1
|
Zhang R, Xie X, Liu J, Pan R, Huang Y, Du Y. A novel selenoglycoside compound GlcSeCys alleviates diets-induced obesity and metabolic dysfunctions with the modulation of Galectin-1 and selenoproteins. Life Sci 2024:123259. [PMID: 39557393 DOI: 10.1016/j.lfs.2024.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Selenium, an essential trace element in human, has been shown to play protective roles in obesity and metabolic disorders despite insufficient understanding of mechanisms. Moreover, it's well known that biological actions of selenium compounds differed greatly due to divergent chemical forms. Selenoglycoside is a type of organoselenium compounds with excellent hydrophilicity, but biological activity of which in vivo are almost unknown. We have designed and synthesized Se-β-d-glucopyranosyl-D-selenocysteine, a novel selenoglycoside compound named GlcSeCys. Herein, GlcSeCys was given to high fat high cholesterol (HFHC) fed mice to determine its actions as well as relevant molecular mechanisms using transcriptome and multiple molecular biological methods. It was revealed that GlcSeCys displayed pronounced anti-obesity effect and significantly alleviated hyperglycemia, hyperinsulinemia along with hepatic steatosis in HFHC diets-induced mice. Mechanistically, GlcSeCys was found to inhibit lipogenesis, lipid uptake and inflammation in liver, along with attenuation of Galectin-1 and induction of selenoprotein S (SELENOS). With regard to adipose tissues, GlcSeCys ameliorated hypertrophy of adipocytes, suppressed lipids biosynthesis and stimulated WAT browning along with abrogated WAT inflammation activation, which were in line with repression of Galectin-1 and increase of GPx3. Collectively, our results uncovered, for the first time, that selenoglycoside compound GlcSeCys possessed excellent protective effects against obesity and metabolic disorders, and the mechanisms were correlated with modulation of Galectin-1 and selenoproteins, shedding lights upon molecular biology of selenium and novel therapeutic for obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Ruhui Zhang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Huang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Arvidsson D, Rodrigues Silva VR, Ekblom Ö, Ekblom-Bak E, Fryk E, Jansson PA, Börjesson M. Cardiorespiratory fitness and the association with galectin-1 in middle-aged individuals. PLoS One 2024; 19:e0301412. [PMID: 38578722 PMCID: PMC10997126 DOI: 10.1371/journal.pone.0301412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
Galectin-1 plays a functional role in human metabolism and the levels are altered in obesity and type 2 diabetes (T2D). This study investigates the association of cardiorespiratory fitness (CRF) with galectin-1 and the interconnection with body fatness. Cross-sectional data from the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot was analyzed, including a sample of 774 middle-aged individuals. A submaximal cycle ergometer test was used to estimate CRF as an indirect measure of the physical activity (PA) level. Serum-galectin-1 concentration was determined from venous blood collected after an overnight fast. Body mass index (BMI) was used as an indirect measure of body fatness. CRF was significantly associated with galectin-1, when controlled for age and sex (regression coefficient (regr coeff) = -0.29, p<0.001). The strength of the association was attenuated when BMI was added to the regression model (regr coeff = -0.09, p = 0.07), while the association between BMI and galectin-1 remained strong (regr coeff = 0.40, p<0.001). CRF was associated with BMI (regr coeff = -0.50, p<0.001). The indirect association between CRF and galectin-1 through BMI (-0.50 x 0.40) contributed to 69% of total association (mediation analysis). In group comparisons, individuals with low CRF-high BMI had the highest mean galectin-1 level (25 ng/ml), while individuals with high CRF-low BMI had the lowest level (21 ng/ml). Intermediate levels of galectin-1 were found in the low CRF-low BMI and high CRF-high BMI groups (both 22 ng/ml). The galectin-1 level in the low CRF-high BMI group was significantly different from the other three groups (P<0.001). In conclusion, galectin-1 is associated with CRF as an indirect measure of the PA level through interconnection with body fatness. The size of the association is of clinical relevance.
Collapse
Affiliation(s)
- Daniel Arvidsson
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Vagner Ramon Rodrigues Silva
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Elin Ekblom-Bak
- Department of Physical Activity and Health, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Emanuel Fryk
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Börjesson
- Center for Lifestyle Intervention, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
3
|
Patel NA, Lui A, Trujillo AN, Motawe ZY, Bader D, Schuster J, Burgess A, Alves NG, Jo M, Breslin JW. Female and male obese Zucker rats display differential inflammatory mediator and long non-coding RNA profiles. Life Sci 2023; 335:122285. [PMID: 37995934 PMCID: PMC10760426 DOI: 10.1016/j.lfs.2023.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
AIMS The goal of this study was to identify mediators in peri-lymphatic adipose tissue (PLAT) that are altered in obese versus lean Zucker rats, with focus on potential sex differences MAIN METHODS: Mesenteric PLAT was analyzed with protein and lncRNA arrays. Additional RT-PCR confirmation was performed with epididymal/ovarian fat. KEY FINDINGS MCP-1, TCK-1, Galectin-1, Galectin-3, and neuropilin-1 were elevated in PLAT from obese rats of both sexes. However, 11 additional proteins were elevated only in obese males while 24 different proteins were elevated in obese females. Profiling of lncRNAs revealed lean males have elevated levels of NEAT1, MALAT1 and GAS5 compared to lean females. NEAT1, MALAT1, and GAS5 were significantly reduced with obesity in males but not in females. Another lncRNA, HOTAIR, was higher in lean females compared to males, and its levels in females were reduced with obesity. Obese rats of both sexes had similar histologic findings of mesenteric macrophage crown-like structures and hepatocyte fat accumulation. SIGNIFICANCE While obese male and female Zucker rats both have increased inflammation, they have distinct signals. Future studies of the proteome and lncRNA landscape of obese males vs. females in various animal models and in human subjects are warranted to better guide development of therapeutics for obesity-induced inflammation.
Collapse
Affiliation(s)
- Niketa A Patel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States of America; James A. Haley Veteran's Hospital, United States of America
| | - Ashley Lui
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, United States of America; James A. Haley Veteran's Hospital, United States of America
| | - Andrea N Trujillo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America
| | - Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America
| | - Deena Bader
- James A. Haley Veteran's Hospital, United States of America
| | - Jane Schuster
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America
| | - Andrea Burgess
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America
| | - Natascha G Alves
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America
| | - Michiko Jo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America; Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Japan
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, United States of America.
| |
Collapse
|
4
|
Galectin-1 in Obesity and Type 2 Diabetes. Metabolites 2022; 12:metabo12100930. [PMID: 36295832 PMCID: PMC9606923 DOI: 10.3390/metabo12100930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.
Collapse
|
5
|
Latorre J, Aroca A, Fernández-Real JM, Romero LC, Moreno-Navarrete JM. The Combined Partial Knockdown of CBS and MPST Genes Induces Inflammation, Impairs Adipocyte Function-Related Gene Expression and Disrupts Protein Persulfidation in Human Adipocytes. Antioxidants (Basel) 2022; 11:antiox11061095. [PMID: 35739994 PMCID: PMC9220337 DOI: 10.3390/antiox11061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies in mice and humans demonstrated the relevance of H2S synthesising enzymes, such as CTH, CBS, and MPST, in the physiology of adipose tissue and the differentiation of preadipocyte into adipocytes. Here, our objective was to investigate the combined role of CTH, CBS, and MPST in the preservation of adipocyte protein persulfidation and adipogenesis. Combined partial CTH, CBS, and MPST gene knockdown was achieved treating fully human adipocytes with siRNAs against these transcripts (siRNA_MIX). Adipocyte protein persulfidation was analyzed using label-free quantitative mass spectrometry coupled with a dimedone-switch method for protein labeling and purification. Proteomic analysis quantified 216 proteins with statistically different levels of persulfidation in KD cells compared to control adipocytes. In fully differentiated adipocytes, CBS and MPST mRNA and protein levels were abundant, while CTH expression was very low. It is noteworthy that siRNA_MIX administration resulted in a significant decrease in CBS and MPST expression, without impacting on CTH. The combined partial knockdown of the CBS and MPST genes resulted in reduced cellular sulfide levels in parallel to decreased expression of relevant genes for adipocyte biology, including adipogenesis, mitochondrial biogenesis, and lipogenesis, but increased proinflammatory- and senescence-related genes. It should be noted that the combined partial knockdown of CBS and MPST genes also led to a significant disruption in the persulfidation pattern of the adipocyte proteins. Although among the less persulfidated proteins, we identified several relevant proteins for adipocyte adipogenesis and function, among the most persulfidated, key mediators of adipocyte inflammation and dysfunction as well as some proteins that might play a positive role in adipogenesis were found. In conclusion, the current study indicates that the combined partial elimination of CBS and MPST (but not CTH) in adipocytes affects the expression of genes related to the maintenance of adipocyte function and promotes inflammation, possibly by altering the pattern of protein persulfidation in these cells, suggesting that these enzymes were required for the functional maintenance of adipocytes.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universitat de Girona, 17003 Girona, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones and Universidad de Sevilla, 41092 Seville, Spain; (A.A.); (L.C.R.)
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain; (J.L.); (J.M.F.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/010), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-872-987087 (ext. 70)
| |
Collapse
|
6
|
Kim SQ, Mohallem R, Franco J, Buhman KK, Kim KH, Aryal UK. Multi-Omics Approach Reveals Dysregulation of Protein Phosphorylation Correlated with Lipid Metabolism in Mouse Non-Alcoholic Fatty Liver. Cells 2022; 11:cells11071172. [PMID: 35406736 PMCID: PMC8997945 DOI: 10.3390/cells11071172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity caused by overnutrition is a major risk factor for non-alcoholic fatty liver disease (NAFLD). Several lipid intermediates such as fatty acids, glycerophospholipids and sphingolipids are implicated in NAFLD, but detailed characterization of lipids and their functional links to proteome and phosphoproteome remain to be elucidated. To characterize this complex molecular relationship, we used a multi-omics approach by conducting comparative proteomic, phoshoproteomic and lipidomic analyses of high fat (HFD) and low fat (LFD) diet fed mice livers. We quantified 2447 proteins and 1339 phosphoproteins containing 1650 class I phosphosites, of which 669 phosphosites were significantly different between HFD and LFD mice livers. We detected alterations of proteins associated with cellular metabolic processes such as small molecule catabolic process, monocarboxylic acid, long- and medium-chain fatty acid, and ketone body metabolic processes, and peroxisome organization. We observed a significant downregulation of protein phosphorylation in HFD fed mice liver in general. Untargeted lipidomics identified upregulation of triacylglycerols, glycerolipids and ether glycerophosphocholines and downregulation of glycerophospholipids, such as lysoglycerophospholipids, as well as ceramides and acylcarnitines. Analysis of differentially regulated phosphosites revealed phosphorylation dependent deregulation of insulin signaling as well as lipogenic and lipolytic pathways during HFD induced obesity. Thus, this study reveals a molecular connection between decreased protein phosphorylation and lipolysis, as well as lipid-mediated signaling in diet-induced obesity.
Collapse
Affiliation(s)
- Sora Q. Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Rodrigo Mohallem
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Jackeline Franco
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
| | - Kimberly K. Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.Q.K.); (K.K.B.)
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Uma K. Aryal
- Bindley Bioscience Center, Purdue Proteomics Facility, Purdue University, West Lafayette, IN 47907, USA; (R.M.); (J.F.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-4960
| |
Collapse
|
7
|
Chu N, Ling J, Jie H, Leung K, Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne) 2022; 13:956203. [PMID: 36187096 PMCID: PMC9519995 DOI: 10.3389/fendo.2022.956203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.
Collapse
|
8
|
Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Structure-based identification of galectin-1 selective modulators in dietary food polyphenols: a pharmacoinformatics approach. Mol Divers 2021; 26:1697-1714. [PMID: 34482478 PMCID: PMC9209356 DOI: 10.1007/s11030-021-10297-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
Abstract In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of β-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
| | - Nora Abdullah AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jozaa Zaidan ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Saikh Mohammad Wabaidur
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. .,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
9
|
Wu Z, Liu J, Chen G, Du J, Cai H, Chen X, Ye G, Luo Y, Luo Y, Zhang L, Duan H, Liu Z, Yang S, Sun H, Cui Y, Sun L, Zhang H, Shi G, Wei T, Liu P, Yan X, Feng J, Bu P. CD146 is a Novel ANGPTL2 Receptor that Promotes Obesity by Manipulating Lipid Metabolism and Energy Expenditure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004032. [PMID: 33747748 PMCID: PMC7967059 DOI: 10.1002/advs.202004032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Obesity and its related complications pose an increasing threat to human health; however, targetable obesity-related membrane receptors are not yet elucidated. Here, the membrane receptor CD146 is demonstrated to play an essential role in obesity. In particular, CD146 acts as a new adipose receptor for angiopoietin-like protein 2 (ANGPTL2), which is thought to act on endothelial cells to activate adipose inflammation. ANGPTL2 binds to CD146 to activate cAMP response element-binding protein (CREB), which then upregulates CD146 during adipogenesis and adipose inflammation. CD146 is present in preadipocytes and mature adipocytes, where it is mediated by its ligands ANGPTL2 and galectin-1. In preadipocytes, CD146 ablation suppresses adipogenesis, whereas the loss of CD146 in mature adipocytes suppresses lipid accumulation and enhances energy expenditure. Moreover, anti-CD146 antibodies inhibit obesity by disrupting the interactions between CD146 and its ligands. Together, these findings demonstrate that ANGPTL2 directly affects adipocytes via CD146 to promote obesity, suggesting that CD146 can be a potential target for treating obesity.
Collapse
|
10
|
Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis 2021; 12:66. [PMID: 33431823 PMCID: PMC7801586 DOI: 10.1038/s41419-020-03367-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Galectin-1 contains a carbohydrate-recognition domain (CRD) as a member of the lectin family. Here, we investigated whether galectin-1 regulates adipogenesis and lipid accumulation. Galectin-1 mRNA is highly expressed in metabolic tissues such as the muscle and adipose tissues. Higher mRNA expression of galectin-1 was detected in white adipose tissues (WATs) of mice that were fed a high-fat diet (HFD) than in those of mice fed a normal-fat diet (NFD). Protein expression of galectin-1 also increased during adipocyte differentiation. Galectin-1 silencing inhibited the differentiation of 3T3-L1 cells and the expression of lipogenic factors, such as PPARγ, C/EBPα, FABP4, and FASN at both mRNA and protein levels. Lactose, an inhibitor by the binding with CRD of galectin-1 in extracellular matrix, did not affect adipocyte differentiation. Galectin-1 is localized in multiple cellular compartments in 3T3-L1 cells. However, we found that DMI (dexamethasone, methylisobutylxanthine, insulin) treatment increased its nuclear localization. Interestingly, galectin-1 interacted with PPARγ. Galectin-1 overexpression resulted in increased PPARγ expression and transcriptional activity. Furthermore, we prepared galectin-1-knockout (Lgals1−/−) mice and fed a 60% HFD. After 10 weeks, Lgals1−/− mice exhibited lower body weight and gonadal WAT (gWAT) mass than wild-type mice. Fasting glucose level was also lower in Lgals1−/−mice than that in wild-type mice. Moreover, lipogenic genes were significantly downregulated in the gWATs and liver tissues from Lgals1−/− mice. Pro-inflammatory cytokines, such as CCL2, CCL3, TNFα, and F4/80, as well as macrophage markers, were also drastically downregulated in the gWATs and liver tissues of Lgals1−/− mice. In addition, Lgals1−/−mice showed elevated expression of genes involved in thermogenesis in the brown adipose tissue. Collectively, galectin-1 exacerbates obesity of mice fed HFD by increment of PPARγ expression and activation. Our findings suggest that galectin-1 could be a potential therapeutic target for obesity and needed further study for clinical application.
Collapse
|
11
|
Fryk E, Strindberg L, Lundqvist A, Sandstedt M, Bergfeldt L, Mattsson Hultén L, Bergström G, Jansson PA. Galectin-1 is inversely associated with type 2 diabetes independently of obesity - A SCAPIS pilot study. Metabol Open 2019; 4:100017. [PMID: 32812946 PMCID: PMC7424824 DOI: 10.1016/j.metop.2019.100017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives Galectin-1 is a recently discovered adipokine that increases with obesity and increased energy intake in adipose tissue. Our aim was to assess whether serum galectin-1 is associated with type 2 diabetes (T2D) and other parameters of the metabolic syndrome independently of body mass index (BMI) in a cohort from the general population. Methods In this cross-sectional population-based cohort study from the western part of Sweden, we investigated associations between serum galectin-1, clinical characteristics and inflammatory markers in 989 women and men aged 50-65 years [part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort]. Results We showed in linear models that serum galectin-1 was independently and: (1) inversely associated with T2D (p < 0.05) and glucose (p < 0.05); and (2) positively associated with age (p < 0.01), sex (p < 0.01), BMI (p < 0.01), insulin (p < 0.01) and C-reactive protein (p < 0.01). Furthermore, galectin-1 demonstrated univariate correlations with triglycerides (r = 0.20, p < 0.01), homeostasis model assessment for insulin resistance (r = 0.24, p < 0.01), tumor necrosis factor-α (r = 0.24, p < 0.01), interleukin-6 (IL-6; r = 0.20, p < 0.01) and HbA1c (r = 0.14, p < 0.01). Conclusion In a cross-sectional study of a middle-aged population, we showed that serum galectin-1 is: (1) inversely associated with T2D independently of BMI; and (2) independently associated with other markers of the metabolic syndrome These results warrant prospective and functional studies on the role of galectin-1 in T2D.
Collapse
Key Words
- ALAT, alanine aminotransferase
- BMI, body mass index
- CRP, C-reactive protein
- Cross-sectional
- ELISA, electrochemiluminescence immunoassay
- Galectin-1
- HDL, high-density lipoprotein
- HOMA, homeostasis model assessment
- IFN-γ, interferon gamma
- IL, interleukin
- LDL, low-density lipoprotein
- MSD, Meso Scale Diagnostics
- Metabolic syndrome
- Obesity
- SCAPIS, Swedish CArdioPulmonary bioImage Study
- SEM, standard error of the mean
- Sex
- T2D, type 2 diabetes
- TNF-α, tumor necrosis factor-α
- Type 2 diabetes
Collapse
Affiliation(s)
- Emanuel Fryk
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
- Corresponding author. Wallenberg Laboratory Department of Molecular and Clinical Medicine Institute of Medicine, The Sahlgrenska Academy University of Gothenburg, Gothenburg, Sweden.
| | - Lena Strindberg
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Lundqvist
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mikael Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lennart Bergfeldt
- Department of Molecular and Clinical Medicine/Cardiology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, and Region Västra Götaland, Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg and the Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Kishor C, Ross RL, Blanchard H. Lactulose as a novel template for anticancer drug development targeting galectins. Chem Biol Drug Des 2018; 92:1801-1808. [PMID: 29888844 DOI: 10.1111/cbdd.13348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/02/2018] [Accepted: 05/19/2018] [Indexed: 01/11/2023]
Abstract
Galectins are carbohydrate binding proteins (lectins), which characteristically bind β-galactosides. Galectins play a role in tumour progression through involvement in proliferation, metastasis, angiogenesis, immune evasion and drug resistance. There is need for inhibitors (antagonists) that are specific for distinct galectins and that can interfere with galectin-carbohydrate interactions during cancer progression. Here, we propose that lactulose, a non-digestible galactose-fructose disaccharide, presents a novel inhibitor scaffold for design of inhibitors against galectins. Thermodynamic evaluation displays binding affinity of lactulose against the galectin-1 and galectin-3 carbohydrate recognition domain (CRD). Crystal structures of galectin-1 and galectin-3 in complex with lactulose reveal for the first time the molecular basis of the galectin-lactulose interactions. Molecular modelling was implemented to propose novel lactulose derivatives as potent anti-cancer agents.
Collapse
Affiliation(s)
- Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Renee L Ross
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
13
|
Gabrielli M, Romero DG, Martini CN, Raiger Iustman LJ, Vila MDC. MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes. Mol Cell Biochem 2018; 448:299-309. [PMID: 29468504 DOI: 10.1007/s11010-018-3334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
We investigated for the first time the expression of melanoma cell adhesion molecule (MCAM) and its involvement in the differentiation of 3T3-L1 fibroblasts to adipocytes. We found that MCAM mRNA increased subsequent to the activation of the master regulator of adipogenesis, PPARγ, and this increase was maintained in the mature adipocytes. On the other hand, MCAM knockdown impaired differentiation and induction of PPARγ as well as expression of genes activated by PPARγ. However, events that precede and are necessary for early PPARγ activation, such as C/EBPβ induction, β-catenin downregulation, and ERK activation, were not affected in the MCAM knockdown cells. In keeping with this, the increase in PPARγ mRNA that precedes MCAM induction was not altered in the knockdown cells. In conclusion, our findings suggest that MCAM is a gene upregulated and involved in maintaining PPARγ induction in the late but not in the early stages of 3T3-L1 fibroblasts adipogenesis.
Collapse
Affiliation(s)
- Matías Gabrielli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Damián G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Claudia N Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Laura Judith Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - María Del C Vila
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Weight loss-induced cellular stress in subcutaneous adipose tissue and the risk for weight regain in overweight and obese adults. Int J Obes (Lond) 2016; 41:894-901. [PMID: 27916987 DOI: 10.1038/ijo.2016.221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Weight loss is often followed by weight regain after the dietary intervention (DI). Cellular stress is increased in adipose tissue of obese individuals. However, the relation between cellular stress and weight regain is unclear. Previously, we observed increased adipose tissue cellular stress of participants regaining weight compared with participants maintaining weight loss. In the current study, we further investigated the relation between weight regain and changes in the expression of stress-related genes and stress protein levels to determine possible predictors of weight regain. PARTICIPANTS/METHODS In this randomized controlled trial, sixty-one healthy overweight/obese participants followed a DI of either a 5-week very-low-calorie diet (500 kcal per day) or a 12-week low-calorie diet (1250 kcal per day; WL period) with a subsequent 4-week weight stable diet (WS period), and a 9-month follow-up. The WL and WS period taken together was named the DI. Abdominal subcutaneous adipose tissue biopsies were collected in 53 participants for microarray and liquid chromatography-mass spectrometry analysis. RNA and protein levels for a broad set of stress-related genes were correlated to the weight regain percentage. RESULTS Different gene sets correlated to weight regain percentage during WS and DI. Bioinformatics clustering suggests that during the WS phase-defined genes for actin filament dynamics, glucose handling and nutrient sensing are related to weight regain. HIF-1 (hypoxia-inducible factor-1) is indicated as an important regulator. With regard to DI, clustering of correlated genes indicate that LGALS1, ENO1 and ATF2 are important nodes for conferring risk for weight regain. CONCLUSIONS Our present findings indicate that the risk for weight regain is related to expression changes of distinct sets of stress-related genes during the first 4 weeks after returning to energy balance, and during the DI. Further research is required to investigate the mechanistic significance of these findings and find targets for preventing weight regain.
Collapse
|