1
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2024; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Zhao Q, Liu H, Peng J, Niu H, Liu J, Xue H, Liu W, Liu X, Hao H, Zhang X, Wu J. HDAC8 as a target in drug discovery: Function, structure and design. Eur J Med Chem 2024; 280:116972. [PMID: 39427514 DOI: 10.1016/j.ejmech.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Histone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc., have been identified for HDAC8, suggesting the involvement of HDAC8 in diverse biological processes. Studies have demonstrated that HDAC8 plays essential roles in certain disease development, e.g., acute myeloid leukemia (AML), neuroblastoma, and X-Linked disorders. Despite several HDAC8 inhibitors have been discovered, only one compound has progressed to clinical studies. Recently, novel strategies targeting HDAC8 have emerged, including identifying innovative zinc-chelating groups (ZBG), developing multi-target drugs, and HDAC8 PROTACs. This review aims to summarize recent progress in developing new HDAC8 inhibitors that incorporate novel strategies and provide an overview of the clinical improvements associated with HDAC8 inhibitors.
Collapse
Affiliation(s)
- Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan, 265400, Shandong Province, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinyu Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Huabei Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinbo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
3
|
Chen X, Ding X, Fang J, Mao C, Gong X, Zhang Y, Zhang N, Yan F, Lou Y, Chen Z, Ding W, Ma Z. Natural Derivatives of Selective HDAC8 Inhibitors with Potent in Vivo Antitumor Efficacy against Breast Cancer. J Med Chem 2024; 67:14609-14632. [PMID: 39110628 DOI: 10.1021/acs.jmedchem.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
HDAC8 is a therapeutic target with great promise for breast cancer. Here, we reported a novel compound corallorazine D from Nocardiopsis sp. XZB108, selectively inhibited HDAC8 (IC50 = 0.90 ± 0.014 μM), suggesting that it may be a promising nonhydroxamate HDAC8 inhibitor. Upon additional modifications of corallorazine D, a candidate compound 5k, demonstrated remarkable inhibitory potency against HDAC8 (IC50 = 0.12 ± 0.01 nM), 89-fold superior to PCI-34051. The selectivity of 5k was at least 439-fold, superior to corallorazine D, confirming the efficacy of our modifications. In an orthotopic mouse model of breast cancer, 5k displayed nearly 4-fold superior antitumor activity than SAHA. Furthermore, 5k triggered antitumor immunity by activating T cells. Treatment with 5k significantly increased the proportion of M1 macrophages and decreased the proportion of M2 macrophages (M1/M2 ratio = 2.67 ± 0.25). 5k represents a promising compound for further investigation as a potential treatment for breast cancer.
Collapse
Affiliation(s)
- Xiaoming Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xia Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiebin Fang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Churu Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xingzhi Gong
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yuxiao Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ningjing Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Feihang Yan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Velazquez-Caldelas TE, Zamora-Fuentes JM, Hernandez-Lemus E. Coordinated inflammation and immune response transcriptional regulation in breast cancer molecular subtypes. Front Immunol 2024; 15:1357726. [PMID: 38983850 PMCID: PMC11231215 DOI: 10.3389/fimmu.2024.1357726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Breast cancer, characterized by its complexity and diversity, presents significant challenges in understanding its underlying biology. In this study, we employed gene co-expression network analysis to investigate the gene composition and functional patterns in breast cancer subtypes and normal breast tissue. Our objective was to elucidate the detailed immunological features distinguishing these tumors at the transcriptional level and to explore their implications for diagnosis and treatment. The analysis identified nine distinct gene module clusters, each representing unique transcriptional signatures within breast cancer subtypes and normal tissue. Interestingly, while some clusters exhibited high similarity in gene composition between normal tissue and certain subtypes, others showed lower similarity and shared traits. These clusters provided insights into the immune responses within breast cancer subtypes, revealing diverse immunological functions, including innate and adaptive immune responses. Our findings contribute to a deeper understanding of the molecular mechanisms underlying breast cancer subtypes and highlight their unique characteristics. The immunological signatures identified in this study hold potential implications for diagnostic and therapeutic strategies. Additionally, the network-based approach introduced herein presents a valuable framework for understanding the complexities of other diseases and elucidating their underlying biology.
Collapse
Affiliation(s)
| | | | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Rajaraman S, Balakrishnan R, Deshmukh D, Ganorkar A, Biswas S, Pulya S, Ghosh B. HDAC8 as an emerging target in drug discovery with special emphasis on medicinal chemistry. Future Med Chem 2023; 15:885-908. [PMID: 37227732 DOI: 10.4155/fmc-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
HDAC8 catalyzes the deacetylation of both histones and nonhistone proteins. The abnormal expression of HDAC8 is associated with various pathological conditions causing cancer and other diseases like myopathies, Cornelia de Lange syndrome, renal fibrosis, and viral and parasitic infections. The substrates of HDAC8 are involved in diverse molecular mechanisms of cancer such as cell proliferation, invasion, metastasis and drug resistance. Based on the crystal structures and the key residues at the active site, HDAC8 inhibitors have been designed along the canonical pharmacophore. This article details the importance, recent advancements, and the structural and functional aspects of HDAC8 with special emphasis on the medicinal chemistry aspect of HDAC8 inhibitors that will help in developing novel epigenetic therapeutics.
Collapse
Affiliation(s)
- Srinidhi Rajaraman
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Ranjani Balakrishnan
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Dhruv Deshmukh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Abhiram Ganorkar
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
6
|
Giordano F, Paolì A, Forastiero M, Marsico S, De Amicis F, Marrelli M, Naimo GD, Mauro L, Panno ML. Valproic acid inhibits cell growth in both MCF-7 and MDA-MB231 cells by triggering different responses in a cell type-specific manner. J Transl Med 2023; 21:165. [PMID: 36864445 PMCID: PMC9983172 DOI: 10.1186/s12967-023-04015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Martina Forastiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
7
|
Huang J, Zhang J, Xu W, Wu Q, Zeng R, Liu Z, Tao W, Chen Q, Wang Y, Zhu WG. Structure-Based Discovery of Selective Histone Deacetylase 8 Degraders with Potent Anticancer Activity. J Med Chem 2023; 66:1186-1209. [PMID: 36516047 DOI: 10.1021/acs.jmedchem.2c00739] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inducing protein degradation by proteolysis targeting chimeras has gained tremendous momentum as a promising novel therapeutic strategy. Here, we report the design, synthesis, and biological characterization of highly potent proteolysis targeting chimeric small molecules targeting the epigenetic regulator histone deacetylase 8 (HDAC8). We developed potent and effective HDAC8 degraders, as exemplified by SZUH280 (16e), which effectively induced HDAC8 protein degradation and inhibited cancer cell growth even at low micromolar concentrations. Our preliminary mechanistic studies revealed that SZUH280 hampers DNA damage repair in cancer cells, promoting cellular radiosensitization. In mice, a single SZUH280 dose induced rapid and prolonged HDAC8 protein degradation in xenograft tumor tissues. Moreover, SZUH280 alone or in combination with irradiation resulted in long-lasting tumor regression in an A549 tumor mouse model. Our findings qualify a new chemical tool for HDAC8 knockdown and may lead to the development of a new class of cancer therapeutics.
Collapse
Affiliation(s)
- Jinbo Huang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Wenchao Xu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Rongsheng Zeng
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Zhichao Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Wenhui Tao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Qian Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, 3120 Glendale Avenue, Toledo 43614, Ohio, United States
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen 518055, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
8
|
Effect of histone deacetylase 8 gene deletion on breast cancer cellular mechanism in vitro and in vivo study. Life Sci 2022; 311:121156. [DOI: 10.1016/j.lfs.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
9
|
Huang C, Shu Y, Zhu Y, Liu H, Wang X, Wen H, Liu J, Li W. Discovery of non-substrate, environmentally sensitive turn-on fluorescent probes for imaging HDAC8 in tumor cells and tissue slices. Bioorg Med Chem 2022; 68:116821. [PMID: 35661851 DOI: 10.1016/j.bmc.2022.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Histone deacetylase 8 (HDAC8) is overexpressed in multiple cancers and lack of effective chemical probes which could detect and visualize HDAC8 in tumor cells and tissues remains unsolved. In this work, three novel turn-on HDAC8 fluorescent probes 17-19 derived from solvatochromic fluorophore 4-sulfamonyl-7-aminobenzoxadiazole (SBD) conjugating with a potent HDAC8 inhibitor PCI-34051 (IC50 = 10 nM) as the recognition group were fabricated. The probes exhibited much stronger fluorescence when they transfer from hydrophilic environment (Φ < 8%) to hydrophobic environment (Φ > 46%). Compared with PCI-34051 (KD = 9.16 × 10-6 M), probes 17 (KD = 5.37 × 10-6 M), 18 (KD = 3.57 × 10-6 M) and 19 (KD = 8.89 × 10-6 M) possessed slightly better affinity for HDAC8. Probe 19 was selected for cell imaging and it showed significantly enhanced fluorescence only after binding into the cavity of HDAC8 in SH-SY5Y and MDA-MB-231 tumor cells. Co-localization results demonstrated that HDAC8 is expressed in cytoplasm and nucleus. Furthermore, probe 19 was successfully utilized to distinguish the expression level of HDAC8 in SH-SY5Y tumor and normal tissue slices.
Collapse
Affiliation(s)
- Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueyue Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Yan Y, Huang C, Shu Y, Wen H, Shan C, Wang X, Liu J, Li W. An HDAC8-selective fluorescent probe for imaging in living tumor cell lines and tissue slices. Org Biomol Chem 2021; 19:8352-8366. [PMID: 34528053 DOI: 10.1039/d1ob01367j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 8 (HDAC8) has been used as a therapeutic target for many cancers as it is highly expressed in neuroblastoma cells and breast cancer cells. HDAC8-selective fluorescent probes need to be urgently developed. Herein, two novel fluorescent probes, namely NP-C6-PCI and AM-C6-PCI, based on the conjugation of 1,8-naphthalimide with a highly selective inhibitor of HDAC8 (PCI-34051) were reported. Compared with PCI-34051 (KD = 6.25 × 10-5 M), NP-C6-PCI (KD = 8.05 × 10-6 M) and AM-C6-PCI (KD = 7.42 × 10-6 M) showed great selectivity toward HDAC8. Two fluorescent probes exhibited high fluorescence intensity under λex = 450 nm and a large Stokes shift (100 nm). NP-C6-PCI was selected for cell and tissue imaging due to the similarity in the bioactivity of NP-C6-PCI with PCI-34051. The ability of NP-C6-PCI to target imaging HDAC8 in SH-SY5Y and MDA-MB-231 tumor cells was demonstrated. Furthermore, NP-C6-PCI was applied to imaging SH-SY5Y tumor tissue slices to indicate the relative expression level of HDAC8. Therefore, this HDAC8-selective fluorescent probe can be expected for applications in HDAC8-targeted drug screening as well as in pathologic diagnoses.
Collapse
Affiliation(s)
- Yinyu Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Yao Y, Hao F, Tang LC, Xu XH, Jin L. Downregulation of HDAC8 expression decreases CD163 levels and promotes the apoptosis of macrophages by activating the ERK signaling pathway in recurrent spontaneous miscarriage. Mol Hum Reprod 2021; 26:521-531. [PMID: 32433749 DOI: 10.1093/molehr/gaaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous miscarriage (RSM) is a systemic disorder that has been defined as two or more pregnancies lost before the 20th week of gestation. Although the impaired function of macrophages at the maternal-fetal interface has been reported to be associated with RSM, the underlying mechanisms have not been fully elucidated. Here, we revealed that HDAC8 plays a critical role in RSM. Our results show that the mRNA and protein expression of HDAC8 was decreased in decidual macrophages from RSM patients. Moreover, the knockdown of HDAC8 resulted in a significant decrease in CD163 expression and an increase in apoptosis in dTHP-1 macrophages. Mechanistically, the ERK signaling pathway was activated in HDAC8-knockdown macrophages. When HDAC8-knockdown cells were pretreated with the ERK inhibitor U0126, expression levels of CD163, activated caspases 3, 7 and 9, and the apoptosis rate, were rescued. Taken together, our current results suggest that HDAC8 plays an important role in macrophage activation and apoptosis and may contribute to maintaining normal pregnancy by increasing the expression of M2 marker genes and inhibiting the apoptosis of macrophages at the maternal-fetal interface.
Collapse
Affiliation(s)
- Yongli Yao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Fan Hao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Lin-Chen Tang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Xiang-Hong Xu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
12
|
Toshev N, Cheshmedzhieva D, Dudev T. Factors governing the affinity and selectivity of histone deacetylase inhibitors for the HDAC8 enzyme active site: Implications for anticancer therapy. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolay Toshev
- Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
- Faculty of Trade Economics and Commodity Science Plekhanov Russian University of Economics Moscow Russia
| | | | - Todor Dudev
- Faculty of Chemistry and Pharmacy University of Sofia Sofia Bulgaria
| |
Collapse
|
13
|
Mahajan M, Suryavanshi S, Bhowmick S, Alasmary FA, Almutairi TM, Islam MA, Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 2021; 273:106588. [PMID: 33848944 DOI: 10.1016/j.bpc.2021.106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.
Collapse
Affiliation(s)
- Minal Mahajan
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Snehal Suryavanshi
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 91 APC Road, Kolkata 700 009, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India.
| |
Collapse
|
14
|
Rahmani G, Sameri S, Abbasi N, Abdi M, Najafi R. The clinical significance of histone deacetylase-8 in human breast cancer. Pathol Res Pract 2021; 220:153396. [PMID: 33691240 DOI: 10.1016/j.prp.2021.153396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023]
Abstract
Recent studies have shown that the histone deacetylase-8 (HDAC8), as one of the HDACs, regulates the expression and activity of various genes involved in cancer initiation and progression. The HDAC8 plays an epigenetic role to dysregulate expressions or to interact with transcription factors. Most researchers had focused on the HDAC 1-3 and 6, but today the HDAC8 isotype is a promising target in cancer therapy. Different studies, on breast cancer (BC) cells, have recently shown the HDAC8 overexpression and suggested its oncogenic potential. It seems that the HDAC8 could be a novel and promising target in breast cancer treatment. Some studies on BC demonstrated therapeutic properties of the inhibitors of HDAC8 such as suberoylanilide hydroxamic acid (SAHA), Trichostatin A, valproic acid, sodium butyrate, 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl) methyl) propanamide (10b)], N-(2-Hydroxyphenyl)-2propylpentanamide (compound 2) and PCI-34051. In this review, we highlight the role and existing inhibitors of HDAC8 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Golebagh Rahmani
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Abbasi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neurosciences- DNS, University of Padua, Padua, Italy
| | - Mohammad Abdi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Rezvan Najafi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Aru B, Günay A, Şenkuytu E, Yanıkkaya Demirel G, Gürek AG, Atilla D. A Translational Study of a Silicon Phthalocyanine Substituted with a Histone Deacetylase Inhibitor for Photodynamic Therapy. ACS OMEGA 2020; 5:25854-25867. [PMID: 33073111 PMCID: PMC7558005 DOI: 10.1021/acsomega.0c03180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, we synthesized and characterized a silicon phthalocyanine substituted with 3-hydroxypyridin-2-thione (SiPc-HDACi), designed to be a chemophotodynamic therapy agent acting as a histone deacetylase inhibitor, and we determined its photophysical, photochemical, and photobiological properties. Next, we evaluated its anticancer efficacy on MCF-7, double positive and MDA-MB-231, triple negative breast cancer cell lines, as well as on a healthy human endothelial cell line (HUVEC). Our results indicate that SiPc-HDACi can target nucleoli of cells, effectively inducing apoptosis while promoting cell cycle arrest thanks to its high singlet oxygen yield and its histone deacetylase downregulating properties, suggesting a powerful anticancer effect on breast cancer in vitro. Our further studies will be conducted with primary breast cancer cell culture to give a better insight into the anticancer mechanism of the compound.
Collapse
Affiliation(s)
- Başak Aru
- Department
of Molecular Biology and Genetics, Gebze
Technical University, 41400 Gebze, Kocaeli, Turkey
- Faculty
of Medicine, Immunology Department, Yeditepe University, 34755 Ataşehir, İstanbul, Turkey
| | - Aysel Günay
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Elif Şenkuytu
- Faculty
of Science, Department of Chemistry, Atatürk
University, 25240 Erzurum, Turkey
| | | | - Ayşe Gül Gürek
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Department
of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
16
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
17
|
Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, Hosseini V, Abdi M. Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:288-94. [PMID: 32429642 PMCID: PMC7392136 DOI: 10.29252/ibj.24.5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Previous data have shown the tumorigenicity roles of HDAC8 in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in TNBC. The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in diagnosis of TNBC tumors.
Collapse
Affiliation(s)
- Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Mohammadi-Yegane
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
18
|
Li ML, Su XM, Ren Y, Zhao X, Kong LF, Kang J. HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respir Res 2020; 21:62. [PMID: 32111211 PMCID: PMC7048058 DOI: 10.1186/s12931-020-1322-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study was to investigate of the mechanism by which histone deacetylase (HDAC) 8 inhibitor ameliorated airway hyperresponsiveness (AHR) and allergic airway inflammation. METHODS Mice were sensitized and then treated with budesonide (BUD) or PCI-34051 (PCI) prior to exposing to normal saline (NS) or ovalbumin (OVA). The raw264.7 cells were treated with interleukin (IL)-4 and PCI or shRNA alone. Repetitive measurements of enhanced pause (Penh) were executed by increasing concentrations of acetyl-β-methacholine chloride (0 - 50 mg/ml). Cells in bronchoalveolar lavage fluid (BALF) and pathological changes of lungs were examined, respectively. The expression levels of HDAC8, Galecitn (Gal)-3, CD68, CD86, CD163, Arg1 and NOS2 in lungs were measured. Co-regulation of HDAC8 and Gal-3 proteins was observed by immunofluorescence staining and co-immunoprecipitation assay (Co-IP). RESULTS Significant increases in Penh and IL-4 level were detected with a large inflammatory infiltrate, comprised predominantly of macrophages and eosinophils, into the BALF in OVA-exposed lungs. HDAC8, Gal-3, CD68, CD86, CD163, Arg1 and NOS2 proteins were over-expressed with the significant changes in the Arg1 and NOS2 mRNA levels in the lungs and the IL-4-treated cells. PCI intervention obviously reduced the counts of CD163+ cells. Furthermore, Gal-3 knockdown suppressed Arg1 expression in the cells. Immunofluorescence staining displayed simultaneous changes in HDAC8 and Gal-3 expression in the investigated samples. Treatment with PCI resulted in synchronous reduction of HDAC8 and Gal-3 expression in the Co-IP complexes. CONCLUSIONS The HDAC8 inhibitor ameliorates AHR and airway inflammation in animal model of allergic asthma through reducing HDAC8-Gal-3 interaction and M2 macrophage polarization.
Collapse
Affiliation(s)
- Meng-Lu Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xin-Ming Su
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuan Ren
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xuan Zhao
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Ling-Fei Kong
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
19
|
Menbari MN, Rahimi K, Ahmadi A, Elyasi A, Darvishi N, Hosseini V, Mohammadi-Yeganeh S, Abdi M. MiR-216b-5p inhibits cell proliferation in human breast cancer by down-regulating HDAC8 expression. Life Sci 2019; 237:116945. [DOI: 10.1016/j.lfs.2019.116945] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/22/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
|
20
|
Zhu YJ, Xu Q, Shao MY, Cao XY, Wu ZR, Chen YW, Bu H, Shi YJ. Decreased expression of HDAC8 indicates poor prognosis in patients with intrahepatic cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 2019; 18:464-470. [PMID: 31402267 DOI: 10.1016/j.hbpd.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly malignant primary tumor in the liver, and the rates of incidence and mortality are rapidly increasing globally. Histone deacetylase 8 (HDAC8) is a transcriptional regulator and is associated with tumorigenesis of several tumor types. This study aimed to evaluate the correlation between HDAC8 expression and clinicopathological parameters in ICC patients. METHODS ICC tissues and corresponding nonmalignant bile duct tissues were obtained from 60 patients. HDAC8 and Ki-67 expression were evaluated by immunohistochemistry staining. HDAC8 expression and the clinicopathological features and prognosis of the patients were analyzed. The mRNA level of HDAC8 in ICC was further analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS The expression of HDAC8 were lower in ICC tissues (39/60, 65%) than in the corresponding nonmalignant bile duct tissues (54/60, 90%) (P = 0.001). Low HDAC8 expression in ICC was significantly associated with lymph node metastases (47.6% vs. 17.9%, P = 0.015). In addition, the positive cells rate of HDAC8 was statistically and negatively correlated with the Ki-67 index in ICC lesions (r = -0.7660, P < 0.001). Importantly, the overall survival rate and recurrence-free survival rate in ICC patients with low HDAC8 expression were lower than those with high HDAC8 expression (P = 0.008 and P = 0.011, respectively). CONCLUSIONS Decreased HDAC8 expression in ICC is related to poor prognosis, and HDAC8 may be an independent prognostic indicator of ICC patients after curative resection.
Collapse
Affiliation(s)
- Yong-Jie Zhu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming-Yang Shao
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Yue Cao
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen-Ru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Yu-Wei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Jun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Menbari M, Rahimi K, Ahmadi A, Mohammadi‐Yeganeh S, Elyasi A, Darvishi N, Hosseini V, Abdi M. miR‐483‐3p suppresses the proliferation and progression of human triple negative breast cancer cells by targeting the
HDAC8
>oncogene. J Cell Physiol 2019; 235:2631-2642. [DOI: 10.1002/jcp.29167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad‐Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics‐Gene Expression and Gene Medicine Aarhus University Aarhus Denmark
- Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Samira Mohammadi‐Yeganeh
- Medical Nanotechnology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development Kurdistan University of Medical Sciences Sanandaj Iran
- Department of Clinical Biochemistry, Faculty of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
22
|
Marek M, Shaik TB, Heimburg T, Chakrabarti A, Lancelot J, Ramos-Morales E, Da Veiga C, Kalinin D, Melesina J, Robaa D, Schmidtkunz K, Suzuki T, Holl R, Ennifar E, Pierce RJ, Jung M, Sippl W, Romier C. Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural and Functional Determinants. J Med Chem 2018; 61:10000-10016. [PMID: 30347148 DOI: 10.1021/acs.jmedchem.8b01087] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-dependent histone deacetylases (HDACs) are key epigenetic regulators that represent promising therapeutic targets for the treatment of numerous human diseases. Yet the currently FDA-approved HDAC inhibitors nonspecifically target at least several of the 11 structurally similar but functionally different HDAC isozymes, which hampers their broad usage in clinical settings. Selective inhibitors targeting single HDAC isozymes are being developed, but precise understanding in molecular terms of their selectivity remains sparse. Here, we show that HDAC8-selective inhibitors adopt a L-shaped conformation required for their binding to a HDAC8-specific pocket formed by HDAC8 catalytic tyrosine and HDAC8 L1 and L6 loops. In other HDAC isozymes, a L1-L6 lock sterically prevents L-shaped inhibitor binding. Shielding of the HDAC8-specific pocket by protein engineering decreases potency of HDAC8-selective inhibitors and affects catalytic activity. Collectively, our results unravel key HDAC8 active site structural and functional determinants important for the design of next-generation chemical probes and epigenetic drugs.
Collapse
Affiliation(s)
- Martin Marek
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative , Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258) , 1 rue Laurent Fries , 67404 Illkirch Cedex , France
| | - Tajith B Shaik
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative , Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258) , 1 rue Laurent Fries , 67404 Illkirch Cedex , France
| | - Tino Heimburg
- Institute of Pharmacy , Martin-Luther-Universität Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle/Saale , Germany
| | - Alokta Chakrabarti
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Julien Lancelot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille , Université de Lille , F-59000 Lille , France
| | - Elizabeth Ramos-Morales
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative , Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258) , 1 rue Laurent Fries , 67404 Illkirch Cedex , France
| | - Cyrielle Da Veiga
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR 9004 du CNRS , Université de Strasbourg , 15 Rue René Descartes , 67084 Strasbourg Cedex , France
| | - Dmitrii Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry , University of Münster , Corrensstraße 48 , 48149 Münster , Germany
| | - Jelena Melesina
- Institute of Pharmacy , Martin-Luther-Universität Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle/Saale , Germany
| | - Dina Robaa
- Institute of Pharmacy , Martin-Luther-Universität Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle/Saale , Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-Cho, Sakyo-Ku , 606-0823 Kyoto , Japan.,CREST , Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi , 332-0012 Saitama , Japan
| | - Ralph Holl
- Department of Chemistry, Institute of Organic Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire (IBMC), UPR 9004 du CNRS , Université de Strasbourg , 15 Rue René Descartes , 67084 Strasbourg Cedex , France
| | - Raymond J Pierce
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille , Université de Lille , F-59000 Lille , France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , Albert-Ludwigs-Universität Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Wolfgang Sippl
- Institute of Pharmacy , Martin-Luther-Universität Halle-Wittenberg , Wolfgang-Langenbeck-Straße 4 , 06120 Halle/Saale , Germany
| | - Christophe Romier
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative , Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258) , 1 rue Laurent Fries , 67404 Illkirch Cedex , France
| |
Collapse
|
23
|
Huang Y, Jian W, Zhao J, Wang G. Overexpression of HDAC9 is associated with poor prognosis and tumor progression of breast cancer in Chinese females. Onco Targets Ther 2018; 11:2177-2184. [PMID: 29713186 PMCID: PMC5909784 DOI: 10.2147/ott.s164583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Breast cancer represents a serious health issue among females. HDAC9 has been identified as an oncogene in human cancers. This study sought to assess the prognostic value and the biologic function of HDAC9 in breast cancer patients. METHODS Expression of HDAC9 in breast cancer tissues and cells was evaluated by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis and Cox regression assay were conducted to explore the prognostic significance of HDAC9. Cell experiments were performed to investigate the effects of HDAC9 on the biologic behaviors of breast cancer cells. RESULTS Expression of HDAC9 was significantly upregulated in both cancerous tissues and cells compared with the normal controls (all P<0.05). Overexpression of HDAC9 was correlated with lymph node metastasis (P=0.021) and TNM stage (P=0.004). Patients with high HDAC9 had poor overall survival compared to those with low levels of HDAC9 (log-rank P<0.05). Elevated HDAC9 was found to be an independent prognostic factor for the patients (hazard ratio=2.996, 95% CI=1.611-5.572, P=0.001). According to the cell experiments, tumor cell proliferation, migration and invasion were suppressed by knockdown of HDAC9. CONCLUSION All data demonstrated that overexpression of HDAC9 serves as a prognostic biomarker and may be involved in the tumor progression of breast cancer.
Collapse
Affiliation(s)
- Yixiang Huang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wei Jian
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Junyong Zhao
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Gang Wang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
24
|
Aztopal N, Erkisa M, Erturk E, Ulukaya E, Tokullugil AH, Ari F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem Biol Interact 2017; 280:51-58. [PMID: 29225137 DOI: 10.1016/j.cbi.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Cancer stem-like cells (CSCs) are a cell subpopulation that can reinitiate tumors, resist chemotherapy, give rise to metastases and lead to disease relapse because of an acquired resistance to apoptosis. Especially, epigenetic alterations play a crucial role in the regulation of stemness and also have been implicated in the development of drug resistance. Hence, in the present study, we examined the cytotoxic and apoptotic activity of valproic acid (VPA) as an inhibitor of histone deacetylases (HDACs) against breast CSCs (BCSCs). Increased expression of stemness markers were determined by western blotting in mammospheres (MCF-7s, a cancer stem cell-enriched population) propagated from parental MCF-7 cells. Anti-growth activity of VPA was determined via ATP viability assay. The sphere formation assay (SFA) was performed to assess the inhibitory effect of VPA on the self-renewal capacity of MCF-7s cells. Acetylation of histon H3 was detected with ELISA assay. Cell death mode was performed by Hoechst dye 33342 and propidium iodide-based flouresent stainings (for pyknosis and membrane integrity), by M30 and M65 ELISA assays (for apoptosis and primary or secondary necrosis) as well as cytofluorimetric analysis (caspase 3/7 activity and annexin-V-FITC staining for early and late stage apoptosis). VPA exhibited anti-growth effect against both MCF-7 and MCF-7s cells in a dose (0.6-20 mM) and time (24, 48, 72 h) dependent manner. As expected, MCF-7s cells were found more resistant to VPA than MCF-7 cells. It was observed that VPA prevented mammosphere formation at relatively lower doses (2.5 and 5 mM) while the acetylation of histon H3 was increased. At the same doses, VPA increased the M30 levels, annexin-V-FITC positivity and caspase 3/7 activation, implying the induction of apoptosis. The secondary necrosis (late stage of apoptosis) was also evidenced by nuclear pyknosis with propidium iodide staining positivity. Taken together, inhibition of HDACs is cytotoxic to BCSCs by apoptosis. Our results suggested that targeting the epigenetic regulation of histones may be a novel approach and hold significant promise for successful treatment of breast cancer.
Collapse
Affiliation(s)
- Nazlıhan Aztopal
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Merve Erkisa
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Elif Erturk
- Uludag University, Vocational School of Health Services, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | | | - Ferda Ari
- Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey.
| |
Collapse
|
25
|
Hanigan TW, Aboukhatwa SM, Taha TY, Frasor J, Petukhov PA. Divergent JNK Phosphorylation of HDAC3 in Triple-Negative Breast Cancer Cells Determines HDAC Inhibitor Binding and Selectivity. Cell Chem Biol 2017; 24:1356-1367.e8. [PMID: 28943357 PMCID: PMC5693607 DOI: 10.1016/j.chembiol.2017.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/10/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
Histone deacetylase (HDAC) catalytic activity is regulated by formation of co-regulator complexes and post-translational modification. Whether these mechanisms are transformed in cancer and how this affects the binding and selectivity of HDAC inhibitors (HDACis) is unclear. In this study, we developed a method that identified a 3- to 16-fold increase in HDACi selectivity for HDAC3 in triple-negative breast cancer (TNBC) cells in comparison with luminal subtypes that was not predicted by current practice measurements with recombinant proteins. We found this increase was caused by c-Jun N-terminal kinase (JNK) phosphorylation of HDAC3, was independent of HDAC3 complex composition or subcellular localization, and was associated with a 5-fold increase in HDAC3 enzymatic activity. This study points to HDAC3 and the JNK axes as targets in TNBC, highlights how HDAC phosphorylation affects HDACi binding and selectivity, and outlines a method to identify changes in individual HDAC isoforms catalytic activity, applicable to any disease state.
Collapse
Affiliation(s)
- Thomas W Hanigan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Shaimaa M Aboukhatwa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt 31527
| | - Taha Y Taha
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Taha TY, Aboukhatwa SM, Knopp RC, Ikegaki N, Abdelkarim H, Neerasa J, Lu Y, Neelarapu R, Hanigan TW, Thatcher GRJ, Petukhov PA. Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline-Based Histone Deacetylase 8 Selective Inhibitors. ACS Med Chem Lett 2017; 8:824-829. [PMID: 28835796 DOI: 10.1021/acsmedchemlett.7b00126] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Histone deacetylase 8 (HDAC8) is a promising drug target for multiple therapeutic applications. Here, we describe the modeling, design, synthesis, and biological evaluation of a novel series of C1-substituted tetrahydroisoquinoline (TIQ)-based HDAC8 inhibitors. Minimization of entropic loss upon ligand binding and use of the unique HDAC8 "open" conformation of the binding site yielded a successful strategy for improvement of both HDAC8 potency and selectivity. The TIQ-based 3g and 3n exhibited the highest 82 and 55 nM HDAC8 potency and 330- and 135-fold selectivity over HDAC1, respectively. Selectivity over other class I isoforms was comparable or better, whereas inhibition of HDAC6, a class II HDAC isoform, was below 50% at 10 μM. The cytotoxicity of 3g and 3n was evaluated in neuroblastoma cell lines, and 3n displayed concentration-dependent cytotoxicity similar to or better than that of PCI-34051. The selectivity of 3g and 3n was confirmed in SH-SY5Y cells as both did not increase the acetylation of histone H3 and α-tubulin. Discovery of the novel TIQ chemotype paves the way for the development of HDAC8 selective inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Shaimaa M. Aboukhatwa
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Rachel C. Knopp
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Naohiko Ikegaki
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hazem Abdelkarim
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jayaprakash Neerasa
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yunlong Lu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Raghupathi Neelarapu
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Thomas W. Hanigan
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Pavel A. Petukhov
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
27
|
Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med Chem 2016; 8:1609-34. [PMID: 27572818 DOI: 10.4155/fmc-2016-0117] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique class I zinc-dependent HDAC, is an emerging target in cancer and other diseases. Its substrate repertoire extends beyond histones to many nonhistone proteins. Besides being a deacetylase, HDAC8 also mediates signaling via scaffolding functions. Aberrant expression or deregulated interactions with transcription factors are critical in HDAC8-dependent cancers. Many potent HDAC8-selective inhibitors with cellular activity and anticancer effects have been reported. We present HDAC8 as a druggable target and discuss inhibitors of different chemical scaffolds with cellular effects. Furthermore, we review HDAC8 activators that revert activity of mutant enzymes. Isotype-selective HDAC8 targeting in patients with HDAC8-relevant cancers is challenging, however, is promising to avoid adverse side effects as observed with pan-HDAC inhibitors.
Collapse
|
28
|
Prestegui-Martel B, Bermúdez-Lugo JA, Chávez-Blanco A, Dueñas-González A, García-Sánchez JR, Pérez-González OA, Padilla-Martínez II, Fragoso-Vázquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Méndez-Luna D, Trujillo-Ferrara J, Correa-Basurto J. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem 2016; 31:140-149. [PMID: 27483122 DOI: 10.1080/14756366.2016.1210138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC50 (μM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.
Collapse
Affiliation(s)
- Berenice Prestegui-Martel
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Jorge Antonio Bermúdez-Lugo
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Alma Chávez-Blanco
- b División de Investigación Básica, Instituto Nacional de Cancerología , Tlalpan, Sección XVI, Ciudad de México , México
| | - Alfonso Dueñas-González
- c Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología , Ciudad de México , México
| | - José Rubén García-Sánchez
- d Laboratorio de Oncología Molecular y Estrés Oxidativo , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Oscar Alberto Pérez-González
- e Laboratorio de Oncología Experimental , Instituto Nacional de Pediatría , Coyoacán, Insurgentes Cuicuilco, Ciudad de México , México , and
| | - Itzia Irene Padilla-Martínez
- f Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Barrio La Laguna Ticomán, Ciudad de México , México
| | - Manuel Jonathan Fragoso-Vázquez
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Jessica Elena Mendieta-Wejebe
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Ana María Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - David Méndez-Luna
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - José Trujillo-Ferrara
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| |
Collapse
|
29
|
Biomarkers of genome instability and cancer epigenetics. Tumour Biol 2016; 37:13029-13038. [DOI: 10.1007/s13277-016-5278-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
|
30
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|