliation(s)
- Andrew M Schimel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Carey JW, Pinarci EY, Penugonda S, Karacal H, Ercal N. In vivo inhibition of l-buthionine-(S,R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radic Biol Med 2011; 50:722-9. [PMID: 21172425 DOI: 10.1016/j.freeradbiomed.2010.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 02/07/2023]
Abstract
The effects of N-acetylcysteine amide (NACA), a free radical scavenger, on cataract development were evaluated in Wistar rat pups. Cataract formation was induced in these animals with an intraperitoneal injection of a glutathione (GSH) synthesis inhibitor, l-buthionine-(S,R)-sulfoximine (BSO). To assess whether NACA has a significant impact on BSO-induced cataracts, the rats were divided into four groups: (1) control, (2) BSO only, (3) NACA only, and (4) NACA+BSO. The control group received only saline ip injections on postpartum day 3, the BSO-only group was given ip injections of BSO (4mmol/kg body wt), the NACA-only group received ip injections of only NACA (250mg/kg body wt), and the NACA+BSO group was given a dose of NACA 30min before administration of the BSO injection. The pups were sacrificed on postpartum day 15, after examination under a slit-lamp microscope. Their lenses were analyzed for selective oxidative stress parameters, including glutathione (reduced and oxidized), protein carbonyls, catalase, glutathione peroxidase, glutathione reductase, and malondialdehyde. The lenses of pups in both the control and the NACA-only groups were clear, whereas all pups within the BSO-only group developed well-defined cataracts. It was found that supplemental NACA injections during BSO treatment prevented cataract formation in most of the rat pups in the NACA+BSO group. Only 20% of these pups developed cataracts, and the rest retained clear lenses. Further, GSH levels were significantly decreased in the BSO-only treated group, but rats that received NACA injections during BSO treatment had these levels of GSH replenished. Our findings indicate that NACA inhibits cataract formation by limiting protein carbonylation, lipid peroxidation, and redox system components, as well as replenishing antioxidant enzymes.
Collapse
Affiliation(s)
- Joshua W Carey
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO 65409, USA
| | | | | | | | | |
Collapse
|
36
|
Jin Y, Zhang C, Ziemba KS, Goldstein GA, Sullivan PG, Smith GM. Directing dopaminergic fiber growth along a preformed molecular pathway from embryonic ventral mesencephalon transplants in the rat brain. J Neurosci Res 2011; 89:619-27. [PMID: 21337366 DOI: 10.1002/jnr.22575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/21/2010] [Accepted: 11/07/2010] [Indexed: 12/23/2022]
Abstract
To identify guidance molecules to promote long-distance growth of dopaminergic axons from transplanted embryonic ventral mesencephalon (VM) tissue, three pathways were created by expressing green fluorescent protein (GFP), glial cell line-derived neurotrophic factor (GDNF), or a combination of GDNF/GDNF receptor α1 (GFRα1) along the corpus callosum. To generate the guidance pathway, adenovirus encoding these transcripts was injected at four positions along the corpus callosum. In all groups, GDNF adenovirus was also injected on the right side 2.5 mm from the midline at the desired transplant site. Four days later, a piece of VM tissue from embryonic day 14 rats was injected at the transplant site. All rats also received daily subcutaneous injections of N-acetyl-L-cysteinamide (NACA; 100 μg per rat) as well as chondroitinase ABC at transplant site (10 U/ml, 2 μl). Two weeks after transplantation, the rats were perfused and the brains dissected out. Coronal sections were cut and immunostained with antibody to tyrosine hydroxylase (TH) to identify and count dopaminergic fibers in the corpus callosum. In GFP-expressing pathways, TH(+) fibers grew out of the transplants for a short distance in the corpus callosum. Very few TH(+) fibers grew across the midline. However, pathways expressing GDNF supported more TH(+) fiber growth across the midline into the contralateral hemisphere. Significantly greater numbers of TH(+) fibers grew across the midline in animals expressing a combination of GDNF and GFRα1 in the corpus callosum. These data suggest that expression of GDNF or a combination of GDNF and GFRα1 can support the long-distance dopaminergic fiber growth from a VM transplant, with the combination having a superior effect.
Collapse
Affiliation(s)
- Y Jin
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
37
|
Spyropoulos BG, Misiakos EP, Fotiadis C, Stoidis CN. Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig Dis Sci 2011; 56:285-94. [PMID: 20632107 DOI: 10.1007/s10620-010-1307-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/14/2010] [Indexed: 12/20/2022]
Abstract
Radiation therapy has become one of the most important treatment modalities for human malignancy, but certain immediate and delayed side-effects on the normal surrounding tissues limit the amount of effective radiation that can be administered. After exposure of the abdominal region to ionizing radiation, nearly all patients experience transient symptoms of irradiation of the bowel. Acute-phase symptoms may persist for a short time, yet long-term complications can represent significant clinical conditions with high morbidity. Data from both experimental studies and clinical trials suggest the potential benefit for probiotics in radiation-induced enteritis and colitis. On the other hand, it is well evidenced that both useful and harmful effects of therapeutic applications of ionizing radiation upon living systems are ascribed to free-radical production. Therefore, the hypothesis that probiotics reinforce antioxidant defense systems of normal mucosal cells exposed to ionizing radiation may explain to an extent their beneficial action. The aim of this review is threefold: First, to make a short brief into the natural history of radiation injury to the intestinal tract. Second, to describe the primary interaction of ionizing radiation at the cellular level and demonstrate the participation of free radicals in the mechanisms of injury and, third, to try a more profound investigation into the antioxidant abilities of probiotics and prebiotics based on the available experimental and clinical data.
Collapse
Affiliation(s)
- Basileios G Spyropoulos
- 1st Department of Propaedeutic Surgery, University of Athens School of Medicine, Hippokration Hospital, Athens, Greece.
| | | | | | | |
Collapse
|
38
|
Penugonda S, Ercal N. Comparative evaluation of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) on glutamate and lead-induced toxicity in CD-1 mice. Toxicol Lett 2010; 201:1-7. [PMID: 21145953 DOI: 10.1016/j.toxlet.2010.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Recent studies indicate that there is interaction between the glutamatergic neurotransmitters system and lead neurotoxicity. Previously, we have demonstrated the potential effects of glutamate in lead-induced cell death in PC12 cells and the protective role of the novel thiol antioxidant, N-acetylcysteine amide (NACA). The current study (1) investigated the potential effects of glutamate on lead exposed CD-1 mice, (2) evaluated the protective effects of NACA against glutamate and lead toxicity in CD-1 mice, and (3) compared the results with N-aceytylcysteine (a well-known thiol antioxidant). Oxidative stress parameters, including glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, and malondialdehyde (MDA) levels, were evaluated. Blood and tissue lead levels, glutamate/glutamine (Glu/Gln) ratios, GS activity, and phospholipase-A(2) (PLA(2)) were also analyzed. Results indicated that lead and glutamate decreased GSH levels in the red blood cells, brains, livers, and kidneys. Exposure to glutamate and lead elevated the MDA levels and PLA(2) activity. NACA and N-acetylcysteine (NAC) provided protection against the detrimental effects of lead by decreasing the blood and tissue lead levels, restoring intracellular GSH levels, and decreasing the MDA levels. NACA and NAC also increased the GS activity thereby decreasing Glu/Gln levels. However, NACA appeared to have better chelating and antioxidant properties than NAC, due to its higher liphophilicity and its ability to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Suman Penugonda
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO 65409, USA
| | | |
Collapse
|
39
|
Banerjee A, Zhang X, Manda KR, Banks WA, Ercal N. HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide. Free Radic Biol Med 2010; 48:1388-98. [PMID: 20188164 PMCID: PMC2873898 DOI: 10.1016/j.freeradbiomed.2010.02.023] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 02/07/2023]
Abstract
An increased risk of HIV-1 associated dementia (HAD) has been observed in patients abusing methamphetamine (METH). Since both HIV viral proteins (gp120, Tat) and METH induce oxidative stress, drug abusing patients are at a greater risk of oxidative stress-induced damage. The objective of this study was to determine if N-acetylcysteine amide (NACA) protects the blood brain barrier (BBB) from oxidative stress-induced damage in animals exposed to gp120, Tat and METH. To study this, CD-1 mice pre-treated with NACA/saline, received injections of gp120, Tat, gp120+Tat or saline for 5days, followed by three injections of METH/saline on the fifth day, and sacrificed 24h after the final injection. Various oxidative stress parameters were measured, and animals treated with gp120+Tat+Meth were found to be the most challenged group, as indicated by their GSH and MDA levels. Treatment with NACA significantly rescued the animals from oxidative stress. Further, NACA-treated animals had significantly higher expression of TJ proteins and BBB permeability as compared to the group treated with gp120+Tat+METH alone, indicating that NACA can protect the BBB from oxidative stress-induced damage in gp120, Tat and METH exposed animals, and thus could be a viable therapeutic option for patients with HAD.
Collapse
Affiliation(s)
- Atrayee Banerjee
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Xinsheng Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Kalyan Reddy Manda
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - William A Banks
- GRECC-VA, St. Louis, and Department of Internal Medicine, Division of Geriatrics, St. Louis University, St. Louis, MO, USA
| | - Nuran Ercal
- GRECC-VA, St. Louis, and Department of Internal Medicine, Division of Geriatrics, St. Louis University, St. Louis, MO, USA
| |
Collapse
|
40
|
Kang KA, Zhang R, Chae S, Lee SJ, Kim J, Kim J, Jeong J, Lee J, Shin T, Lee NH, Hyun JW. Phloroglucinol (1,3,5-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem Biol Interact 2010; 185:215-26. [PMID: 20188716 DOI: 10.1016/j.cbi.2010.02.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/04/2010] [Accepted: 02/16/2010] [Indexed: 11/15/2022]
Abstract
Exposure of cells to gamma-rays induces the production of reactive oxygen species (ROS) that play a main role in ionizing radiation damage. We have investigated the radioprotective effect of phloroglucinol (1,3,5-trihydroxybenzene), phlorotannin compound isolated from Ecklonia cava, against gamma-ray radiation-induced oxidative damage in vitro and in vivo. Phloroglucinol significantly decreased the level of radiation-induced intracellular ROS and damage to cellular components such as the lipid, DNA and protein. Phloroglucinol enhanced cell viability that decreased after exposure to gamma-rays and reduced radiation-induced apoptosis via inhibition of mitochondria mediated caspases pathway. Phloroglucinol reduced radiation-induced loss of the mitochondrial membrane action potential, reduced the levels of the active forms of caspase 9 and 3 and elevated the expression of bcl-2. Furthermore, the anti-apoptotic effect of phloroglucinol was exerted via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1), c-Jun NH(2)-terminal kinase (JNK) and activator protein-1 (AP-1) cascades induced by radiation exposure. Phloroglucinol restored the level of reduced glutathione (GSH) and protein expression of a catalytically active subunit of glutamate-cysteine ligase (GCL), which is a rate-limiting enzyme in GSH biosynthesis. In in vivo study, phloroglucinol administration in mice provided substantial protection against death and oxidative damage following whole-body irradiation. We examined survival with exposure to various radiation doses using the intestinal crypt assay and determined a dose reduction factor (DRF) of 1.24. Based on our findings, phloroglucinol may be possibly useful as a radioprotective compound.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Jeju National University School of Medicine and Applied Radiological Science Research Institute, Jeju-si 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang X, Banerjee A, Banks WA, Ercal N. N-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Res 2009; 1275:87-95. [PMID: 19374890 PMCID: PMC2702674 DOI: 10.1016/j.brainres.2009.04.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays an important role in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Methamphetamine (METH) is an amphetamine analog that causes degeneration of the dopaminergic system in mammals and subsequent oxidative stress. In our present study, we have used immortalized human brain microvascular endothelial (HBMVEC) cells to test whether N-acetylcysteine amide (NACA), a novel antioxidant, prevents METH-induced oxidative stress in vitro. Our studies showed that NACA protects against METH-induced oxidative stress in HBMVEC cells. NACA significantly protected the integrity of our blood brain barrier (BBB) model, as shown by permeability and trans-endothelial electrical resistance (TEER) studies. NACA also significantly increased the levels of intracellular glutathione (GSH) and glutathione peroxidase (GPx). Malondialdehyde (MDA) levels increased dramatically after METH exposure, but this increase was almost completely prevented when the cells were treated with NACA. Generation of reactive oxygen species (ROS) also increased after METH exposure, but was reduced to control levels with NACA treatment, as measured by dichlorofluorescin (DCF). These results suggest that NACA protects the BBB integrity in vitro, which could prevent oxidative stress-induced damage; therefore, the effectiveness of this antioxidant should be evaluated for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xinsheng Zhang
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| | - Atrayee Banerjee
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| | - William A. Banks
- Departments of Internal Medicine, Geriatric Division and Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63106
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, Rolla MO 65409
| |
Collapse
|
42
|
N-acetylcysteineamide (NACA) prevents inflammation and oxidative stress in animals exposed to diesel engine exhaust. Toxicol Lett 2009; 187:187-93. [DOI: 10.1016/j.toxlet.2009.02.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 11/22/2022]
|
43
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:79-82. [DOI: 10.1097/spc.0b013e3283277013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|