1
|
Yang J, Sun Q, Liu X, Yang Y, Rong R, Yan P, Xie Y. Targeting Notch signaling pathways with natural bioactive compounds: a promising approach against cancer. Front Pharmacol 2024; 15:1412669. [PMID: 39092224 PMCID: PMC11291470 DOI: 10.3389/fphar.2024.1412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Notch signaling pathway is activated abnormally in solid and hematological tumors, which perform essential functions in cell differentiation, survival, proliferation, and angiogenesis. The activation of Notch signaling and communication among Notch and other oncogenic pathways heighten malignancy aggressiveness. Thus, targeting Notch signaling offers opportunities for improved survival and reduced disease incidence. Already, most attention has been given to its role in the cancer cells. Recent research shows that natural bioactive compounds can change signaling molecules that are linked to or interact with the Notch pathways. This suggests that there may be a link between Notch activation and the growth of tumors. Here, we sum up the natural bioactive compounds that possess inhibitory effects on human cancers by impeding the Notch pathway and preventing Notch crosstalk with other oncogenic pathways, which provoke further study of these natural products to derive rational therapeutic regimens for the treatment of cancer and develop novel anticancer drugs. This review revealed Notch as a highly challenging but promising target in oncology.
Collapse
Affiliation(s)
- Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Liu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Yang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Peiyu Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang YX, Zhu YM, Yang XX, Gao FF, Chen J, Yu DY, Gao JQ, Chen ZN, Yang JS, Yan CX, Huo FQ. Phosphorylation of Neurofilament Light Chain in the VLO Is Correlated with Morphine-Induced Behavioral Sensitization in Rats. Int J Mol Sci 2023; 24:ijms24097709. [PMID: 37175416 PMCID: PMC10177919 DOI: 10.3390/ijms24097709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Neurofilament light chain (NF-L) plays critical roles in synapses that are relevant to neuropsychiatric diseases. Despite postmortem evidence that NF-L is decreased in opiate abusers, its role and underlying mechanisms remain largely unknown. We found that the microinjection of the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) into the ventrolateral orbital cortex (VLO) attenuated chronic morphine-induced behavioral sensitization. The microinjection of TSA blocked the chronic morphine-induced decrease of NF-L. However, our chromatin immunoprecipitation (ChIP)-qPCR results indicated that this effect was not due to the acetylation of histone H3-Lysine 9 and 14 binding to the NF-L promotor. In line with the behavioral phenotype, the microinjection of TSA also blocked the chronic morphine-induced increase of p-ERK/p-CREB/p-NF-L. Finally, we compared chronic and acute morphine-induced behavioral sensitization. We found that although both chronic and acute morphine-induced behavioral sensitization were accompanied by an increase of p-CREB/p-NF-L, TSA exhibited opposing effects on behavioral phenotype and molecular changes at different addiction contexts. Thus, our findings revealed a novel role of NF-L in morphine-induced behavioral sensitization, and therefore provided some correlational evidence of the involvement of NF-L in opiate addiction.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Yuan-Mei Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xi-Xi Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Fei-Fei Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Dong-Yu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing-Qi Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhen-Nan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fu-Quan Huo
- The Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
3
|
Shah S, Iqbal Z, Alharbi MG, Kalra HS, Suri M, Soni N, Okpaleke N, Yadav S, Hamid P. Vitamin D and Gastric Cancer: A Ray of Sunshine? Cureus 2021; 13:e18275. [PMID: 34722053 PMCID: PMC8545571 DOI: 10.7759/cureus.18275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) is one of the most aggressive malignancies, currently ranking third among cancers leading to death worldwide. Despite the recent advancements in GC research, it is most often diagnosed during the terminal stages and with limited treatment modalities contributing to its poor prognosis and a lower survival rate. Much research has provided conflicting results between a vitamin D deficient status and the development of GC. Vitamin D is a well-known and essential hormone classically known to regulate calcium and phosphate absorption, enabling adequate mineralization of the skeletal system. However, the function of vitamin D is multidimensional. It possesses unique roles, including acting as antioxidants or immunomodulators while crossing the cell membrane, performing several intracellular functions, participating in gene regulation, and controlling the proliferation and invasion of cancer cells, including those of GC. In light of this, it is imperative to analyze the causes of GC, review the factors that can be used to enhance the effectiveness of treatments, and discover the tools to determine prognosis, reduce mortality, and prevent GC development. In this review, we have summarized recent investigations on multiple associations between vitamin D and GC, emphasizing genetic associations, vitamin D receptors, and the prevalence of hormone deficiency in those developing this aggressive malignancy.
Collapse
Affiliation(s)
- Suchitra Shah
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zafar Iqbal
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed G Alharbi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harjeevan S Kalra
- Internal Medicine/Emergency Medicine/Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Megha Suri
- Pediatrics/Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nitin Soni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nkiruka Okpaleke
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shikha Yadav
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
4
|
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnology 2021; 19:220. [PMID: 34294083 PMCID: PMC8299636 DOI: 10.1186/s12951-021-00965-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Chirality is a fundamental characteristic of natural molecules and a crucial factor in the biochemical reactions of living cells and organisms. Recently, researchers have successfully introduced chiral molecules to the surfaces of nanomaterials, creating chiral nanomaterials that exhibit an upscaling of chiral behavior from the molecular scale to the nanoscale. These chiral nanomaterials can selectively induce autophagy, apoptosis, and photothermal ablation in tumor cells based on their chirality, making them promising for application in anti-tumor therapy. However, these interesting and important phenomena have hitherto received little attention. Accordingly, we herein present a review of recent research progress in the field of chiral nanomaterials for tumor therapy along with brief looks at the mechanistic details of their actions. Finally, the current challenges and future perspectives of chiral nanomaterials in terms of maximizing their potential in tumor therapy are discussed. Thus, this review provides a helpful introduction to the design of chiral nanomaterials and will hopefully highlight the importance of chirality in tumor therapy. ![]()
Collapse
Affiliation(s)
- Zaihui Peng
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Juncheng XuHong
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hao Tian
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yi Zhang
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, China.
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Liu D, Liu Y, Qi B, Gu C, Huo S, Zhao B. Trichostatin A promotes esophageal squamous cell carcinoma cell migration and EMT through BRD4/ERK1/2-dependent pathway. Cancer Med 2021; 10:5235-5245. [PMID: 34160902 PMCID: PMC8335841 DOI: 10.1002/cam4.4059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been demonstrated to be aberrantly activated in tumorigenesis and cancer development. Thus, HDAC inhibitors (HDACIs) are considered to be promising anti‐cancer therapeutics. However, recent studies have shown that HDACIs promote the migration of many cancer cells. Therefore, there is a need to elucidate the underlying mechanisms of HDACIs on cancer cell migration to establish a combination therapy that overcomes HDACI‐induced cell migration. Methods KYSE‐150 and EC9706 cells were treated differently. Effects of drugs and siRNA treatment on tumor cell migration and cell signaling pathways were investigated by transwell migration assy. Gene expression for SNAI2 was tested by RT‐qPCR. Western blot analysis was employed to detect the level of E‐cadherin, β‐catenin, vimentin,Slug,ERK1/2, H3, PAI‐1 and BRD4. The effect of drugs on cell morphology was evaluated through phase‐contrast microscopic images. Results TSA promotes epithelial‐mesenchymal transition (EMT) in ESCC cells by downregulating the epithelial marker E‐cadherin and upregulating mesenchymal markers β‐catenin, vimentin, Slug, and PAI‐1. Knockdown of Slug by siRNA or inhibition of PAI‐1 clearly suppressed TSA‐induced ESCC cell migration and resulted in the reversal of TSA‐triggered E‐cadherin, β‐catenin, and vimentin expression. However, no crosstalk between Slug and PAI‐1 was observed in TSA‐treated ESCC cells. Blocking ERK1/2 activation also inhibited TSA‐induced ESCC cell migration, EMT, and upregulation of Slug and PAI‐1 levels in ESCC cells. Interestingly, inhibition of BRD4 suppressed TSA‐induced ESCC cell migration and attenuated TSA‐induced ERK1/2 activation and upregulation of Slug and PAI‐1 levels. Conclusions Our data indicate the existence of at least two separable ERK1/2‐dependent signaling pathways in TSA‐mediated ESCC cell migration: an ERK1/2–Slug branch and an ERK1/2‐PAI‐1 branch. Both branches of TSA‐induced ESCC cell migration appear to favor the EMT process, while BRD4 is responsible for two separable ERK1/2‐dependent signaling pathways in TSA‐mediated ESCC cell migration.
Collapse
Affiliation(s)
- Danhui Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China.,Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Bo Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Chengwei Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Shuhua Huo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China.,Esophageal Cancer Institute of Xinxiang Medical University, Weihui, China
| |
Collapse
|
6
|
Yu B, Yuan B, Li J, Kiyomi A, Kikuchi H, Hayashi H, Hu X, Okazaki M, Sugiura M, Hirano T, Fan Y, Pei X, Takagi N. JNK and Autophagy Independently Contributed to Cytotoxicity of Arsenite combined With Tetrandrine via Modulating Cell Cycle Progression in Human Breast Cancer Cells. Front Pharmacol 2020; 11:1087. [PMID: 32765280 PMCID: PMC7379898 DOI: 10.3389/fphar.2020.01087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Novel therapeutic strategies for breast cancer are urgently needed due to the sustained development of drug resistance and tumor recurrence. Trivalent arsenic derivative (arsenite, AsIII) has been reported to induce cytotoxicity in breast cancer cells. We recently demonstrated that AsIII plus tetrandrine (Tetra), a Chinese plant-derived alkaloid, exerted potent antitumor activity against human breast cancer cells, however, the underlying mechanisms for their action have not been well defined. In order to provide fundamental insights for understanding the action of AsIII plus Tetra, the effects of the combined regimen on two breast cancer cell lines T47D and MDA-MB-231 were evaluated. Compared to T47D cells, MDA-MB-231 cells were much more susceptible to the synergistic cytotoxic effects of AsIII and Tetra. Besides the induction of apoptotic/necrotic cell death, S-phase arrest and autophagic cell death were also observed in MDA-MB-231 cells. Exposure of MDA-MB-231 cells to AsIII and Tetra caused the activation of MAPKs. Cytotoxicity of the combined regimen in MDA-MB-231 cell was significantly abrogated by SP600125, a potent c-Jun N-terminal kinase (JNK) inhibitor. However, similar abrogation was not caused by p38 and ERK inhibitors. The addition of either autophagy inhibitors (3-methyladenine or wortmannin) or SP600125 corrected the combined regimen-triggered S-phase arrest, whereas had little effect on the apoptosis/necrosis induction in the cells. Surprisingly, SP600125NC, a negative control for SP600125, significantly strengthened S-phase arrest and the cytotoxicity induced by the combined regimen. The addition of SP600125 did not alter autophagy induction. In conclusion, the cytotoxicity of AsIII combined with Tetra was attributed to the induction of S-phase arrest, apoptotic/necrotic and autophagic cell death. The enhanced cytotoxicity of the two drugs by SP600125NC might be explained by its capability to strengthen S-phase arrest. Our results suggested that JNK and autophagy independently contributed to the cytotoxicity via modulating cell cycle progression. The study further provides fundamental insights for the development of AsIII in combination with Tetra for patients with different types of breast cancer.
Collapse
Affiliation(s)
- Bowen Yu
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan.,Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan.,Laboratory of Pharmacology, School of Pharmacy, Josai University, Saitama, Japan
| | - JingZhe Li
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anna Kiyomi
- Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Xiaomei Hu
- Hematology Department, XiYuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mari Okazaki
- Laboratory of Pharmacology, School of Pharmacy, Josai University, Saitama, Japan
| | - Munetoshi Sugiura
- Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Toshihiko Hirano
- Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| | - Yingyi Fan
- Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaohua Pei
- Galactophore Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo, Japan
| |
Collapse
|
7
|
Nudelman V, Zahalka MA, Nudelman A, Rephaeli A, Kessler-Icekson G. Cardioprotection by AN-7, a prodrug of the histone deacetylase inhibitor butyric acid: Selective activity in hypoxic cardiomyocytes and cardiofibroblasts. Eur J Pharmacol 2020; 882:173255. [PMID: 32553737 DOI: 10.1016/j.ejphar.2020.173255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
The anticancer prodrug butyroyloxymethyl diethylphosphate (AN-7), upon metabolic hydrolysis, releases the histone deacetylase inhibitor butyric acid and imparts histone hyperacetylation. We have shown previously that AN-7 increases doxorubicin-induced cancer cell death and reduces doxorubicin toxicity and hypoxic damage to the heart and cardiomyocytes. The cardiofibroblasts remain unprotected against both insults. Herein we examined the selective effect of AN-7 on hypoxic cardiomyocytes and cardiofibroblasts and investigated mechanisms underlying the cell specific response. Hypoxic cardiomyocytes and cardiofibroblasts or H2O2-treated H9c2 cardiomyoblasts, were treated with AN-7 and cell damage and death were evaluated as well as cell signaling pathways and the expression levels of heme oxygenase-1 (HO-1). AN-7 diminished hypoxia-induced mitochondrial damage and cell death in hypoxic cardiomyocytes and reduced hydrogen peroxide damage in H9c2 cells while increasing cell injury and death in hypoxic cardiofibroblasts. In the cell line, AN-7 induced Akt and ERK survival pathway activation in a kinase-specific manner including phosphorylation of the respective downstream targets, GSK-3β and BAD. Hypoxic cardiomyocytes responded to AN-7 treatment by enhanced phosphorylation of Akt, ERK, GSK-3β and BAD and a significant 6-fold elevation in HO-1 levels. In hypoxic cardiofibroblasts, AN-7 did not activate Akt and ERK beyond the effect of hypoxia alone and induced a limited (~1.5-fold) increase in HO-1. The cell specific differences in kinase activation and in heme oxygenase-1 upregulation may explain, at least in part, the disparate outcome of AN-7 treatment in hypoxic cardiomyocytes and hypoxic cardiofibroblasts.
Collapse
Affiliation(s)
- Vadim Nudelman
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Muayad A Zahalka
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Abraham Nudelman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ada Rephaeli
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
8
|
LINC00858 knockdown inhibits gastric cancer cell growth and induces apoptosis through reducing WNK2 promoter methylation. Cell Oncol (Dordr) 2020; 43:709-723. [PMID: 32447640 DOI: 10.1007/s13402-020-00518-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Emerging evidence indicates a regulatory role of long non-coding RNAs (lncRNAs) in the development of gastric cancer (GC), but the mechanisms underlying their function have remained largely unknown. Recent microarray-based expression profiling has led to the identification of a novel differentially expressed lncRNA, LINC00858, in GC. Subsequently, LINC00858 was found to be highly expressed in GC tissues and cells. This study was designed to clarify the functional role of LINC00858 in GC, including its effect on methylation of the WNK2 gene promoter and its downstream MAPK signaling pathway. METHODS After exogenous over-expression and knockdown of LINC00858 and the addition of a MAPK pathway inhibitor in GC cells, we explored the effects of LINC00858 and the MAPK signaling pathway on GC cell behavior using various in vitro and in vivo assays. RESULTS LINC00858 was found to negatively regulate WNK2 expression by enhancing its promoter methylation and to activate the MAPK signaling pathway. Moreover, we found that knockdown of LINC00858 or inhibition of the MAPK signaling pathway resulted in decreased GC cell growth, migration and invasion, as well as decreased cell cycle progression, along with increased apoptosis and decreased tumorigenicity. CONCLUSIONS Together, these findings indicate that silencing of LINC00858 increases WNK2 expression and inhibits the MAPK signaling pathway, thereby inhibiting GC growth and development. Our data highlight LINC00858 as a potential target in GC therapy.
Collapse
|
9
|
Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact 2019; 314:108849. [DOI: 10.1016/j.cbi.2019.108849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
|
10
|
Chen JCH, Chuang HY, Liao YJ, Hsu FT, Chen YC, Wang WH, Hwang JJ. Enhanced cytotoxicity of human hepatocellular carcinoma cells following pretreatment with sorafenib combined with trichostatin A. Oncol Lett 2018; 17:638-645. [PMID: 30655811 DOI: 10.3892/ol.2018.9582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Trichostatin A (TSA), a hydroxamate histone deacetylase inhibitor, is a compound that has been identified to induce anticancer activity. The aim of the present study was to investigate whether sorafenib, in combination with TSA, was able to augment the anticancer effects of TSA, identifying an optimum treatment time plan and the potential underlying molecular mechanisms involved in human hepatocellular carcinoma (HCC) in vitro. Huh7/nuclear factor-κB (NF-κB)-luc2 cells were treated with TSA or sorafenib alone, or sorafenib, prior to, in combination with or following TSA treatment. Huh7/NF-κB-luc2 cell viability following TSA treatment was determined using an MTT assay, and NF-κB activity was analyzed. In addition, the expression levels of NF-κB-regulated downstream effector proteins were assayed by western blotting. Inhibitors of mitogen-activated protein kinases (MAPKs), protein kinase B (AKT) and mutant inhibitor of NF-κBα (IκBαM) vectors were used to confirm the function of the NF-κB signal transduction pathways in response to the effects of sorafenib combined with TSA against HCC. The results of the present study indicated that pre-treatment with sorafenib followed by TSA inhibited the cell viability compared with other treatment modalities, and prevented TSA-induced extracellular-signal-regulated kinase (ERK)/NF-κB activity and expression of downstream effector proteins. It was further demonstrated that IκBαM vector sensitized Huh7/NF-κB-luc2 cells to TSA, thus it was possible to reverse TSA-induced NF-κB activity using PD98059, a MAPK/ERK kinase inhibitor. In conclusion, sorafenib pre-treatment may increase the efficacy of subsequent TSA treatment in HCC. Furthermore, sorafenib pre-treatment is hypothesized to sensitize HCC to TSA via the inhibition of the MEK/ERK/NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- John Chun-Hao Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan, R.O.C.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 251, Taiwan, R.O.C
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan, R.O.C
| | - Yi-Jen Liao
- School of Medical Laboratory and Biotechnology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| | - Yen-Chung Chen
- Department of Pathology, National Yang Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
11
|
Han L, Yuan B, Shimada R, Hayashi H, Si N, Zhao HY, Bian B, Takagi N. Cytocidal effects of arenobufagin and hellebrigenin, two active bufadienolide compounds, against human glioblastoma cell line U-87. Int J Oncol 2018; 53:2488-2502. [PMID: 30272276 PMCID: PMC6203163 DOI: 10.3892/ijo.2018.4567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most common and lethal intracranial tumor type, characterized by high angiogenic and infiltrative capacities. To provide a novel insight into therapeutic strategies against glioblastoma, the cytotoxicity of arenobufagin and hellebrigenin was investigated in the human glioblastoma cell line, U-87. Similar dose-dependent cytotoxicity was observed in the cells, whereas no detectable toxicity was confirmed in mouse primary astrocytes. Treatment with each drug downregulated the expression levels of Cdc25C, Cyclin B1 and survivin, which occurred in parallel with G2/M phase arrest. Necrotic-like cell death was only observed in the cells treated with a relatively high concentration (>100 ng/ml). These results indicate that the two drugs exhibited distinct cytotoxicity against cancerous glial cells with high potency and selectivity, suggesting that growth inhibition associated with G2/M phase arrest and/or necrosis were attributed to their toxicities. Activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway was also observed in treated cells. Notably, a specific inhibitor of p38 MAPK, SB203580, itself caused a significant decrease in cell viability, and further enhanced the cytotoxicity of the two drugs, suggesting an important pro-survival role for p38 MAPK. Given that p38 MAPK serves an essential role in promoting glioblastoma cell survival, developing a novel combination regimen of arenobufagin/hellebrigenin plus a p38 MAPK inhibitor may improve the efficacy of the two drugs, and may provide more therapeutic benefits to patients with glioblastoma. The qualitative assessment demonstrated the existence of arenobufagin in the cerebrospinal fluid of arenobufagin-treated rats, supporting its clinical application.
Collapse
Affiliation(s)
- Lingyu Han
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Ryota Shimada
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
12
|
Qian CJ, Qi YX, Zhong S, Zeng JP, Chen XY, Yao J. Mitogen-activated protein kinase inhibition enhances the antitumor effects of sporamin in human pancreatic cancer cells. Oncol Lett 2018; 16:1237-1242. [PMID: 30061945 DOI: 10.3892/ol.2018.8746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
Sporamin, a sweet potato tuber storage protein, is a Kunitz-type trypsin inhibitor (TI) that has exhibited antitumor activity through poorly defined mechanisms in a number of types of tumor cells. The present study aimed to analyze the combined effects of sporamin and three mitogen-activated protein kinase (MAPK) inhibitors, PD98059, SP600125 and SB203580, on the pancreatic cancer cell line, PANC-1. Cell proliferation activity was assessed using a 3H-thymidine incorporation assay, and cell viability was analyzed using an MTT assay. Apoptosis was assayed by flow cytometry and fluorescence microscopy. Protein expression levels in PANC-1 cells were determined by western blotting. The results of this analysis demonstrated that sporamin induced a temporary increase in the phosphorylation of MAPKs, including phosphorylated extracellular signal regulated-kinase 1/2, phosphorylated c-Jun amino-terminal protein kinase 1/2 and phosphorylated p38-MAPK, in a concentration-dependent manner. However, treatment with MAPK inhibitors promoted the inhibition of cell proliferation and viability, and the induction of apoptosis in sporamin-treated PANC-1 cells. In conclusion, the present study demonstrated that MAPK inhibition enhanced the antitumor activity of sporamin in PANC-1 cells.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Department of Gastroenterology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, P.R. China.,Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Yong-Xiao Qi
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Sheng Zhong
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ju-Ping Zeng
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Xiao-Ying Chen
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jun Yao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
13
|
Alza NP, Murray AP, Salvador GA. Cativic acid-caffeic acid hybrid exerts cytotoxic effects and induces apoptotic death in human neuroblastoma cells. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1229-1238. [DOI: 10.1007/s00210-017-1421-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022]
|
14
|
Chen S, Zhang X, Peng J, Zhai E, He Y, Wu H, Chen C, Ma J, Wang Z, Cai S. VEGF promotes gastric cancer development by upregulating CRMP4. Oncotarget 2016; 7:17074-86. [PMID: 26934554 PMCID: PMC4941372 DOI: 10.18632/oncotarget.7717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/17/2016] [Indexed: 01/31/2023] Open
Abstract
This study aimed to investigate the precise role of CRMP4 in gastric tumor growth and patient survival. The mRNA and protein expression levels of CRMP4, VEGF and VEGFR2 were validated by qRT-PCR and immunohistochemistry. We investigated the effects on tumor growth of overexpression and knockdown of CRMP4 both in vitro and in vivo by constructing stable gastric cell lines using lentiviral-mediated transduction and shRNA interference-mediated knockdown of CRMP4 expression. We further validated the role of the ERK/AKT signaling pathways in VEGF and CRMP4 expression using ERK and PI3K inhibitors. Increased expression of VEGF and CRMP4 were observed in gastric cancer tissues compared with tumor-adjacent tissue. We found that higher CRPM4 expression was associated with lymph node metastasis, TNM stage, tumor differentiation and poorer prognosis in gastric cancer patients. In HGC27 and SGC7901 gastric cancer cells, VEGF upregulated CRMP4 in time and dose-dependent manners. Overexpression of CRMP4 increased cell proliferation, migration and invasion, whereas knockdown of CRMP4 expression had opposite effects. VEGF activated CRMP4 expression in gastric cancer cells, and this effect was significantly inhibited by MAPK and PI3K inhibitors (PD98059 and LY294002). In mice, CRMP4 overexpression also resulted in increased tumor growth. These results suggest that increased CRMP4 expression mediated by the activation of VEGF signaling facilitates gastric tumor growth and metastasis, which may have clinical implications associated with a reduced survival rate in gastric cancer patients.
Collapse
Affiliation(s)
- Sile Chen
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Ertao Zhai
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yulong He
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Hui Wu
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Chuangqi Chen
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jinping Ma
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Zhao Wang
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
15
|
Knockdown of Rad9A enhanced DNA damage induced by trichostatin A in esophageal cancer cells. Tumour Biol 2015; 37:963-70. [DOI: 10.1007/s13277-015-3879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022] Open
|
16
|
Zhou L, Feng Y, Jin Y, Liu X, Sui H, Chai N, Chen X, Liu N, Ji Q, Wang Y, Li Q. Verbascoside promotes apoptosis by regulating HIPK2-p53 signaling in human colorectal cancer. BMC Cancer 2014; 14:747. [PMID: 25282590 PMCID: PMC4197337 DOI: 10.1186/1471-2407-14-747] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/26/2014] [Indexed: 01/18/2023] Open
Abstract
Background We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments. Methods Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2 expression by immunohistochemistry (IHC) and its expression was correlated against patients’ clinicopathological characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU). HIPK2, p53, Bax, and Bcl-2 expression in these tumors were determined by IHC. In vitro effects of VB on CRC cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry; HIPK2, p53, p-p53, Bax, and Bcl-2 were measured by western blot. Results IHC analysis for 100 human CRC tumor samples and 20 normal intestinal tissues, showed HIPK2 expression to inversely correlate with Dukes stage and depth of invasion in CRC (P < 0.05). In vivo, the inhibition rates of 20, 40, and 80 mg/mL VB on CRC xenograft tumor weight were 42.79%, 53.90%, and 60.99%, respectively, and were accompanied by increased expression of HIPK2, p53, and Bax, and decreased Bcl-2 expression in treated tumors. In vitro, VB significantly inhibited proliferation of CRC cell lines HCT-116, HT-29, LoVo, and SW620, in a time- and dose-dependent manner. The apoptosis rates of 25, 50, and 100 μM VB on HCT-116 cells were 10.83 ± 1.28, 11.25 ± 1.54, and 20.19 ± 2.87%, and on HT-29 cells were 18.92 ± 6.12, 21.57 ± 4.05, and 25.14 ± 6.73%, respectively. In summary, VB treatment significantly enhanced the protein expression of pro-apoptotic HIPK2, p53, p-p53, Bax, and decreased anti-apoptotic Bcl-2 expression in CRC cells. Conclusions HIPK2 protein modulates the phosphorylation status of p53, and levels of Bax and Bcl-2 in CRC. We also found that VB effectively activated the HIPK2–p53 signaling pathway, resulting in increased CRC cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Bao A, Li Y, Tong Y, Zheng H, Wu W, Wei C. 1,25-Dihydroxyvitamin D₃ and cisplatin synergistically induce apoptosis and cell cycle arrest in gastric cancer cells. Int J Mol Med 2014; 33:1177-84. [PMID: 24573222 DOI: 10.3892/ijmm.2014.1664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] plays an anticancer role in multiple types of cancer and potentiates the cytotoxic effects of several common chemotherapeutic agents. The hypercalcemia caused by 1,25(OH)2D3 alone or resistance to cisplatin weaken the anticancer effects of vitamin D. Thus, in this study, we aimed to investigate the synergistic effects of 1,25(OH)2D3 and cisplatin on the apoptosis and cell cycle progression of gastric cancer cells. BGC-823 human gastric cancer cells were treated with 1,25(OH)2D3 or cisplatin alone, or a combination of both agents. Cell apoptosis was assessed by TUNEL assay and flow cytometry. The expression of the apoptosis-related proteins, poly(ADP-ribose) polymerase (PARP), Bax, Bcl-2, caspase-3 and caspase-8, was examined using immunoblot analysis. ERK and AKT phosphorylation were examined by immunoblot analysis. The cell cycle distribution was determined by propidium iodide staining and flow cytometric analysis. p21 and p27 protein expression was also examined using immunoblot analysis. Our results revealed that co-treatment with 1,25(OH)2D3 enhanced cisplatin-induced apoptosis and upregulated the expression of Bax, and promoted the cleavage of PARP and caspase-3. The phosphorylation levels of ERK and AKT were reduced following combined treatment with 1,25(OH)2D3 and cisplatin. The percentage of cells in the G0/G1 phase was greater in the cells treated with the combined treatment than in those treated with either 1,25(OH)2D3 or cisplatin alone. p21 and p27 expression was upregulated following co-treatment with both agents. The results of this study suggest that 1,25(OH)2D3 potentiates cisplatin-mediated cell growth inhibition and cell apoptosis, which involves the upregulation of Bax, a decrease in ERK and AKT phosphorylation levels, and increased p21 and p27 levels.
Collapse
Affiliation(s)
- Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Wu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuandong Wei
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
18
|
Xi XL, Jiang BJ, Yu JW. Cancer stem cell-related signaling pathways in development of gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:494-500. [DOI: 10.11569/wcjd.v22.i4.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells are a subset of cancer cells with self-renewal and differentiation capacity. They play an important role in gastric carcinogenesis, proliferation, migration, invasion and metastasis and are involved in resistance to chemotherapy. Numerous studies indicate that stem cell-related signaling pathways (such as Wnt, Notch, Hedgehog, PI3K, and BMP) are activated in the occurrence and development of gastric cancer. Inhibition of tumor self-renewal-related signaling pathways can significantly improve the prognosis of patients with gastric cancer. In this paper we will review the roles of these cancer stem cell-related signaling pathways in gastric cancer.
Collapse
|
19
|
Qian C, Yao J, Wang J, Wang L, Xue M, Zhou T, Liu W, Si J. ERK1/2 inhibition enhances apoptosis induced by JAK2 silencing in human gastric cancer SGC7901 cells. Mol Cell Biochem 2013; 387:159-70. [PMID: 24178240 DOI: 10.1007/s11010-013-1881-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022]
Abstract
Recent studies suggest JAK2 signaling may be a therapeutic target for treatment of gastric cancer (GC). However, the exact roles of JAK2 in gastric carcinogenesis are not very clear. Here, we have targeted JAK2 to be silenced by shRNA and investigated the biological functions and related mechanisms of JAK2 in GC cell SGC7901. In this study, JAK2 is commonly highly expressed in GC tissues as compared to their adjacent normal tissues (n = 75, p < 0.01). Specific down-regulation of JAK2 suppressed cell proliferation and colony-forming units, induced G2/M arrest in SGC7901 cells, but had no significant effect on cell apoptosis in vitro or tumor growth inhibition in vivo. Interestingly, JAK2 silencing-induced activation of ERK1/2, and inactivation of ERK1/2 using the specific ERK inhibitor PD98059 markedly enhanced JAK2 shRNA-induced cell proliferation inhibition, cell cycle arrest and apoptosis. Ultimately, combination of PD98059 and JAK2 shRNA significantly inhibited tumor growth in nude mice. Our results implicate JAK2 silencing-induced cell proliferation inhibition, cell cycle arrest, and ERK1/2 inhibition could enhance apoptosis induced by JAK2 silencing in SGC7901 cells.
Collapse
Affiliation(s)
- Cuijuan Qian
- Institute of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kikuchi H, Yuan B, Yuhara E, Takagi N, Toyoda H. Involvement of histone H3 phosphorylation through p38 MAPK pathway activation in casticin-induced cytocidal effects against the human promyelocytic cell line HL-60. Int J Oncol 2013; 43:2046-56. [PMID: 24064676 DOI: 10.3892/ijo.2013.2106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
The effect of casticin was investigated by focusing on cell viability, apoptosis induction and cell cycle arrest in HL-60 cells. Casticin induced a dose- and time-dependent decrease in cell viability associated with apoptosis induction and G2/M cell cycle arrest. The addition of SB203580, an inhibitor for p38 mitogen-activated protein kinase (MAPK), but not SP600125 [c-Jun NH2-terminal protein kinase (JNK) inhibitor] and PD98059 [extracellular signal-regulated kinase (ERK) inhibitor], abrogated casticin-induced cell cycle arrest and apoptosis associated with the activation of caspases including caspase-8, -9 and -3. Endogenous p38 MAPK activation was observed in untreated cells based on the detection of the expression levels of phospho-p38 MAPK, whereas casticin did not affect the degree of p38 MAPK activation. Interestingly, the addition of SB203580 suppressed casticin-induced phosphorylation of histone H3, a downstream molecule of the p38 MAPK signaling pathway and known to be involved in chromosome condensation during mitosis. More importantly, casticin induced upregulation of intracellular ATP levels. Although casticin induced intracellular reactive oxygen species, antioxidants failed to block casticin-mediated cytotoxicity, indicating that casticin-induced cytotoxicity appears to be independent of reactive oxygen species generation. Based on the fact that SB203580 has been reported to compete with ATP for binding to the active form of p38 MAPK, and consequently blocks the p38 MAPK activity in activating downstream molecules, these results suggest that casticin induces cytotoxicity associated with apoptosis and cell cycle arrest in HL-60 cells through the p38 MAPK pathway, in which intracellular ATP levels and phosphorylation of histone H3 play critical roles.
Collapse
Affiliation(s)
- Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
21
|
Yao J, Qian C, Shu T, Zhang X, Zhao Z, Liang Y. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/β-catenin. Cancer Biol Ther 2013; 14:833-9. [PMID: 23792588 DOI: 10.4161/cbt.25332] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
γ-secretase inhibitors (GSIs), the indirect inhibitors of Notch, are emerging as a new class of anticancer agents for the treatment of solid and hematological malignancies, but little is known about their effects on gastric cancer. In this study, we demonstrate that DAPT, a potent GSI, was effective to inhibit γ-secretase activity in gastric cancer (GC) cell lines that contained a fragment with approximately the size of the Notch1 intracellular domain (NICD), but was limited in their ability to induce apoptosis. However, activation of extracellular signal-regulated kinase (ERK)1/2 upon DAPT treatment was detected. Selective inhibition of ERK1/2 activation dramatically sensitized GC cells to apoptosis via downregulating β-catenin signaling in these GC cells. Notably, in a xenograft mouse tumor model, combination therapy using ERK inhibitor PD98059 plus DAPT yielded additive antitumor effects as compared with either agent alone. Taken together, these data demonstrated that γ-secretase inhibition combined with ERK1/2 inhibitor enhances cell death in GC cells partly through downregulation of WNT/β-catenin pathways.
Collapse
Affiliation(s)
- Jun Yao
- Institute of Tumor; School of Medicine; Taizhou University; Taizhou, Zhejiang P.R. China
| | - Cuijuan Qian
- Insitute of Gastroenterology; Sir Run Run Shaw Hospital; Zhejiang University; Hangzhou, Zhejiang P.R. China
| | - Ting Shu
- Institute of Tumor; School of Medicine; Taizhou University; Taizhou, Zhejiang P.R. China
| | - Xin Zhang
- Department of Gastroenterology; Taizhou Municipal Hospital; Taizhou, Zhejiang P.R. China
| | - Zhiqiang Zhao
- Institute of Tumor; School of Medicine; Taizhou University; Taizhou, Zhejiang P.R. China
| | - Yong Liang
- Institute of Tumor; School of Medicine; Taizhou University; Taizhou, Zhejiang P.R. China
| |
Collapse
|