1
|
Wright NJD. A review of the direct targets of the cannabinoids cannabidiol, Δ9-tetrahydrocannabinol, N-arachidonoylethanolamine and 2-arachidonoylglycerol. AIMS Neurosci 2024; 11:144-165. [PMID: 38988890 PMCID: PMC11230856 DOI: 10.3934/neuroscience.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024] Open
Abstract
Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.
Collapse
|
2
|
Aguiar DD, Petrocchi JA, da Silva GC, Lemos VS, Castor MGME, Perez ADC, Duarte IDG, Romero TRL. Participation of the cannabinoid system and the NO/cGMP/K ATP pathway in serotonin-induced peripheral antinociception. Neurosci Lett 2024; 818:137536. [PMID: 37898181 DOI: 10.1016/j.neulet.2023.137536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 μg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 μg) and AM630 (25, 50 and 100 μg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 μg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 μg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 μg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 μg) and by the selective inhibitor for the neuronal isoform LNPA (24 μg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 μg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 μg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
- Danielle Diniz Aguiar
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Júlia Alvarenga Petrocchi
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Grazielle Caroline da Silva
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Marina Gomes Miranda E Castor
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil.
| | - Andrea de Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| |
Collapse
|
3
|
Yu Y, Tsang QK, Jaramillo-Polanco J, Lomax AE, Vanner SJ, Reed DE. Cannabinoid 1 and mu-Opioid Receptor Agonists Synergistically Inhibit Abdominal Pain and Lack Side Effects in Mice. J Neurosci 2022; 42:6313-6324. [PMID: 35790401 PMCID: PMC9398536 DOI: 10.1523/jneurosci.0641-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Quentin K Tsang
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Josue Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario K7L 2V7, Canada
| |
Collapse
|
4
|
Takemura Y, Sudo Y, Saeki T, Kurata S, Suzuki T, Mori T, Uezono Y. Involvement of spinal G-protein inwardly rectifying potassium (GIRK) channels in the enhanced antinociceptive effects of the activation of both μ-opioid and cannabinoid CB1 receptors. J Pharmacol Sci 2022; 149:85-92. [DOI: 10.1016/j.jphs.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
5
|
Khaksar S, Salimi M, Zeinoddini H, Naderi N. The Role of the Possible Receptors and Intracellular Pathways in Protective Effect of Exogenous Anandamide in Kindling Model of Epilepsy. Neurochem Res 2022; 47:1226-1242. [PMID: 35112235 DOI: 10.1007/s11064-021-03517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
Abstract
In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5-9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251 + anandamide, and (vii) capsazepine + anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine + AEA or AM251 + AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Biological Sciences, Alzahra University, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Zeinoddini
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran
| | - Nima Naderi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran. .,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Fisher C, Johnson K, Okerman T, Jurgenson T, Nickell A, Salo E, Moore M, Doucette A, Bjork J, Klein AH. Morphine Efficacy, Tolerance, and Hypersensitivity Are Altered After Modulation of SUR1 Subtype K ATP Channel Activity in Mice. Front Neurosci 2019; 13:1122. [PMID: 31695594 PMCID: PMC6817471 DOI: 10.3389/fnins.2019.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 01/26/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in the nervous system and are downstream targets of opioid receptors. KATP channel activity can effect morphine efficacy and may beneficial for relieving chronic pain in the peripheral and central nervous system. Unfortunately, the KATP channels exists as a heterooctomers, and the exact subtypes responsible for the contribution to chronic pain and opioid signaling in either dorsal root ganglia (DRG) or the spinal cord are yet unknown. Chronic opioid exposure (15 mg/kg morphine, s.c., twice daily) over 5 days produces significant downregulation of Kir6.2 and SUR1 in the spinal cord and DRG of mice. In vitro studies also conclude potassium flux after KATP channel agonist stimulation is decreased in neuroblastoma cells treated with morphine for several days. Mice lacking the KATP channel SUR1 subunit have reduced opioid efficacy in mechanical paw withdrawal behavioral responses compared to wild-type and heterozygous littermates (5 and 15 mg/kg, s.c., morphine). Using either short hairpin RNA (shRNA) or SUR1 cre-lox strategies, downregulation of SUR1 subtype KATP channels in the spinal cord and DRG of mice potentiated the development of morphine tolerance and withdrawal. Opioid tolerance was attenuated with intraplantar injection of SUR1 agonists, such as diazoxide and NN-414 (100 μM, 10 μL) compared to vehicle treated animals. These studies are an important first step in determining the role of KATP channel subunits in antinociception, opioid signaling, and the development of opioid tolerance, and shed light on the potential translational ability of KATP channel targeting pharmaceuticals and their possible future clinical utilization. These data suggest that increasing neuronal KATP channel activity in the peripheral nervous system may be a viable option to alleviate opioid tolerance and withdrawal.
Collapse
Affiliation(s)
- Cole Fisher
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Travis Okerman
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Taylor Jurgenson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Austin Nickell
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Erin Salo
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Madelyn Moore
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - Alexis Doucette
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| | - James Bjork
- Department of Biomedical Sciences, Medical School Duluth, Duluth, MN, United States
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, United States
| |
Collapse
|
7
|
Crombie KM, Brellenthin AG, Hillard CJ, Koltyn KF. Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia. PAIN MEDICINE 2019; 19:118-123. [PMID: 28387833 DOI: 10.1093/pm/pnx058] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective The purpose of this study was to examine the interaction between the endogenous opioid and endocannabinoid (eCB) systems in a pain modulatory process known as exercise-induced hypoalgesia (EIH). Design Randomized controlled trial. Setting Clinical research unit in a hospital. Subjects Fifty-eight healthy men and women (mean age = 21 ± 3 years) participated in this study. Methods Participants were administered (randomized, double-blind, counterbalanced procedure) an opioid antagonist (i.e., naltrexone) and a placebo prior to performing pain testing and isometric exercise. Results Results indicated that 2-arachidonoylglycerol (2-AG) and 2-oleoylglycerol (2-OG) increased significantly (P < 0.05) following exercise in both placebo and naltrexone conditions. In comparison, N-arachidonylethanolamine (AEA) and oleoylethanolamine (OEA) increased significantly (P < 0.05) following exercise in the placebo condition but not the naltrexone condition. There were no significant (P > 0.05) differences in palmitolethanolamine (PEA) between the placebo and naltrexone conditions. Conclusions As reductions in pain (i.e., EIH) were observed following both conditions, these results suggest that the opioid system may not be the primary system involved in exercise-induced hypoalgesia and that 2-AG and 2-OG could contribute to nonopioid exercise-induced hypoalgesia. Moreover, as exercise-induced increases in AEA and OEA were blocked by naltrexone pretreatment, this suggests that the opioid system may be involved in the increase of AEA and OEA following exercise.
Collapse
Affiliation(s)
- Kevin M Crombie
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Cecilia J Hillard
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Rivanor RLDC, Do Val DR, Ribeiro NA, Silveira FD, de Assis EL, Franco ÁX, Vieira LV, de Queiroz INL, Chaves HV, Bezerra MM, Benevides NMB. A lectin fraction from green seaweed Caulerpa cupressoides inhibits inflammatory nociception in the temporomandibular joint of rats dependent from peripheral mechanisms. Int J Biol Macromol 2018; 115:331-340. [DOI: 10.1016/j.ijbiomac.2018.04.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
9
|
Diniz DA, Petrocchi JA, Navarro LC, Souza TC, Castor MGME, Duarte IDG, Romero TRL. Serotonin induces peripheral antinociception via the opioidergic system. Biomed Pharmacother 2018; 97:1434-1437. [DOI: 10.1016/j.biopha.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022] Open
|
10
|
Ferreira RCM, Castor MGM, Piscitelli F, Di Marzo V, Duarte IDG, Romero TRL. The Involvement of the Endocannabinoid System in the Peripheral Antinociceptive Action of Ketamine. THE JOURNAL OF PAIN 2017; 19:487-495. [PMID: 29247851 DOI: 10.1016/j.jpain.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/11/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
Abstract
Ketamine has been widely used as an analgesic and produces dissociative anesthetic effects. The antinociceptive effects of ketamine have been studied, but the involvement of endocannabinoids in these effects has not yet been investigated. In this study, we evaluated the involvement of the endocannabinoid system in the peripheral antinociceptive effects induced by ketamine. All drugs were administered via the intraplantar route. To induce hyperalgesia, rat paws were injected with prostaglandin E2 (2 µg per paw). The nociceptive threshold for mechanical stimulation was measured in the right hind paw of Wistar rats using the Randall-Selitto test. The tissue levels of anandamide (AEA), 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide were measured using liquid chromatography coupled to single quadrupole mass spectrometry. The administration of the cannabinoid receptor type 1 (CB1) antagonist, N(piperidine-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl 1 pyrazolcarboxamide (20, 40, and 80 µg per paw), but not the cannabinoid receptor type 2 antagonist, 6-iodo-2-methyl-1-(2-morpholinoethyl)-1H-indol-3-yl) (4-methoxyphenyl) methanone (100 µg per paw), antagonized the ketamine-induced peripheral antinociception in a dose-dependent manner. Additionally, the administration of the endocannabinoid metabolizing enzyme inhibitor (.5 µg per paw) or an AEA reuptake inhibitor, (5Z,8Z,11Z,14Z)N(4Hydroxy2methylphenyl)5,8,11,14 eicosatetraenamide (2.5 µg per paw) significantly enhanced low-dose ketamine-induced peripheral antinociception. AEA paw levels were increased only after ketamine administration to prostaglandin E2-injected paws. These data suggest that ketamine, in the presence of a nociceptive stimulus, induces a selective release of AEA levels and subsequent CB1 cannabinoid activation at the peripheral level. PERSPECTIVE This study suggests that ketamine antinociception depends at least in part on AEA release and CB1 cannabinoid receptor activation in inflammatory conditions. This study could potentially help clinicians in the use of ketamine as a peripheral analgesic for inflammatory pain.
Collapse
Affiliation(s)
- Renata C M Ferreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina G M Castor
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Abstract
Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.
Collapse
|
12
|
Freitas ACN, Silva GC, Pacheco DF, Pimenta AMC, Lemos VS, Duarte IDG, de Lima ME. The synthetic peptide PnPP-19 induces peripheral antinociception via activation of NO/cGMP/K ATP pathway: Role of eNOS and nNOS. Nitric Oxide 2017; 64:31-38. [PMID: 28087360 DOI: 10.1016/j.niox.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND and purpose: The peptide PnPP-19, derived from the spider toxin PnTx2-6 (renamed as δ-CNTX-Pn1c), potentiates erectile function by activating the nitrergic system. Since NO has been studied as an antinociceptive molecule and PnPP-19 is known to induce peripheral antinociception, we intended to evaluate whether PnPP-19 could induce peripheral antinociception through activation of this pathway. EXPERIMENTAL APPROACH Nociceptive thresholds were measured by paw pressure test. PGE2 (2 μg/paw) was administered intraplantarly together with PnPP-19 and inhibitors/blockers of NOS, guanylyl cyclase and KATP channels. The nitrite concentration was accessed by Griess test. The expression and phosphorylation of eNOS and nNOS were determined by western blot. KEY RESULTS PnPP-19 (5, 10 and 20 μg/paw) induced peripheral antinociception in rats. Administration of NOS inhibitor (L-NOarg), selective nNOS inhibitor (L-NPA), guanylyl cyclase inhibitor (ODQ) and the blocker of KATP (glibenclamide) partially inhibited the antinociceptive effect of PnPP-19 (10 μg/paw). Tissue nitrite concentration increased after PnPP-19 (10 μg/paw) administration. Expression of eNOS and nNOS remained the same in all tested groups, however the phosphorylation of nNOS Ser852 (inactivation site) increased and phosphorylation of eNOS Ser1177 (activation site) decreased after PGE2 injection. Administration of PnPP-19 reverted this PGE2-induced effect. CONCLUSIONS AND IMPLICATIONS The peripheral antinociceptive effect induced by PnPP-19 is resulting from activation of NO-cGMP-KATP pathway. Activation of eNOS and nNOS might be required for such effect. Our results suggest PnPP-19 as a new drug candidate to treat pain and reinforce the importance of nNOS and eNOS activation, as well as endogenous NO release, for induction of peripheral antinociception.
Collapse
Affiliation(s)
- A C N Freitas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - G C Silva
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - D F Pacheco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil; Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - A M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - V S Lemos
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - I D G Duarte
- Departamento Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil
| | - M E de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brazil.
| |
Collapse
|
13
|
Freitas ACN, Pacheco DF, Machado MFM, Carmona AK, Duarte IDG, de Lima ME. PnPP-19, a spider toxin peptide, induces peripheral antinociception through opioid and cannabinoid receptors and inhibition of neutral endopeptidase. Br J Pharmacol 2016; 173:1491-501. [PMID: 26947933 DOI: 10.1111/bph.13448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The synthetic peptide PnPP-19 has been studied as a new drug candidate to treat erectile dysfunction. However, PnTx2-6, the spider toxin from which the peptide was designed, induces hyperalgesia. Therefore, we intended to investigate the role of PnPP-19 in the nociceptive pathway. EXPERIMENTAL APPROACH Nociceptive thresholds were measured by paw pressure test. PnPP-19 was administered intraplantarly alone or with selective cannabinoid or opioid receptor antagonists. The hydrolysis of PnPP-19 by neutral endopeptidase (NEP) (EC 3.4.24.11), an enzyme that cleaves enkephalin, was monitored by HPLC and the cleavage sites were deduced by LC-MS. Inhibition by PnPP-19 and Leu-enkephalin of NEP enzyme activity was determined spectrofluorimetrically. KEY RESULTS PnPP-19 (5, 10 and 20 μg per paw) induced peripheral antinociception in rats. Specific antagonists of μ opioid receptors (clocinnamox), δ opioid receptors (naltrindole) and CB1 receptors (AM251) partly inhibited the antinociceptive effect of PnPP-19. Inhibition of fatty acid amide hydrolase by MAFP or of anandamide uptake by VDM11 enhanced PnPP-19-induced antinociception. NEP cleaved PnPP-19 only after a long incubation, and Ki values of 35.6 ± 1.4 and 14.6 ± 0.44 μmol·L(-1) were determined for PnPP-19 and Leu-enkephalin respectively as inhibitors of NEP activity. CONCLUSIONS AND IMPLICATIONS Antinociception induced by PnPP-19 appears to involve the inhibition of NEP and activation of CB1, μ and δ opioid receptors. Our data provide a greater understanding of the antinociceptive effects of PnPP-19. This peptide could be useful as a new antinociceptive drug candidate.
Collapse
Affiliation(s)
- A C N Freitas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D F Pacheco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - A K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M E de Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
dos Reis Barbosa AL, de Sousa RB, Torres JNL, Cunha TM, de Queiroz Cunha F, Soares PMG, de Albuquerque Ribeiro R, Vale ML, Souza MHLP. Colitis generates remote antinociception in rats: the role of the L-arginine/NO/cGMP/PKG/KATP pathway and involvement of cannabinoid and opioid systems. Inflamm Res 2014; 63:969-77. [PMID: 25286904 DOI: 10.1007/s00011-014-0773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the possible involvement of the NO/cGMP/PKG/KATP+ pathway, cannabinoids and opioids in remote antinociception associated with 2,4,6-trinitrobenzene sulph onic acid (TNBS)-induced colitis. METHODS TNBS-induced colitis was induced by intracolonic administration of 20 mg of TNBS in 50% ethanol. After induction, carrageenan (500 μg/paw) or prostaglandin (PG) E2 (100 ng/paw) was injected in the rat's plantar surface and hypersensitivity was evaluated by the electronic von Frey test. Rats were pre-treated with L-Noarg one hour before carrageenan injection. L-Arginine was given 10 min before L-Noarg injections. ODQ, KT 5823, glibenclamide (Glib), naloxone and AM 251 or AM 630 were administered 30 min prior to carrageenan or PGE2 treatments. RESULTS Colitis induction by TNBS reduced PGE2 or carrageenan-induced hypersensitivity. Antinociception produced by TNBS-induced colitis was reversed significantly (P<0.05) by L-Noarg, ODQ, KT 5823, glibenclamide, naloxone, AM251 and AM630 treatments. CONCLUSIONS TNBS-induced colitis causes antinociception in the rat paw. This disorder appears to be mediated by activation of the NO/cGMP/PKG/KATP pathway, endocannabinoids and endogenous opioids. This information may contribute to a better understanding of peripheral neurological dysfunctions occurring in Crohn's disease.
Collapse
Affiliation(s)
- André Luiz dos Reis Barbosa
- LAFFEX Laboratory of Experimental Physiopharmacology, School of Physiotherapy, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí-CMRV, Parnaíba, PI, 64202-020, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gonçalves TCT, Londe AK, Albano RIP, de Araújo Júnior AT, de Aguiar Azeredo M, Biagioni AF, Vasconcellos THF, Dos Reis Ferreira CM, Teixeira DG, de Souza Crippa JA, Vieira D, Coimbra NC. Cannabidiol and endogenous opioid peptide-mediated mechanisms modulate antinociception induced by transcutaneous electrostimulation of the peripheral nervous system. J Neurol Sci 2014; 347:82-9. [PMID: 25282545 DOI: 10.1016/j.jns.2014.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 12/23/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological therapy for the treatment of pain. The present work investigated the effect of cannabidiol, naloxone and diazepam in combination with 10 Hz and 150 Hz TENS. Male Wistar rats were submitted to the tail-flick test (baseline), and each rodent received an acute administration (intraperitoneal) of naloxone (3.0mg/kg), diazepam (1.5mg/kg) or cannabidiol (0.75 mg/kg, 1.5mg/kg, 3.0mg/kg, 4.5mg/kg, 6.0mg/kg and 12.0mg/kg); 10 min after the acute administration, 10 Hz or 150 Hz TENS or a sham procedure was performed for 30 min. Subsequently, tail-flick measures were recorded over a 90-min period, at 5-min intervals. 10 Hz TENS increased the nociceptive threshold during the 90-min period. This antinociceptive effect was reversed by naloxone pre-treatment, was not altered by diazepam pre-treatment and was abolished by cannabidiol pre-treatment (1.5mg/kg). Moreover, 150 Hz TENS increased tail-flick latencies by 35 min post-treatment, which was partially inhibited by naloxone pre-treatment and totally inhibited by cannabidiol (1.5mg/kg). These data suggest the involvement of the endogenous opioid system and the cannabinoid-mediated neuromodulation of the antinociception induced by transcutaneous electrostimulation at 10 Hz and 150 Hz TENS.
Collapse
Affiliation(s)
- Thais Cristina Teixeira Gonçalves
- Laboratory of Physiology and Biophysics, Department of Medicine, Medical School of Patos de Minas Centre Universitarius (UNIPAM), Street Major Gote, 808, Patos de Minas, MG 38702-054, Brazil
| | - Anna Karla Londe
- Laboratory of Physiology and Biophysics, Department of Medicine, Medical School of Patos de Minas Centre Universitarius (UNIPAM), Street Major Gote, 808, Patos de Minas, MG 38702-054, Brazil
| | - Rafael Isaac Pires Albano
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Artur Teixeira de Araújo Júnior
- Laboratory of Signaling and Cell Plasticity, Department of Biotechnology, Biotechnological School of the Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bento Gonçalves, RS 91501-970, Brazil
| | - Mariana de Aguiar Azeredo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Audrey Francisco Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Thiago Henrique Ferreira Vasconcellos
- Laboratory of Psychology, Department of Psychology, Medical School of Patos de Minas Centre Universitarius (UNIPAM), Street Major Gote, 808, Patos de Minas, MG 38702-054, Brazil
| | - Célio Marcos Dos Reis Ferreira
- Laboratory of Clinical Physiotherapy, Department of Physiotherapy, School of Biological and Health Sciences of Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Motorway MGT 367, 5000, Diamantina, MG 39100-000, Brazil
| | - Dulcinéa Gonçalves Teixeira
- Laboratory of Anatomy, Department of Human Anatomy, Medical School of Patos de Minas Centre Universitarius (UNIPAM), Street Major Gote, 808, Patos de Minas, MG 38702-054, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioural Sciences, Division of Psychiatry, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Débora Vieira
- Laboratory of Physiology and Biophysics, Department of Medicine, Medical School of Patos de Minas Centre Universitarius (UNIPAM), Street Major Gote, 808, Patos de Minas, MG 38702-054, Brazil.
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
16
|
Paragomi P, Rahimian R, Kazemi MH, Gharedaghi MH, Khalifeh-Soltani A, Azary S, Javidan AN, Moradi K, Sakuma S, Dehpour AR. Antinociceptive and antidiarrheal effects of pioglitazone in a rat model of diarrhoea-predominant irritable bowel syndrome: role of nitric oxide. Clin Exp Pharmacol Physiol 2014; 41:118-26. [PMID: 24471407 DOI: 10.1111/1440-1681.12188] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 08/17/2013] [Accepted: 10/20/2013] [Indexed: 12/15/2022]
Abstract
Irritable bowel syndrome (IBS) is a prevalent disease characterized by abdominal pain and abnormal bowel habits. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR) γ agonist and, although it is mostly used as an antidiabetic agent, it has been reported to have analgesic effects. Nitric oxide (NO), a gaseous molecule that mediates many of the effects of pioglitazone, has been implicated in the pathophysiology of IBS. The aim of the present study was to investigate the effects of pioglitazone on symptoms in a rat model of diarrhoea-predominant IBS (D-IBS).and to determine the role of NO in these effects. Diarrhoea-predominant IBS was induced by intracolonic instillation of acetic acid. Pioglitazone (2 mg/kg, i.p.) was administered on Days 7, 9 and 11 after acetic acid instillation. To investigate the mechanism involved in pioglitazone action, rats were also administered either the PPARγ antagonist GW9662 (3 mg/kg, i.p.), the NO synthase (NOS) inhibitor N(G) -nitro-l-arginine methyl ester (l-NAME; 10 mg/kg, i.p.) or the NO precursor l-arginine (250 mg/kg, i.p.) along with pioglitazone. Visceral hypersensitivity, nociceptive thresholds, defecation frequency, stool form, serum and colon NO production and inducible (i) NOS activity were assessed 1 h after the final injection of pioglitazone or dimethylsulphoxide (used as the vehicle). Pioglitazone reduced visceral hypersensitivity and defecation frequency, increased nociceptive thresholds, NO production and iNOS activity and shifted stool form towards hard stools in D-IBS rats. These effects of pioglitazone were significantly reversed by l-NAME, but not GW9662. l-Arginine augmented the effects of pioglitazone. In conclusion, pioglitazone alleviates symptoms in a rat model of D-IBS through an NO-dependent mechanism.
Collapse
Affiliation(s)
- Pedram Paragomi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pacheco DDF, Romero TRL, Duarte IDG. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors. Brain Res 2014; 1562:69-75. [PMID: 24675031 DOI: 10.1016/j.brainres.2014.03.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
It is generally believed that NMDA receptor antagonism accounts for most of the anesthetic and analgesic effects of ketamine, however, it interacts at multiple sites in the central nervous system, including NMDA and non-NMDA glutamate receptors, nicotinic and muscarinic cholinergic receptors, and adrenergic and opioid receptors. Interestingly, it was shown that at supraspinal sites, ketamine interacts with the μ-opioid system and causes supraspinal antinociception. In this study, we investigated the involvement of endogenous opioids in ketamine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Our results demonstrated that the opioid receptor antagonist naloxone, the μ-opioid receptor antagonist clocinnamox and the δ-opioid receptor antagonist naltrindole, but not the κ-opioid receptor antagonist nor-binaltorphimine, antagonized ketamine-induced central antinociception in a dose-dependent manner. Additionally, the administration of the aminopeptidase inhibitor bestatin significantly enhanced low-dose ketamine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and μ- and δ-opioid receptors in ketamine-induced central antinociception. In contrast, κ-opioid receptors not appear to be involved in this effect.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Ang-(1-7) activates the NO/cGMP and ATP-sensitive K+ channels pathway to induce peripheral antinociception in rats. Nitric Oxide 2013; 37:11-6. [PMID: 24361899 DOI: 10.1016/j.niox.2013.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 11/22/2022]
Abstract
Angiotensin-(1-7) is a bioactive component of the renin-angiotensin system that is formed endogenously and induces nitric oxide release in several tissues. The L-arginine/NO/cyclic GMP pathway and ATP-sensitive K+ channels have been proposed as the mechanism of action for the peripheral antinociception of several groups of drug and endogenous substances, including opioids, non-steroidal analgesics, acetylcholine and others. The aim of the present study was to investigate the involvement of the L-arginine/NO/cGMP and KATP+ pathway on antinociception induced by angiotensin-(1-7). Paw pressure in rats was used to induce hyperalgesia via an intraplantar injection of prostaglandin E2 (2 μg/paw). Ang-(1-7) (2, 3 and 4 μg/paw) elicited a local peripheral antinociceptive effect that was antagonized by the nonselective NO synthase (NOS) inhibitor L-NOarg and the selective neuronal NOS (nNOS) inhibitor L-NPA. The selective inhibition of endothelial (eNOS) and inducible (iNOS) NOS by L-NIO and L-NIL, respectively, was ineffective at blocking the effects of a local Ang-(1-7) injection. In addition, the level of nitrite in the homogenized paw tissue, as determined by a colorimetric assay, indicated that exogenous Ang-(1-7) is able to induce NO release. The soluble guanylyl cyclase inhibitor ODQ and the specific blocker of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 μg/paw) antagonized the Ang-(1-7) response. The results provide evidence that Ang-(1-7) most likely induces peripheral antinociceptive effects via the L-arginine/NO/cGMP pathway and KATP+ pathway activation.
Collapse
|
19
|
Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res 2013; 53:108-23. [PMID: 24345640 DOI: 10.1016/j.plipres.2013.11.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Epoxygenated fatty acids (EpFAs), which are lipid mediators produced by cytochrome P450 epoxygenases from polyunsaturated fatty acids, are important signaling molecules known to regulate various biological processes including inflammation, pain and angiogenesis. The EpFAs are further metabolized by soluble epoxide hydrolase (sEH) to form fatty acid diols which are usually less-active. Pharmacological inhibitors of sEH that stabilize endogenous EpFAs are being considered for human clinical uses. Here we review the biology of ω-3 and ω-6 EpFAs on inflammation, pain, angiogenesis and tumorigenesis.
Collapse
|
20
|
Keilhoff G, Schröder H, Peters B, Becker A. Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci Res 2013; 77:215-21. [DOI: 10.1016/j.neures.2013.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
|
21
|
Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, Ali DI, Sulaiman MR. Anti-hyperalgesic effect of a benzilidine-cyclohexanone analogue on a mouse model of chronic constriction injury-induced neuropathic pain: Participation of the κ-opioid receptor and KATP. Pharmacol Biochem Behav 2013; 114-115:58-63. [PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Abstract
The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
Collapse
Affiliation(s)
- Lee Ming-Tatt
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, Ming-Tatt L, Israf DA, Sulaiman MR. Peripheral antinociception of a chalcone, flavokawin B and possible involvement of the nitric oxide/cyclic guanosine monophosphate/potassium channels pathway. Molecules 2013; 18:4209-20. [PMID: 23612473 PMCID: PMC6270115 DOI: 10.3390/molecules18044209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when l-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
Collapse
Affiliation(s)
- Mohd Nasier Kamaldin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Muhammad Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Malaysia; E-Mail:
| | - Azam Shah Mohamad
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Nordin Lajis
- Scientific Chairs Unit, Al-Jazeerah Building, Taibah University, Madinah al-Munawarah 41311, Saudi Arabia; E-Mail:
| | - Enoch Kumar Perimal
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Ahmad Akira
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Lee Ming-Tatt
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Daud Ahmad Israf
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
| | - Mohd Roslan Sulaiman
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; E-Mails: (M.N.K.); (A.S.M.); (E.K.P.); (A.A.); (L.M.-T.); (D.A.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-8947-2346; Fax: +603-8947-2585
| |
Collapse
|
23
|
Romero TRL, Resende LC, Guzzo LS, Duarte IDG. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth Analg 2013; 116:463-72. [PMID: 23302980 DOI: 10.1213/ane.0b013e3182707859] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cannabinoid agonists induce norepinephrine release in central, spinal, and peripheral sites. Previous studies suggest an interaction between the cannabinoid and adrenergic systems on antinociception. In this study, we sought to verify whether the CB1 and CB2 cannabinoid receptor agonists anandamide and N-palmitoyl-ethanolamine (PEA), respectively, are able to induce peripheral antinociception via an adrenergic mechanism. METHODS All drugs were administered locally into the right hindpaw of male Wistar rats. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E2 (2 μg). RESULTS Anandamide, 12.5 ng/paw, 25 ng/paw, and 50 ng/paw elicited a local peripheral antinociceptive effect that was antagonized by CB1 cannabinoid receptor antagonist AM251, 20 µg/paw, 40 µg/paw, and 80 µg/paw, but not by CB2 cannabinoid receptor antagonist AM630, 100 µg/paw. PEA, 5 µg/paw, 10 µg/paw, and 20 µg/paw, elicited a local peripheral antinociceptive effect that was antagonized by AM630, 25 µg/paw, 50 µg/paw, and 100 µg/paw, but not by AM251, 80 µg/paw. Antinociception induced by anandamide or PEA was antagonized by the nonselective α2 adrenoceptor antagonist yohimbine, 05 µg/paw, 10 µg/paw, and 20 µg/paw, and by the selective α2C adrenoceptor antagonist rauwolscine, 10 µg/paw, 15 µg/paw, and 20 µg/paw, but not by the selective antagonists for α2A, α2B, and α2D adrenoceptor subtypes, 20 μg/paw. The antinociceptive effect of the cannabinoids was also antagonized by the nonselective α1 adrenoceptor antagonist prazosin, 0.5 µg/paw, 1 µg/paw, and 2 µg/paw, and by the nonselective β adrenoceptor antagonist propranolol, 150 ng/paw, 300 ng/paw, and 600 ng/paw. Guanethidine, which depletes peripheral sympathomimetic amines (30 mg/kg/animal, once a day for 3 days), restored approximately 70% the anandamide-induced and PEA-induced peripheral antinociception. Furthermore, acute injection of the norepinephrine reuptake inhibitor reboxetine, 30 µg/paw, intensified the antinociceptive effects of low-dose anandamide, 12.5 ng/paw, and PEA, 5 µg/paw. CONCLUSIONS This study provides evidence that anandamide and PEA induce peripheral antinociception activating CB1 and CB2 cannabinoid receptors, respectively, stimulating an endogenous norepinephrine release that activates peripheral adrenoceptors inducing antinociception.
Collapse
Affiliation(s)
- Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antonio Carlos, 6627, Pampulha, CEP 31.270-100, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
24
|
Alves DP, da Motta PG, Romero TRL, Klein A, Duarte IDG. NO/cGMP production is important for the endogenous peripheral control of hyperalgesia during inflammation. Nitric Oxide 2012; 28:8-13. [PMID: 22995857 DOI: 10.1016/j.niox.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/29/2012] [Accepted: 09/09/2012] [Indexed: 11/24/2022]
Abstract
Various studies have demonstrated the role of the nitric oxide (NO)/cGMP pathway in pain processing. Our group has also shown that this system participates in opioid-induced antinociception during peripheral inflammation. We have previously observed that inflammation mobilizes an endogenous opioidergic system to control hyperalgesia. Here, we investigated whether the NO/cGMP pathway underlies peripheral endogenous nociception control during inflammation. In this study, a pharmacological approach was used in conjunction with the rat paw pressure test to assess the effects of intraplantar NO synthase inhibitor NG-Nitro-l-arginine (NOArg), guanylyl cyclase inhibitor methylene blue (MB), phosphodiesterase-5 inhibitor zaprinast (ZP), or NO precursor l-arginine injection on carrageenan-induced hyperalgesia, which mimics an inflammatory process, or by prostaglandin E(2) (PGE(2)), which directly sensitizes nociceptors. Intraplantar carrageenan (62.5, 125, 250 or 500μg) or PGE(2) (0.1, 0.5 or 2μg) administration produced hyperalgesia, which manifested as a reduction in the rat nociceptive threshold to mechanical stimuli. NOArg (25, 50 or 100μg/paw) and MB (125, 250 or 500μg/paw) induced significant and dose-dependent reductions in the nociceptive threshold of carrageenan-induced (125μg/paw) hyperalgesia, but not PGE(2)-induced (0.5μg/paw) hyperalgesia. This was a local effect because it did not produce any modifications in the contralateral paw. Both Zaprinast (100, 200 or 400μg/paw) and l-arginine (100, 200 or 400μg/paw) significantly counteracted carrageenan-induced hyperalgesia (250μg/paw), yielding an increase in the nociceptive threshold compared with the control. Zaprinast (200μg/paw) or l-arginine (400μg/paw) did not produce an antinociceptive effect in the contralateral paw, indicating local action. In addition, at the same dose that was able to modify carrageenan-induced hyperalgesia, neither zaprinast nor l-arginine modified PGE(2) (2μg) injection-induced hyperalgesia of the rat paw. Taken together, these results indicate that the l-arginine/NO/cGMP pathway functions as an endogenous modulator of peripheral inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Daniela P Alves
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Av. Antônio Carlos 6627, Pampulha, CEP 31.270-100 Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Guzzo LS, Perez AC, Romero TRL, Azevedo AO, Duarte IDG. Cafestol, a coffee-specific diterpene, induces peripheral antinociception mediated by endogenous opioid peptides. Clin Exp Pharmacol Physiol 2012; 39:412-6. [DOI: 10.1111/j.1440-1681.2012.05689.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luciana S Guzzo
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG), Belo Horizonte; Brazil
| | - Andrea C Perez
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG), Belo Horizonte; Brazil
| | - Thiago RL Romero
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG), Belo Horizonte; Brazil
| | - Adolfo O Azevedo
- Department of Pharmacology; University Center of Lavras (UNILAVRAS); Lavras; Minas Gerais, Brazil
| | - Igor DG Duarte
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG), Belo Horizonte; Brazil
| |
Collapse
|
26
|
Romero TRL, Galdino GS, Silva GC, Resende LC, Perez AC, Cortes SF, Duarte IDG. Involvement of the L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in peripheral antinociception induced by N-palmitoyl-ethanolamine in rats. J Neurosci Res 2012; 90:1474-9. [PMID: 22411529 DOI: 10.1002/jnr.22797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 11/08/2022]
Abstract
N-palmitoyl-ethanolamine (PEA) is an endogenous substance that was first identified in lipid tissue extracts. It has been classified as a CB(2) receptor agonist. Exogenous PEA has the potential to become a valid treatment for neuropathic and inflammatory pain. In spite of the well-demonstrated antiinflammatory properties of PEA, its involvement in controlling pain pathways remains poorly characterized. The participation of the L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway in peripheral antinociception has been established by our group to the μ-, κ- or δ-opioid receptor agonists, nonsteroidal analgesics, α(2C) -adrenoceptor agonists, and even nonpharmacological electroacupuncture. The aim of this study was to verify whether the peripheral antinociception effects of PEA involve the activation of this pathway. All drugs were locally administered to the right hind paw of male Wistar rats. The paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) . PEA elicited a local peripheral antinociceptive effect that was antagonized by the nonselective NO synthase (NOS) inhibitor L-NOARG and the selective neuronal NOS (nNOS) inhibitor L-NPA. Selective inhibition of endothelial (eNOS) and inducible (iNOS) NOS via L-NIO and L-NIL, respectively, was ineffective at blocking the effects of a local PEA injection. In addition, the dosage of nitrite in the homogenized paw, as determined by colorimetric assay, indicated that exogenous PEA is able to induce NO release. The soluble guanylyl cyclase inhibitor ODQ antagonized the PEA effect, whereas the cGMP-phosphodiesterase inhibitor zaprinast potentiated the antinociceptive effect of low-dose PEA. This study provides evidence that PEA activates nNOS, thus initiating the NO/cGMP pathway and inducing peripheral antinociceptive effects.
Collapse
Affiliation(s)
- Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, ICB-UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Romero TRL, Guzzo LS, Perez AC, Klein A, Duarte IDG. Noradrenaline activates the NO/cGMP/ATP-sensitive K(+) channels pathway to induce peripheral antinociception in rats. Nitric Oxide 2012; 26:157-61. [PMID: 22330728 DOI: 10.1016/j.niox.2012.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/13/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
- Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Pampulha, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Negrete R, Hervera A, Leánez S, Martín-Campos JM, Pol O. The antinociceptive effects of JWH-015 in chronic inflammatory pain are produced by nitric oxide-cGMP-PKG-KATP pathway activation mediated by opioids. PLoS One 2011; 6:e26688. [PMID: 22031841 PMCID: PMC3198780 DOI: 10.1371/journal.pone.0026688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022] Open
Abstract
Background Cannabinoid 2 receptor (CB2R) agonists attenuate inflammatory pain but the precise mechanism implicated in these effects is not completely elucidated. We investigated if the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K+ (KATP) channels signaling pathway triggered by the neuronal nitric oxide synthase (NOS1) and modulated by opioids, participates in the local antinociceptive effects produced by a CB2R agonist (JWH-015) during chronic inflammatory pain. Methodology/Principal Findings In wild type (WT) and NOS1 knockout (NOS1-KO) mice, at 10 days after the subplantar administration of complete Freund's adjuvant (CFA), we evaluated the antiallodynic (von Frey filaments) and antihyperalgesic (plantar test) effects produced by the subplantar administration of JWH-015 and the reversion of their effects by the local co-administration with CB2R (AM630), peripheral opioid receptor (naloxone methiodide, NX-ME) or CB1R (AM251) antagonists. Expression of CB2R and NOS1 as well as the antinociceptive effects produced by a high dose of JWH-015 combined with different doses of selective L-guanylate cyclase (ODQ) or PKG (Rp-8-pCPT-cGMPs) inhibitors or a KATP channel blocker (glibenclamide), were also assessed. Results show that the local administration of JWH-015 dose-dependently inhibited the mechanical and thermal hypersensitivity induced by CFA which effects were completely reversed by the local co-administration of AM630 or NX-ME, but not AM251. Inflammatory pain increased the paw expression of CB2R and the dorsal root ganglia transcription of NOS1. Moreover, the antinociceptive effects of JWH-015 were absent in NOS1-KO mice and diminished by their co-administration with ODQ, Rp-8-pCPT-cGMPs or glibenclamide. Conclusions/Significance These data indicate that the peripheral antinociceptive effects of JWH-015 during chronic inflammatory pain are mainly produced by the local activation of the nitric oxide-cGMP-PKG-KATP signaling pathway, triggered by NOS1 and mediated by endogenous opioids. These findings suggest that the activation of this pathway might be an interesting therapeutic target for the treatment of chronic inflammatory pain with cannabinoids.
Collapse
Affiliation(s)
- Roger Negrete
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús M. Martín-Campos
- Grup de Bioquímica, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide 2011; 25:243-54. [DOI: 10.1016/j.niox.2011.06.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/17/2011] [Accepted: 06/16/2011] [Indexed: 01/22/2023]
|
30
|
Reis GML, Ramos MA, Pacheco DDF, Klein A, Perez AC, Duarte IDG. Endogenous cannabinoid receptor agonist anandamide induces peripheral antinociception by activation of ATP-sensitive K+ channels. Life Sci 2011; 88:653-7. [DOI: 10.1016/j.lfs.2011.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/15/2010] [Accepted: 01/07/2011] [Indexed: 02/06/2023]
|
31
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
32
|
Morisseau C, Inceoglu B, Schmelzer K, Tsai HJ, Jinks SL, Hegedus CM, Hammock BD. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J Lipid Res 2010; 51:3481-90. [PMID: 20664072 DOI: 10.1194/jlr.m006007] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Beneficial physiological effects of long-chain n-3 polyunsaturated fatty acids are widely accepted but the mechanism(s) by which these fatty acids act remains unclear. Herein, we report the presence, distribution, and regulation of the levels of n-3 epoxy-fatty acids by soluble epoxide hydrolase (sEH) and a direct antinociceptive role of n-3 epoxy-fatty acids, specifically those originating from docosahexaenoic acid (DHA). The monoepoxides of the C18:1 to C22:6 fatty acids in both the n-6 and n-3 series were prepared and the individual regioisomers purified. The kinetic constants of the hydrolysis of the pure regioisomers by sEH were measured. Surprisingly, the best substrates are the mid-chain DHA epoxides. We also demonstrate that the DHA epoxides are present in considerable amounts in the rat central nervous system. Furthermore, using an animal model of pain associated with inflammation, we show that DHA epoxides, but neither the parent fatty acid nor the corresponding diols, selectively modulate nociceptive pathophysiology. Our findings support an important function of epoxy-fatty acids in the n-3 series in modulating nociceptive signaling. Consequently, the DHA and eicosapentaenoic acid epoxides may be responsible for some of the beneficial effects associated with dietary n-3 fatty acid intake.
Collapse
Affiliation(s)
- Christophe Morisseau
- Department of Entomology and Cancer Center, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|