1
|
Chang Z, Huang R, Song J, Li Z, Pi M, Xian S, Zhang J, Huang J, Xie R, Ji G, Han D, Huang Q. Modulation of SRC by SNTB1 activates the Hippo-YAP pathway during colon adenocarcinoma metastasis. J Transl Med 2024; 22:1029. [PMID: 39548564 PMCID: PMC11566567 DOI: 10.1186/s12967-024-05548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/29/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) ranks as the third most prevalent and lethal cancer in 2020, with metastasis being the primary cause of cancer-related mortality. A comprehensive understanding of the mechanism underlying distant metastasis is imperative for enhancing the prognosis and quality of life of patients with COAD. METHODS This study employed gene set enrichment analysis (GSEA) on RNA-sequencing data from 408 patients with COAD in The Cancer Genome Atlas (TCGA) database. GSEA analysis was applied to find the significant hallmark gene set, and genes in the significant hallmark gene set was performed by univariate Cox regression to select the key gene. Then, multivariate Cox regression model was constructed. And various databases were utilized to validate and find the significant oncoprotein and hallmark gene set of the key gene. In addition, the expression of key regulators in para-carcinoma tissue, colon cancer and distant metastases samples were detected by real-time PCR, Immunohistochemistry and Western blot. Additionally, the biological functions were examined by in vitro and in vivo experiments. The scRNA-seq and CellphoneDB were performed to explore cell characters in COAD and the potential mechanism of metastasis. RESULTS The regulatory network analysis revealed SRC/YAP1 as the most significant oncoprotein and signature gene set associated with SNTB1. Moreover, significant SNTB1 overexpression in COAD metastatic tissues was observed compared to para-carcinoma and primary COAD tissues. Co-immunoprecipitation assays demonstrated the formation of a complex between SNTB1 and SRC proteins. Furthermore, the overexpression of SNTB1 enhanced the proliferation, migration and invasion capacities of COAD cell lines. Caudal vein injection of COAD cells overexpressing SNTB1 in nude mice resulted in increased tumour growth and metastasis to the lung, liver and bone. Finally, single cell RNA-seq revealed alterations in the cellular subtypes of COAD, and CellphoneDB indicated that the interaction between cancer cells exhibiting high SNTB1 expression and enterocytes promoted EMT through cellular communications involving TGF-β, accelerating metastasis in COAD. CONCLUSION This study postulates that SNTB1 interacts with SRC to activate the Hippo-YAP pathway, thereby promoting COAD metastasis. Furthermore, cellular communication with enterocytes promotes EMT, facilitating metastasis. These findings propose novel therapeutic targets for preventing or treating metastatic COAD.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Jiaqi Song
- Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Zhenyu Li
- Tongji University School of Medicine, Shanghai, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Jingcheng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinglei Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
2
|
Smit D, Hoffer K, Bettin B, Kriegs M, Cayrefourcq L, Schumacher U, Pantel K, Alix‐Panabières C, Jücker M. Analysis of the Plasticity of Circulating Tumor Cells Reveals Differentially Regulated Kinases During the Suspension-to-Adherent Transition. Cancer Med 2024; 13:e70339. [PMID: 39425449 PMCID: PMC11489281 DOI: 10.1002/cam4.70339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Research on circulating tumor cells (CTCs) offers the opportunity to better understand the initial steps of blood-borne metastasis as main cause of cancer-related deaths. Here, we have used the colon cancer CTC-MCC-41 and breast cancer CTC-ITB-01 lines, which were both established from human CTCs as permanent cell lines as models to further study CTC biology with special emphasis on anchorage-independent survival and growth. METHODS AND RESULTS Both cell lines showed a marked intrinsic plasticity to switch between suspension and adherent in vitro growth, in 2D adherent culture conditions, and established an equilibrium of both growth patterns with predominant adherent cells in the CTC-MCC-41 line (77%) and suspension cells in the CTC-ITB-01 line (85%). Western blot analysis revealed a higher expression of pERK1/2 in CTC-ITB-01 adherent cells compared to the suspension counterpart that suggested the involvement of kinases in this process. Subsequent functional kinome profiling identified several serine/threonine as well as tyrosine kinases that were differentially regulated in adherent and suspension CTCs. In the adherent cells of the breast cancer line CTC-ITB-01 the activity of MSK1, Src family kinases and the PKG family was increased compared to the suspension counterpart. In adherent cells of the colorectal CTC-MCC-41 line, an increased activity of TYRO3 and JAK2 was detected, whereas p38 MAPK was strongly impaired in the suspension CTC-MCC-41 cells. Some of the regulated kinases, which include the Src family, TYRO3, MSK1, JAK2 and p38 MAPK, have been associated with crucial cellular processes including proliferation, migration and dormancy in the past. CONCLUSIONS The investigated CTC lines exhibit a high plasticity, similar to the concept of 'adherent-to-suspension transition (AST)' that was recently suggested as a new hallmark of tumor biology by Huh et al. Moreover, we identified differentially regulated kinome profiles that may represent potential targets for future studies on therapeutic interventions.
Collapse
Affiliation(s)
- Daniel J. Smit
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Tumor BiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bettina Bettin
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Udo Schumacher
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Medical School BerlinBerlinGermany
| | - Klaus Pantel
- Institute of Tumor BiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Manfred Jücker
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
3
|
Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Breast Cancer Res 2024; 26:122. [PMID: 39138514 PMCID: PMC11320849 DOI: 10.1186/s13058-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.
Collapse
MESH Headings
- Humans
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Neuropilin-2/metabolism
- Neuropilin-2/genetics
- Neoplasm Invasiveness
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Cell Line, Tumor
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Gene Expression Regulation, Neoplastic
- Signal Transduction
Collapse
Affiliation(s)
- Núria Moragas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Patricia Fernandez-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Leire Recalde-Percaz
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Anna López-Plana
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Aleix Noguera-Castells
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Catalonia, Spain
| | - Pedro J Del Burgo
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Xieng Chen
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Therese Sorlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Mina Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain.
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain.
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), UVIC-UCC, Vic, Spain.
| |
Collapse
|
4
|
László L, Kurilla A, Tilajka Á, Pancsa R, Takács T, Novák J, Buday L, Vas V. Unveiling epithelial plasticity regulation in lung cancer: Exploring the cross-talk among Tks4 scaffold protein partners. Mol Biol Cell 2024; 35:ar111. [PMID: 38985526 PMCID: PMC11321040 DOI: 10.1091/mbc.e24-03-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) represents a hallmark event in the evolution of lung cancer. This work aims to study a recently described EMT-regulating protein, Tks4, and to explore its potential as a prognostic biomarker in non-small cell lung cancer. In this study, we used CRISPR/Cas9 method to knockout (KO) Tks4 to study its functional roles in invadopodia formation, migration, and regulation of EMT marker expressions and we identified Tks4-interacting proteins. Tks4-KO A549 cells exhibited an EMT-like phenotype characterized by elongated morphology and increased expression of EMT markers. Furthermore, analyses of a large-scale lung cancer database and a patient-derived tissue array data revealed that the Tks4 mRNA level was decreased in more aggressive lung cancer stages. To understand the regulatory role of Tks4 in lung cancer, we performed a Tks4-interactome analysis via Tks4 immunoprecipitation-mass spectrometry on five different cell lines and identified CAPZA1 as a novel Tks4 partner protein. Thus, we propose that the absence of Tks4 leads to disruption of a connectome of multiple proteins and that the resulting undocking and likely mislocalization of signaling molecules impairs actin cytoskeleton rearrangement and activates EMT-like cell fate switches, both of which likely influence disease severity.
Collapse
Affiliation(s)
- Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anita Kurilla
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
5
|
Sun J, Tang M, Cai Z. SPP1 promotes tumor progression in esophageal carcinoma by activating focal adhesion pathway. J Gastrointest Oncol 2024; 15:818-828. [PMID: 38989403 PMCID: PMC11231845 DOI: 10.21037/jgo-24-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recurrence and metastasis are the major obstacles affecting the therapeutic efficacy and clinical outcomes for patients with esophageal carcinoma (ESCA). Secreted phosphoprotein 1 (SPP1) is considered as a hub gene in ESCA and is negatively associated with disease-free survival (DFS) in ESCA. However, the exact roles and underlying mechanisms remain elusive. This study aims to examine the roles of SPP1 on ESCA, and elucidate the potential mechanisms. Methods Bioinformatics were used to analyze the expression of SPP1 in ESCA tissues, and its relations with clinicopathological characteristics and clinical prognosis in patients with ESCA based on The Cancer Genome Atlas (TCGA) dataset. Loss-of-function was conducted to examine the roles of SPP1 on malignant behaviors of ESCA cells by cell counting kit-8 (CCK8), plate clone, wound healing, and transwell assays. Gene set enrichment analysis (GSEA) was conducted to screen the pathways associated with SPP1 in ESCA. Then, the enriched pathway and the underlying mechanism were elucidated by western blotting, cell adhesion, and cell spreading assays. Lastly, Y15 [a specific inhibitor of focal adhesion kinase (FAK)] was used to examine its potential to inhibit tumor growth in ESCA cells. Results SPP1 was upregulated in ESCA tissues compared to the adjacent nontumorous tissues, which was closely associated with clinical stage, lymph node metastasis, histological subtype, and p53 mutation. A high expression of SPP1 indicated a poor clinical prognosis in patients with ESCA. The knockdown of SPP1 inhibited cell proliferative, migratory, and invasive capacities in ESCA cells. GSEA indicated that the focal adhesion pathway was closely related with SPP1 in ESCA. Further studies confirmed that the knockdown of SPP1 suppressed cell adhesion ability and reduced the expression of p-FAK and p-Erk in ESCA cells. In addition, Y15 inhibited FAK autophosphorylation and dramatically inhibited cell proliferation, migration, and invasion in ESCA cells. Conclusions SPP1 promotes tumor progression in ESCA by activating FAK/Erk pathway, and FAK is a potential therapeutic target to overcome tumor recurrence and metastasis of ESCA.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Mingming Tang
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Zhigang Cai
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Zhao Q, Bai L, Zhu D, Li T, Xu J, Xu Y, Zhou X. Clinical efficacy and potential mechanism of ginseng polysaccharides in the treatment of non-small cell lung cancer based on meta-analysis associated with network pharmacology. Heliyon 2024; 10:e27152. [PMID: 38496882 PMCID: PMC10944195 DOI: 10.1016/j.heliyon.2024.e27152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Background The ginseng polysaccharide injection is a well-known traditional Chinese medicine often employed as a supplementary treatment for cancer. This treatment can not only alleviate the adverse effects caused by tumor radiotherapy and chemotherapy but also enhance the immune system of individuals diagnosed with lung cancer. It is important to acknowledge the efficacy of ginseng polysaccharide injection in the treatment of non-small cell lung cancer (NSCLC). However, these small-sample studies may have certain biases, and the underlying mechanisms of ginseng polysaccharides therapy for NSCLC are still unclear. Methods The present study involved a systematic review of the literature on randomized controlled trials (RCTs) focusing on using ginseng polysaccharide injection as a therapeutic approach for NSCLC. Seven databases were searched for eligible studies published before April 2023. Two researchers independently managed data extraction, risk of bias assessment, and data analyses using RevMan 5.3 software. In network pharmacology, we thoroughly searched the relevant literature on ginseng polysaccharides (GPs) and the PubChem database. This search aimed to identify the main active ingredients and targets associated with ginseng polysaccharides. Subsequently, we compared these targets with those of NSCLC and utilized bioinformatics techniques to analyze and explore their potential interactions. Results A total of 11 RCTs involving 845 patients with NSCLC were included in the meta-analysis. The meta-analysis revealed that ginseng polysaccharide injection combined significantly improved the objective response rate [RR = 1.45, 95% CI (1.26, 1.67), P < 0.00001]. Furthermore, it was observed that ginseng polysaccharide injection increased the serum levels of CD4+ T-lymphocytes (CD4+ T) [MD = 8.98, 95% CI (5.18, 12.78), P < 0.00001], and decreased the serum levels of CD8+ T-lymphocytes (CD8+ T) [MD = -2.68, 95% CI (-4.66, -0.70), P = 0.008]. Through network pharmacology analysis, a total of 211 target genes of GPs and 81 common targets were identified. GAPDH, EGFR, VEGFA, JUN, SRC, CASP3, STAT3, CCND1, HSP90AA1, and MMP9 were identified as the core target proteins. Additionally, KEGG enrichment analysis revealed 122 relevant signaling pathways, including Pathways in cancer, PD-L1 expression and PD-1 checkpoint pathway in cancer, and Proteoglycans in cancer. Conclusion Ginseng polysaccharide injection can improve the ORR of patients with NSCLC, increase the serum levels of CD4+ T, and decrease the serum levels of CD8+ T. The potential mechanism may be associated with the PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Le Bai
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Dongwei Zhu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Tingyuan Li
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Jie Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yong Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
7
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
8
|
Herrington CS, Oswald AJ, Stillie LJ, Croy I, Churchman M, Hollis RL. Compartment-specific multiomic profiling identifies SRC and GNAS as candidate drivers of epithelial-to-mesenchymal transition in ovarian carcinosarcoma. Br J Cancer 2024; 130:327-335. [PMID: 38097740 PMCID: PMC10803731 DOI: 10.1038/s41416-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial-to-mesenchymal transition (EMT). METHODS We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma (HGSOC). Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFβ, NOTCH); chrX is a highly enriched target of these microRNAs and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.
Collapse
Affiliation(s)
- C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ailsa J Oswald
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lorna J Stillie
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre and Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian Croy
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Moreno-Londoño AP, Robles-Flores M. Functional Roles of CD133: More than Stemness Associated Factor Regulated by the Microenvironment. Stem Cell Rev Rep 2024; 20:25-51. [PMID: 37922108 PMCID: PMC10799829 DOI: 10.1007/s12015-023-10647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/β-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.
Collapse
Affiliation(s)
- Angela Patricia Moreno-Londoño
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
11
|
Liu Z, Huang H, Yu Y, Li L, Shi X, Wang F. Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology. J Cell Mol Med 2023; 27:3878-3896. [PMID: 37794689 PMCID: PMC10718161 DOI: 10.1111/jcmm.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Ellagic acid (EA) is a natural polyphenolic compound. Recent studies have shown that EA has potential anticancer properties against gastric cancer (GC). This study aims to reveal the potential targets and mechanisms of EA against GC. This study adopted methods of bioinformatics analysis and network pharmacology, including the weighted gene co-expression network analysis (WGCNA), construction of protein-protein interaction (PPI) network, receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival curve analysis, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics simulations (MDS). A total of 540 EA targets were obtained. Through WGCNA, we obtained a total of 2914 GC clinical module genes, combined with the disease database for screening, a total of 606 GC-related targets and 79 intersection targets of EA and GC were obtained by constructing Venn diagram. PPI network was constructed to identify 14 core candidate targets; TP53, JUN, CASP3, HSP90AA1, VEGFA, HRAS, CDH1, MAPK3, CDKN1A, SRC, CYCS, BCL2L1 and CDK4 were identified as the key targets of EA regulation of GC by ROC and KM curve analysis. The enrichment analysis of GO and KEGG pathways of key targets was performed, and they were mainly enriched in p53 signalling pathway, PI3K-Akt signalling pathway. The results of molecular docking and MDS showed that EA could effectively bind to 13 key targets to form stable protein-ligand complexes. This study revealed the key targets and molecular mechanisms of EA against GC and provided a theoretical basis for further study of the pharmacological mechanism of EA against GC.
Collapse
Affiliation(s)
- Zhiyao Liu
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Hailiang Huang
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Ying Yu
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Lingling Li
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xin Shi
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Fangqi Wang
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
12
|
Hosseini MS, Hadadzadeh H, Mirahmadi-Zare SZ, Farrokhpour H, Aboutalebi F, Morshedi D. A curcumin-nicotinoyl derivative and its transition metal complexes: synthesis, characterization, and in silico and in vitro biological behaviors. Dalton Trans 2023; 52:14477-14490. [PMID: 37779393 DOI: 10.1039/d3dt01351k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Curcumin-nicotinoyl (Cur-Nic) was synthesized by the chemical modification of the curcumin structure, characterized, and used as a ligand for the synthesis of copper(II) and zinc(II) complexes. The biological activities of Cur-Nic and its metal complexes were predicted using the PASS and Swiss Target Prediction online software, respectively, and docking studies with tyrosine-protein kinase SRC were performed using the PyRx software to predict their anticancer activities. The toxicity effects of the complexes on a human breast cancer cell line (MCF-7) compared to a healthy breast cell line (MCF-10A) were investigated by the MTS assay. Although the metal complexes maintained the least toxicity against normal cells, the results indicated that compared to curcumin and Cur-Nic, the cytotoxicity toward cancer cells increased due to the complexation process. Moreover, the antibacterial evaluation of the compounds against a Gram-positive bacterium (MRSA) and a Gram-negative bacterium (E. coli) indicated that the Cu(II) complex and Cur-Nic were the best, respectively. Also, the Zn(II) complex was the most stable compound, and the Cu(II) complex was the best ROS scavenger based on the in vitro evaluation.
Collapse
Affiliation(s)
- Marziyeh-Sadat Hosseini
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Liu C, Li S, Tang Y. Advances in the expression and function of Fyn in different human tumors. Clin Transl Oncol 2023; 25:2852-2860. [PMID: 37093456 DOI: 10.1007/s12094-023-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/18/2023] [Indexed: 04/25/2023]
Abstract
The tyrosine kinase Fyn is a member of the SRC family of kinases, and its sustained activation is closely linked to tumor cell migration, proliferation, and cell metabolism. Recently, Fyn has been found to be expressed in various tumor tissues, and the expression and function of Fyn vary between tumors, with Fyn acting as an oncogene to promote proliferation and metastasis in some tumors. This article summarizes the recent studies on the role of Fyn in different human tumors, focusing on the role of Fyn in melanoma, breast cancer, glioma, lung cancer, and peripheral T-cell lymphoma in order to provide a basis for future research and targeted therapy in different human tumors.
Collapse
Affiliation(s)
- Changqing Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China
| | - Shan Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China
| | - Yunlian Tang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hunan Province, 28 Changsheng Road, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
15
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
16
|
Huang HS, Chiang IT, Lawal B, Weng YS, Jeng LB, Kuo YC, Liu YC, Hsu FT. A Novel Isotope-labeled Small Molecule Probe CC12 for Anti-glioma via Suppressing LYN-mediated Progression and Activating Apoptosis Pathways. Int J Biol Sci 2023; 19:3209-3225. [PMID: 37416766 PMCID: PMC10321274 DOI: 10.7150/ijbs.82266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most lethal malignancy in brain, which is surrounded by the blood-brain barrier (BBB), which limits the efficacy of standard treatments. Developing an effective drug that can penetrate the blood-brain barrier (BBB) remains a critical challenge in the fight against GBM. CC12 (NSC749232) is an anthraquinone tetraheterocyclic homolog with a lipophilic structure that may facilitate penetration of the brain area. Methods: We used temozolomide sensitive and resistance GBM cells and animal model to identify the CC12 delivery, anti-tumor potential and its underlying mechanism. Results: Importantly, toxicity triggered by CC12 was not associated with the methyl guanine-DNA methyl transferase (MGMT) methylation status which revealed a greater application potential compared to temozolomide. Alexa F488 cadaverine-labelled CC12 successfully infiltrated into the GBM sphere; in addition, 68Ga-labeled CC12 was also found in the orthotopic GBM area. After passing BBB, CC12 initiated both caspase-dependent intrinsic/extrinsic apoptosis pathways and apoptosis-inducing factor, EndoG-related caspase-independent apoptosis signaling in GBM. RNA sequence analysis from The Cancer Genome Atlas indicated that LYN was overexpressed in GBM is associated with poorer overall survival. We proved that targeting of LYN by CC12 may diminish GBM progression and suppress it downstream factors such as signal transduction and activator of extracellular signal-regulated kinases (ERK)/transcription 3 (STAT3)/nuclear factor (NF)-κB. CC12 was also found to participate in suppressing GBM metastasis and dysregulation of the epithelial-mesenchymal transition (EMT) through inactivation of the LYN axis. Conclusion: CC12, a newly developed BBB-penetrating drug, was found to possess an anti-GBM capacity via initiating an apoptotic mechanism and disrupting LYN/ERK/STAT3/NF-κB-regulated GBM progression.
Collapse
Affiliation(s)
- Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; and Academia Sinica, Taipei 115, Taiwan, R.O.C
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
- Medical administrative center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; and Academia Sinica, Taipei 115, Taiwan, R.O.C
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
- Master Program in Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, R.O.C
| |
Collapse
|
17
|
Jain SM, Deka D, Das A, Paul S, Pathak S, Banerjee A. Role of Interleukins in Inflammation-Mediated Tumor Immune Microenvironment Modulation in Colorectal Cancer Pathogenesis. Dig Dis Sci 2023:10.1007/s10620-023-07972-8. [PMID: 37277647 DOI: 10.1007/s10620-023-07972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Tumor cells invade and spread through a procedure termed as epithelial-to-mesenchymal cell transition (EMT). EMT is triggered by any alterations in the genes that encode the extracellular matrix (ECM) proteins, the enzymes that break down the ECM, and the activation of the genes that causes the epithelial cell to change into a mesenchymal type. The transcription factors NF-κB, Smads, STAT3, Snail, Zeb, and Twist are activated by inflammatory cytokines, for instance, Tumor Necrosis Factor, Tumor Growth Factors, Interleukin-1, Interleukin-8, and Interleukin-6, which promotes EMT. MATERIALS The current piece of work has been reviewed from the literature works published in last 10 years on the role interleukins in inflammation-mediated tumor immune microenvironment modulation in colorectal cancer pathogenesis utilizing the databases like Google Scholar, PubMed, Science Direct. RESULTS Recent studies have demonstrated that pathological situations, such as epithelial malignancies, exhibit EMT characteristics, such as the downregulation of epithelial markers and the overexpression of mesenchymal markers. Several growing evidence have also proved its existence in the human colon during the carcinogenesis of colorectal cancer. Most often, persistent inflammation is thought to be one factor contributing to the initiation of human cancers, such as colorectal cancer (CRC). Therefore, according to epidemiologic and clinical research, people with ulcerative colitis and Crohn's disease have a greater probability of developing CRC. CONCLUSION A substantial amount of data points to the involvement of the NF-κB system, SMAD/STAT3 signaling cascade, microRNAs, and the Ras-mitogen-activated protein kinase/Snail/Slug in the epithelial-to-mesenchymal transition-mediated development of colorectal malignancies. As a result, EMT is reported to play an active task in the pathogenesis of colorectal cancer, and therapeutic interventions targeting the inflammation-mediated EMT might serve as a novel strategy for treating CRC. The illustration depicts the relationship between interleukins and their receptors as a driver of CRC development and the potential therapeutic targets.
Collapse
Affiliation(s)
- Samatha M Jain
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No.500 Fracc. San Pablo, 76130, Querétaro, CP, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, 603103, India.
| |
Collapse
|
18
|
Bello-Alvarez C, Zamora-Sánchez CJ, Peña-Gutiérrez KM, Camacho-Arroyo I. Progesterone and its metabolite allopregnanolone promote invasion of human glioblastoma cells through metalloproteinase‑9 and cSrc kinase. Oncol Lett 2023; 25:223. [PMID: 37153033 PMCID: PMC10157356 DOI: 10.3892/ol.2023.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastomas are the most aggressive and common primary brain tumors in adults. Glioblastoma cells have a great capacity to migrate and invade the brain parenchyma, often reaching the contralateral hemisphere. Progesterone (P4) and its metabolite, allopregnanolone (3α-THP), promote the migration and invasion of human glioblastoma-derived cells. P4 induces migration in glioblastoma cells by the activation of the proto-oncogene tyrosine-protein kinase Src (cSrc) and focal adhesion kinase (Fak). In breast cancer cells, cSrc and Fak promote invasion by increasing the expression and activation of extracellular matrix metalloproteinases (MMPs). However, the mechanism of action by which P4 and 3a-THP promote invasion in glioblastoma cells remains unclear. The effects of P4 and 3α-THP on the protein expression levels of MMP-2 and -9 and the participation of cSrc in progestin effects in U251 and U87 human glioblastoma-derived cells were evaluated. It was determined by western blotting that the P4 increased the protein expression level of MMP-9 in U251 and U87 cells, and 3α-THP increased the protein expression level of MMP-9 in U87 cells. None of these progestins modified MMP-2 protein expression levels. The increase in MMP-9 expression was reduced when the intracellular progesterone receptor and cSrc expression were blocked with small interfering RNAs. Cell invasion induced by P4 and 3α-THP was also blocked by inhibiting cSrc activity with PP2 or by cSrc gene silencing. These results suggest that P4 and its metabolite 3α-THP induce the invasion of glioblastoma cells by increasing MMP-9 expression through the cSrc kinase family. The results of this study provide information of interest in the context of targeted therapies against molecular pathways involved in glioblastoma invasion.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karla M. Peña-Gutiérrez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence to: Dr Ignacio Camacho-Arroyo, Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Avenue Universidad 3000, Coyoacán, Mexico City 04510, Mexico, E-mail:
| |
Collapse
|
19
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
20
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
21
|
Lee S, Park S, Ryu JS, Kang J, Kim I, Son S, Lee BS, Kim CH, Kim YS. c-Src inhibitor PP2 inhibits head and neck cancer progression through regulation of the epithelial-mesenchymal transition. Exp Biol Med (Maywood) 2023; 248:492-500. [PMID: 36527337 PMCID: PMC10281537 DOI: 10.1177/15353702221139183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancer, causing considerable mortality and morbidity worldwide. Although HNSCC management has been extensively studied, the treatment outcomes have not improved - the 5-year survival rate of patients with HNSCC is 40%. Recent studies on the development of a novel HNSCC treatment have highlighted proto-oncogene tyrosine-protein kinase Src (c-Src) as one of the major therapeutic targets. However, the clinical efficacy of c-Src inhibitors against HNSCC was not comparable to that obtained in vitro. Furthermore, the molecular mechanisms underlying the efficacy of c-Src inhibitors remain elusive. In this study, we assessed the efficacy of 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d] pyrimidine (PP2), a selective c-Src inhibitor on HSNCC. Nine HNSCC cell lines (SNU1041, Fraud, SNU46, SNU1076, SNU899, SCC1483, YD15, YD9, and YD10-) were screened, and the effects of PP2 were evaluated using wound healing, apoptosis, and invasion assays. Western blot analysis of downstream markers was conducted to assess the specific mechanism of action of PP2 in HNSCC. The therapeutic efficacy of PP2 was further evaluated in xenograft mice. PP2 reduced tumor cell growth both in vitro and in vivo. Furthermore, it enhanced tumor cell apoptosis in cell lines and prevented metastasis in mice. PP2 also regulated the epithelial-mesenchymal transition pathway downstream of c-Src. More specifically, in SCC1483 and YD15PP2 HNSCC cell lines, PP2 exposure downregulated Erk, Akt/Slug, and Snail but upregulated E-cadherin. These results suggest that PP2 inhibits cell growth and progression in HNSCC by regulating the epithelial-mesenchymal transition pathway.
Collapse
Affiliation(s)
- SunYoung Lee
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Sunjung Park
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Jae-Sung Ryu
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Jaegu Kang
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Ikhee Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Sumin Son
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| | - Bok-Soon Lee
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon 35365, Republic of Korea
| |
Collapse
|
22
|
Li S, Liu C, Tang Y. Role of Fyn in hematological malignancies. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04608-2. [PMID: 36754870 DOI: 10.1007/s00432-023-04608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Tyrosine kinase Fyn is a member of the Src family of kinases. In addition to the wild type, three mRNA splice isoforms of Fyn have been identified; Fyn-B, Fyn-T, and Fyn-C. Fyn-T is highly expressed in T lymphocytes, and its expression level is significantly higher in mature T cells than in immature T cells. The abnormal expression of Fyn is closely related to the metabolism, proliferation, and migration of tumor cells. Recent studies have shown that Fyn is expressed in a variety of tumor tissues, and its expression and function vary among different tumors. In some tumors, Fyn acts as a pro-oncogene to promote tumor proliferation and metastasis. Moreover, Fyn mutations have been detected in many hematological tumors in recent years, suggesting a critical regulatory role of Fyn in the development of malignancies. METHODS This review analyzed the relevant literature in PubMed and other databases. PURPOSE The aim of this study was to systemically review recent research findings on various aspects of Fyn in the pathogenesis and treatment of different types of hematological malignancies and suggests possible future research directions for targeted tumor therapy. CONCLUSION Fyn could be a novel prognostic marker and therapeutic target. Treatment option targeting Fyn might be beneficial for future studies.
Collapse
Affiliation(s)
- Shan Li
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yunlian Tang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
23
|
Wang Z, Liu F, Huang C, Zhang J, Wu J. Bufalin inhibits epithelial-mesenchymal transition and increases radiosensitivity of non-small cell lung cancer via inhibition of the Src signaling. J Thorac Dis 2023; 15:123-134. [PMID: 36794138 PMCID: PMC9922603 DOI: 10.21037/jtd-22-1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a biological process involved in tumor migration, invasion, and radiotherapy resistance. Bufalin can affect the proliferation, apoptosis and invasion of tumor cells by regulating multiple signaling pathways. Whether bufalin can increase radiosensitivity through EMT deserves further investigation. Methods In this study, we investigated the effect of bufalin on the EMT and radiosensitivity of non-small cell lung cancer (NSCLC) and the underlying molecular mechanism. NSCLC cells were treated with bufalin (at a dose of 0-100 nM) or irradiated with 6 MV X-rays (4 Gy/min). The effects of bufalin on cell survival, cell cycle, radiosensitivity, cell migration, and invasion were detected. Western blot was used to analyze the gene expression changes of Src signaling in NSCLC cell induced by Bufalin. Results Bufalin significantly inhibited cell survival, migration, and invasion and induced G2/M arrest and apoptosis. Cells co-treated with bufalin and radiation manifested a higher inhibitory effect compared to those treated with radiation or bufalin alone. Furthermore, the levels of p-Src and p-STAT3 were considerably reduced following bufalin treatment. Interestingly, elevated p-Src and p-STAT3 were observed in cells treated with radiation. Bufalin inhibited radiation-induced p-Src and p-STAT3, whereas the knockdown of Src abrogated the effects of bufalin on cell migration, invasion, EMT, and radiosensitivity. Conclusions Bufalin inhibits EMT and enhances radiosensitivity through targeting Src signaling in NSCLC.
Collapse
Affiliation(s)
- Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fen Liu
- Cancer Institute, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Chen Huang
- Cancer Institute, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jiaqi Zhang
- Cancer Institute, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Princiotto S, Musso L, Manetti F, Marcellini V, Maga G, Crespan E, Perini C, Zaffaroni N, Beretta GL, Dallavalle S. Synthesis and biological activity evaluation of 3-(hetero) arylideneindolin-2-ones as potential c-Src inhibitors. J Enzyme Inhib Med Chem 2022; 37:2382-2394. [PMID: 36050846 PMCID: PMC9448371 DOI: 10.1080/14756366.2022.2117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Valentina Marcellini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Siena, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Cecilia Perini
- Institute of Molecular Genetics IGM, CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
25
|
Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, Galibert M, Corre S. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med 2022; 14:e15677. [PMID: 36305167 PMCID: PMC9728058 DOI: 10.15252/emmm.202215677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
The nongenetic mechanisms required to control tumor phenotypic plasticity and shape drug-resistance remain unclear. We show here that the Aryl hydrocarbon Receptor (AhR) transcription factor directly regulates the gene expression program associated with the acquisition of resistance to BRAF inhibitor (BRAFi) in melanoma. In addition, we show in melanoma cells that canonical activation of AhR mediates the activation of the SRC pathway and promotes the acquisition of an invasive and aggressive resistant phenotype to front-line BRAFi treatment in melanoma. This nongenetic reprogramming identifies a clinically compatible approach to reverse BRAFi resistance in melanoma. Using a preclinical BRAFi-resistant PDX melanoma model, we demonstrate that SRC inhibition with dasatinib significantly re-sensitizes melanoma cells to BRAFi. Together we identify the AhR/SRC axis as a new therapeutic vulnerability to trigger resistance and warrant the introduction of SRC inhibitors during the course of the treatment in combination with front-line therapeutics to delay BRAFi resistance.
Collapse
Affiliation(s)
- Anaïs Paris
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Nina Tardif
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Francesca M Baietti
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Cyrille Berra
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Héloïse M Leclair
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of OncologyLKI, KU LeuvenLeuvenBelgium,Trace PDX Platform, Department of OncologyLKI, KU LeuvenLeuvenBelgium
| | - Marie‐Dominique Galibert
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance,Department of Molecular Genetics and GenomicsHospital University of Rennes (CHU Rennes)RennesFrance
| | - Sébastien Corre
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) – UMR6290, ERL U1305RennesFrance
| |
Collapse
|
26
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
27
|
Alternative ANKHD1 transcript promotes proliferation and inhibits migration in uterine corpus endometrial carcinoma. NPJ Genom Med 2022; 7:56. [PMID: 36171217 PMCID: PMC9519915 DOI: 10.1038/s41525-022-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Alternative splicing (AS) is common in gene expression, and abnormal splicing often results in several cancers. Overall survival-associated splicing events (OS-SEs) have been used to predict prognosis in cancer. The aim of this study was to investigate the presence and function of OS-SEs in uterine corpus endometrial carcinoma (UCEC). Based on TCGA and TCGASpliceSeq databases, gene expression and the AS data of UCEC samples were retrieved. An alternate terminator of ANKHD1 transcripts named ANKHD1-BP3 was found to be significantly related to metastasis and OS in UCEC and significantly associated with HSPB1. The upregulated expression of HSPB1 induced downregulation of ANKHD1-BP3 and promoted tumor metastasis. These findings indicate that HSPB1, a splicing factor, regulates the expression of ANKHD1-BP3 to promote metastasis in UCEC.
Collapse
|
28
|
Zhang X, Sun B, Bai Y, Canário AVM, Xu X, Li J. Long non-coding RNAs are involved in immune resistance to Aeromonas hydrophila in black carp (Mylopharyngodon piceus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:366-374. [PMID: 35772677 DOI: 10.1016/j.fsi.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies identified long non-coding RNAs (lncRNAs) to be closely associated with immune function through the regulation of immune cell differentiation and immune cell effector function. Here we tested whether lncRNAs are involved in immune function in black carp (Mylopharyngodon piceus) through the exposure to Aeromonas hydrophila and analysis of the spleen gene expression response using RNA-seq. A total of 9036 lncRNAs were identified with high confidence. Differential expression analysis identified a total of 3558 DElncRNAs (Differential expression lncRNA) involved in A. hydrophila infection and 4526 target genes corresponding to DElncRNAs. After screening 4526 target genes in the InnateDB database, a total of 150 immunity genes were identified. After GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the obtained immunity genes, the Toll-like receptor (TLR) signaling pathway, TLR2, TLR3, TLR5, and TLR8 were identified as particularly significant in A. hydrophyla-resistant black carp. At the same time, the Ras signaling pathway was particularly enriched in the spleen of susceptible black carp. Analysis of PPI (protein-protein interaction) networks of the obtained immune genes identified SRC (SRC Proto-Oncogene), MYD88 (Myeloid differentiation primary response 88), MAPK3 (Mitogen-Activated Protein Kinase 3), MYC (MYC Proto-Oncogene) as main hub genes regulated by lncRNA and possibly mediating a mechanism of susceptibility to bacteria. These results establish a functional role of lncRNAs and a mechanistic base for the immune response in black carp resistant to A. hydrophila.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bingyan Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Adelino V M Canário
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
29
|
PTEN Dual Lipid- and Protein-Phosphatase Function in Tumor Progression. Cancers (Basel) 2022; 14:cancers14153666. [PMID: 35954330 PMCID: PMC9367293 DOI: 10.3390/cancers14153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a multifunctional tumor suppressor with protein- and lipid-phosphatase activities. The inactivation of PTEN is commonly found in all human cancers and is correlated with tumor progression. PTEN-lipid-phosphatase activity has been well documented to dephosphorylate phosphatidylinositol-3, 4, 5-phosphate (PIP3), which hinders cell growth and survival by dampening the PI3K and AKT signaling activity. PTEN-protein-phosphatase activity is less well studied and understood. Recent studies have reported that PTEN-protein-phosphatase activity dephosphorylates the different proteins and acts in various cell functions. We here review the PTEN mutations and protein-phosphatase substrates in tumor progression. We aim to address the gap in our understanding as to how PTEN protein phosphatase contributes to its tumor-suppression functions. Abstract PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.
Collapse
|
30
|
Lim EJ, Kang JH, Kim YJ, Kim S, Lee SJ. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis 2022; 13:417. [PMID: 35487888 PMCID: PMC9054780 DOI: 10.1038/s41419-022-04862-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) has a 5-year survival rate of <10%, as it can metastasize to the lungs and liver. Anticancer drugs and targeted therapies used to treat metastatic colorectal cancer have insufficient therapeutic efficacy and are associated with complications. Therefore, research to develop new targeted therapeutics is necessary. Here, we present a novel discovery that intracellular adhesion molecule-1 (ICAM-1) is a potential therapeutic target to enhance therapeutic effectiveness for CRC. ICAM-1 is an important regulator of cell-cell interactions and recent studies have shown that it promotes malignancy in several carcinomas. However, little is known about its effect on CRC. Therefore, we conducted a study to define the mechanism by which ICAM-1 acts. ICAM-1 is phosphorylated by tyrosine-protein kinase Met (c-MET), and phosphorylated ICAM-1 can interact with SRC to increase SRC activity. Consequently, ICAM-1 may further accelerate SRC signaling, promoting the malignant potential of cancer. In addition, treatment with antibodies targeting ICAM-1 showed excellent therapeutic effects in reducing metastasis and angiogenesis. These findings suggest for the first time that ICAM-1 is an important adapter protein capable of mediating the c-MET-SRC signaling axis. Therefore, ICAM-1 can be used as a novel therapeutic target and a metastatic marker for CRC.
Collapse
Affiliation(s)
- Eun-Ji Lim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Yeon-Ju Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Seungmo Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
31
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
32
|
Erdogan K, Eroglu O. The Extract of Momordica charantia Inhibits Cell Proliferation and Migration in U87G Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
34
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
35
|
Kim D, Moon JW, Min DH, Ko ES, Ahn B, Kim ES, Lee JY. AHA1 regulates cell migration and invasion via the EMT pathway in colorectal adenocarcinomas. Sci Rep 2021; 11:19946. [PMID: 34620942 PMCID: PMC8497578 DOI: 10.1038/s41598-021-99375-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
The progression of colorectal cancer (CRC) has been well studied and understood with the development of molecular and genetic techniques. However, specific marker(s) that could be used to predict lymph node (LN) involvement, which is the most important prognostic factor for CRC, have not been identified so far. Our previous study, in which network analysis of LN(+) and LN(-) CRC gene expression was carried out with data obtained from the Cancer Genome Atlas, led to the identification of AHA1. AHA1 is a co-chaperone activator of the Hsp90 ATPase activity. However, the role of AHA1 expression in cancer cells is still unclear. To investigate how AHA1 expression regulates the cancer cell progression and/or metastasis of human CRC, the expression levels of AHA1 and Hsp90 were examined in 105 CRC tissue samples and compared with those in paired normal tissue. The RNA expression levels of AHA1 and Hsp90aa1, but not Hsp90ab, were significantly higher in cancer tissues than in adjacent paired normal tissues (p = 0.032 and p = 0.0002, respectively). In particular, AHA1, but not Hsp90aa1 and Hsp90ab, was closely associated with the TNM stage, LN stage, and tumor metastasis (p = 0.035, p = 0.012, and p = 0.0003, respectively). Moreover, the expression of AHA1 was not only higher in the CRC cell lines than in the normal colon fibroblast cell line but was also associated with the progression of these CRC cell lines. Overexpression of AHA1 in SW480 cells increased, whereas suppression of AHA1 expression in HCT116 cells reduced cell migration and invasion through the regulation of Snail, E-cadherin, pSRC, and pAKT, which are associated with EMT signaling. Taken together, our study suggests that AHA1 contributes to the metastatic advantage of human CRC.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Wook Moon
- BK21 FOUR Convergence & Translational Biomedicine Education Research Center, Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong Hwa Min
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Sun Ko
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Sun Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yun Lee
- Department of Pathology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
36
|
Wang Q, Pan Y, Zhao L, Qi F, Liu J. Protein tyrosine phosphatase 1B(PTP1B) promotes melanoma cells progression through Src activation. Bioengineered 2021; 12:8396-8406. [PMID: 34606417 PMCID: PMC8806946 DOI: 10.1080/21655979.2021.1988376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have demonstrated that protein tyrosine phosphatase 1B (PTP1B) can promote tumor progression in breast cancer, colon cancer and prostate cancer. Additionally, PTP1B also acts as a tumor suppressor in esophageal cancer and lymphoma. These findings suggest that PTP1B functions as a double-faceted molecule in tumors. However, the role of PTP1B in malignant melanoma (MM) is still unknown. PTP1B expression in normal and melanoma tissues was evaluated by GEO analysis and immunohistochemistry. The effects of PTP1B on cell migration and invasion were evaluated in melanoma cells with up – and downregulated PTP1B expression. In this study, we initially demonstrated that the expression of PTP1B in malignant melanoma tissue is significantly higher than its expression in benign nevus tissue and indicated poor survival of malignant melanoma patients. In vitro studies have demonstrated that inhibition of PTP1B suppresses and overexpression of PTP1B promotes migration and invasion of melanoma cells. Moreover, we found that PTP1B could interact with Src via coimmunoprecipitation and dephosphorylation of the Src at Tyr530 site. Collectively, our study revealed that PTP1B can promote melanoma cell metastasis by interacting with Src and provides a theoretical basis for future applications of PTP1B inhibitors in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Yuyan Pan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Liping Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Ustc, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
37
|
Wu J, Wang Y, Yang Y, Liu F, Chen J, Jiang Z, Jiang Z. TNFSF9 promotes metastasis of pancreatic cancer through Wnt/Snail signaling and M2 polarization of macrophages. Aging (Albany NY) 2021; 13:21571-21586. [PMID: 34517345 PMCID: PMC8457569 DOI: 10.18632/aging.203497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Early metastasis of pancreatic cancer (PC) leads to high mortality, and the underlying mechanism of metastasis remains unclear. Tumor necrosis factor superfamily member 9 (TNFSF9) is associated with poor prognosis in PC. Here, we investigated the effect of TNFSF9 on PC proliferation and apoptosis, and focused on the effect of TNFSF9 on PC metastasis and its potential mechanism. We found that TNFSF9 promotes PC metastasis in vivo and in vitro, and may be partially dependent on the Wnt/Snail signaling pathway. In addition, TNFSF9 also regulates the release of cytokines IL-10 and transforming growth factor-β (TGF-β) in pancreatic cancer cells through Wnt signaling to induce the M2 polarization of macrophages and promote the migration of PC cells. Overall, our study found that TNFSF9 may directly promote PC metastasis or indirectly promote PC metastasis through macrophage M2 polarization. Our study provides a new costimulatory target for the treatment of PC.
Collapse
Affiliation(s)
- Jiao Wu
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Wang
- Departments of Cardiovascular, Zigong First People's Hospital, Sichuan 643000, China
| | - Yichun Yang
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fuqiang Liu
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Chen
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhongxiang Jiang
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Departments of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
38
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Saha T, Mondal J, Khiste S, Lusic H, Hu ZW, Jayabalan R, Hodgetts KJ, Jang H, Sengupta S, Lee SE, Park Y, Lee LP, Goldman A. Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer. NANOPHOTONICS 2021; 10:3063-3073. [PMID: 34589378 PMCID: PMC8478290 DOI: 10.1515/nanoph-2021-0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Targeted delivery of drugs to tumor cells, which circumvent resistance mechanisms and induce cell killing, is a lingering challenge that requires innovative solutions. Here, we provide two bioengineered strategies in which nanotechnology is blended with cancer medicine to preferentially target distinct mechanisms of drug resistance. In the first 'case study', we demonstrate the use of lipid-drug conjugates that target molecular signaling pathways, which result from taxane-induced drug tolerance via cell surface lipid raft accumulations. Through a small molecule drug screen, we identify a kinase inhibitor that optimally destroys drug tolerant cancer cells and conjugate it to a rationally-chosen lipid scaffold, which enhances anticancer efficacy in vitro and in vivo. In the second 'case study', we address resistance mechanisms that can occur through exocytosis of nanomedicines. Using adenocarcinoma HeLa and MCF-7 cells, we describe the use of gold nanorod and nanoporous vehicles integrated with an optical antenna for on-demand, photoactivation at ~650 nm enabling release of payloads into cells including cytotoxic anthracyclines. Together, these provide two approaches, which exploit engineering strategies capable of circumventing distinct resistance barriers and induce killing by multimodal, including nanophotonic mechanisms.
Collapse
Affiliation(s)
- Tanmoy Saha
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jayanta Mondal
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sachin Khiste
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hrvoje Lusic
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhang-Wei Hu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - HaeLin Jang
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shiladitya Sengupta
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, University of Michigan, Ann Arbor, MI48109,USA
- Department of Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI48109,USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI48109,USA
| | - Luke P. Lee
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Immunology, Dana Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
40
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
41
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
42
|
Bello T, Chan M, Golkowski M, Xue AG, Khasnavis N, Ceribelli M, Ong SE, Thomas CJ, Gujral TS. KiRNet: Kinase-centered network propagation of pharmacological screen results. CELL REPORTS METHODS 2021; 1:100007. [PMID: 34296206 PMCID: PMC8294099 DOI: 10.1016/j.crmeth.2021.100007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
The ever-increasing size and scale of biological information have popularized network-based approaches as a means to interpret these data. We develop a network propagation method that integrates kinase-inhibitor-focused functional screens with known protein-protein interactions (PPIs). This method, dubbed KiRNet, uses an a priori edge-weighting strategy based on node degree to establish a pipeline from a kinase inhibitor screen to the generation of a predictive PPI subnetwork. We apply KiRNet to uncover molecular regulators of mesenchymal cancer cells driven by overexpression of Frizzled 2 (FZD2). KiRNet produces a network model consisting of 166 high-value proteins. These proteins exhibit FZD2-dependent differential phosphorylation, and genetic knockdown studies validate their role in maintaining a mesenchymal cell state. Finally, analysis of clinical data shows that mesenchymal tumors exhibit significantly higher average expression of the 166 corresponding genes than epithelial tumors for nine different cancer types.
Collapse
Affiliation(s)
- Thomas Bello
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195-7275, USA
| | - Marina Chan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7275, USA
| | - Andrew G. Xue
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nithisha Khasnavis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7275, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195-7275, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7275, USA
| |
Collapse
|
43
|
Jia D, Park JH, Kaur H, Jung KH, Yang S, Tripathi S, Galbraith M, Deng Y, Jolly MK, Kaipparettu BA, Onuchic JN, Levine H. Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br J Cancer 2021; 124:1902-1911. [PMID: 33859341 PMCID: PMC8184790 DOI: 10.1038/s41416-021-01385-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells have the plasticity to adjust their metabolic phenotypes for survival and metastasis. A developmental programme known as epithelial-to-mesenchymal transition (EMT) plays a critical role during metastasis, promoting the loss of polarity and cell-cell adhesion and the acquisition of motile, stem-cell characteristics. Cells undergoing EMT or the reverse mesenchymal-to-epithelial transition (MET) are often associated with metabolic changes, as the change in phenotype often correlates with a different balance of proliferation versus energy-intensive migration. Extensive crosstalk occurs between metabolism and EMT, but how this crosstalk leads to coordinated physiological changes is still uncertain. The elusive connection between metabolism and EMT compromises the efficacy of metabolic therapies targeting metastasis. In this review, we aim to clarify the causation between metabolism and EMT on the basis of experimental studies, and propose integrated theoretical-experimental efforts to better understand the coupled decision-making of metabolism and EMT.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harsimran Kaur
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA, USA
| | - Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
44
|
Grzadkowski MR, Holly HD, Somers J, Demir E. Systematic interrogation of mutation groupings reveals divergent downstream expression programs within key cancer genes. BMC Bioinformatics 2021; 22:233. [PMID: 33957863 PMCID: PMC8101181 DOI: 10.1186/s12859-021-04147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genes implicated in tumorigenesis often exhibit diverse sets of genomic variants in the tumor cohorts within which they are frequently mutated. For many genes, neither the transcriptomic effects of these variants nor their relationship to one another in cancer processes have been well-characterized. We sought to identify the downstream expression effects of these mutations and to determine whether this heterogeneity at the genomic level is reflected in a corresponding heterogeneity at the transcriptomic level. RESULTS By applying a novel hierarchical framework for organizing the mutations present in a cohort along with machine learning pipelines trained on samples' expression profiles we systematically interrogated the signatures associated with combinations of mutations recurrent in cancer. This allowed us to catalogue the mutations with discernible downstream expression effects across a number of tumor cohorts as well as to uncover and characterize over a hundred cases where subsets of a gene's mutations are clearly divergent in their function from the remaining mutations of the gene. These findings successfully replicated across a number of disease contexts and were found to have clear implications for the delineation of cancer processes and for clinical decisions. CONCLUSIONS The results of cataloguing the downstream effects of mutation subgroupings across cancer cohorts underline the importance of incorporating the diversity present within oncogenes in models designed to capture the downstream effects of their mutations.
Collapse
Affiliation(s)
- Michal R Grzadkowski
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
| | - Hannah D Holly
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Julia Somers
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
45
|
Li Q, Sun M, Wang M, Feng M, Yang F, Li L, Zhao J, Chang C, Dong H, Xie T, Chen J. Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci 2021; 112:1695-1706. [PMID: 33605517 PMCID: PMC8088956 DOI: 10.1111/cas.14861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt/β-catenin signaling is indispensable for many biological processes, including embryonic development, cell cycle, inflammation, and carcinogenesis. Aberrant activation of the Wnt/β-catenin signaling can promote tumorigenicity and enhance metastatic potential in hepatocellular carcinoma (HCC). Targeting this pathway is a new opportunity for precise medicine for HCC. However, inhibiting Wnt/β-catenin signaling alone is unlikely to significantly improve HCC patient outcome due to the lack of specific inhibitors and the complexity of this pathway. Combination with other therapies will be an important next step in improving the efficacy of Wnt/β-catenin signaling inhibitors. Protein kinases play a key and evolutionarily conserved role in the Wnt/β-catenin signaling and have become one of the most important drug targets in cancer. Targeting Wnt/β-catenin signaling and its regulatory kinase together will be a promising HCC management strategy. In this review, we summarize the kinases that modulate the Wnt/β-catenin signaling in HCC and briefly discuss their molecular mechanisms. Furthermore, we list some small molecules that target the kinases and may inhibit Wnt/β-catenin signaling, to offer new perspectives for preclinical and clinical HCC studies.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Menglan Wang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Feng
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lina Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianbo Zhao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Cunjie Chang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Heng Dong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Division of Cellular and Molecular Research, Laboratory of Cancer Genomics, National Cancer Centre, Singapore City, Singapore
| |
Collapse
|
46
|
Liu Y, Wang G, Li Y, Zhao Q, Fan L, Tan B, Li B, Yu B, Xi J. miR-424-5p reduces 5-fluorouracil resistance possibly by inhibiting Src/focal adhesion kinase signalling-mediated epithelial-mesenchymal transition in colon cancer cells. J Pharm Pharmacol 2021; 73:1062-1070. [PMID: 33793771 DOI: 10.1093/jpp/rgab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES miR-424-5p negatively regulates various malignant biological behaviours in tumour cells. We explored the relationship between miR-424-5p and 5-fluorouracil resistance in colon cancer cells. METHODS We developed 5-fluorouracil-resistant HT-29 cells and detected miR-424-5p expression using real-time fluorescence quantitative PCR. Cell viability was assessed using Cell Counting Kit-8 (CCK-8) assay. Immunofluorescence and western blotting were performed to determine protein levels. Apoptosis was detected by Annexin V-FITC/PI staining. KEY FINDINGS miR-424-5p was downregulated in 5-fluorouracil-resistant HT-29 cells. A miR-424-5p mimic enhanced the sensitivity of the resistant cells to 5-fluorouracil, whereas a miR-424-5p inhibitor promoted 5-fluorouracil resistance in HT-29 cells. Furthermore, the miR-424-5p mimic downregulated vimentin and upregulated E-cadherin in 5-fluorouracil-resistant HT-29 cells, whereas the miR-424-5p inhibitor exhibited opposite effects. The miR-424-5p inhibitor significantly inhibited 5-fluorouracil-induced HT-29 cell apoptosis and Src and focal adhesion kinase phosphorylation, whereas the miR-424-5p mimic showed opposite effects. Pretreatment with Src inhibitor 1 or focal adhesion kinase inhibitor 2 blocked the increase in Src and focal adhesion kinase phosphorylation and vimentin expression level and the decrease in E-cadherin expression level in miR-424-5p inhibitor-exposed HT-29 cells. CONCLUSIONS miR-424-5p suppressed epithelial-mesenchymal transition by inhibiting the Src/focal adhesion kinase signalling pathway to reduce 5-fluorouracil resistance in colon cancer cells.
Collapse
Affiliation(s)
- Youqiang Liu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liqiao Fan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baokun Li
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Yu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinchuan Xi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
47
|
Zhang ML, Huang WJ, Yue CX, Li MM, Li N, Wang RT, Xie R. Significant difference of c-type lectin-like receptor 2 between colorectal cancer and polyp subgroups. Cancer Biomark 2021; 31:99-105. [PMID: 33554888 DOI: 10.3233/cbm-200734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Platelets play a key role in tumor progression and metastasis. C-type lectin-like receptor 2 (CLEC-2) is the receptor expressed on platelets and the marker of platelet activation. OBJECTIVE This study aims to determine whether soluble CLEC-2 levels differ between patients with benign colorectal polyps and those with colorectal cancer (CRC). METHODS We measured plasma soluble CLEC-2 by enzyme-linked immunosorbent assay in 150 patients with colorectal polyps, 150 CRC patients without metastasis, 150 CRC liver metastasis, and 150 control subjects. RESULTS The CRC patients had higher soluble CLEC-2 levels than patients with colorectal polyps (p< 0.001). Moreover, CRC patients with liver metastases displayed higher CLEC-2 levels than those in CRC patients without metastases (p< 0.001). In the CRC patients, CLEC-2 levels were correlated with lymph node metastasis and advanced stage. In the patients with polyps, there was a significant difference in CLEC-2 levels among patients with hyperplastic polyp, sessile serrated adenoma, and traditional serrated adenoma (p< 0.001). The ROC curve analysis revealed CLEC-2 had an optimal sensitivity of 77.3% and specificity of 94.6% for the screening of CRC, and sensitivity of 71.0% and specificity of 76.7% for the differential diagnosis of colorectal polyps and CRC. CONCLUSIONS CRC patients have higher CLEC-2 levels than patients with colorectal polyps and healthy controls. Moreover, there is a significant difference in CLEC-2 levels among polyp subtypes. Further research is warranted.
Collapse
Affiliation(s)
- Meng-Lin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China.,Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen-Xi Yue
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming-Ming Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Na Li
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
48
|
Study of the active ingredients and mechanism of Sparganii rhizoma in gastric cancer based on HPLC-Q-TOF-MS/MS and network pharmacology. Sci Rep 2021; 11:1905. [PMID: 33479376 PMCID: PMC7820434 DOI: 10.1038/s41598-021-81485-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Sparganii rhizoma (SL) has potential therapeutic effects on gastric cancer (GC), but its main active ingredients and possible anticancer mechanism are still unclear. In this study, we used HPLC-Q-TOF–MS/MS to comprehensively analyse the chemical components of the aqueous extract of SL. On this basis, a network pharmacology method incorporating target prediction, gene function annotation, and molecular docking was performed to analyse the identified compounds, thereby determining the main active ingredients and hub genes of SL in the treatment of GC. Finally, the mRNA and protein expression levels of the hub genes of GC patients were further analysed by the Oncomine, GEPIA, and HPA databases. A total of 41 compounds were identified from the aqueous extract of SL. Through network
analysis, we identified seven main active ingredients and ten hub genes: acacetin, sanleng acid, ferulic acid, methyl 3,6-dihydroxy-2-[(2-hydroxyphenyl) ethynyl]benzoate, caffeic acid, adenine nucleoside, azelaic acid and PIK3R1, PIK3CA, SRC, MAPK1, AKT1, HSP90AA1, HRAS, STAT3, FYN, and RHOA. The results indicated that SL might play a role in GC treatment by controlling the PI3K-Akt and other signalling pathways to regulate biological processes such as proliferation, apoptosis, migration, and angiogenesis in tumour cells. In conclusion, this study used HPLC-Q-TOF–MS/MS combined with a network pharmacology approach to provide an essential reference for identifying the chemical components of SL and its mechanism of action in the treatment of GC.
Collapse
|
49
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
50
|
Koudelková L, Brábek J, Rosel D. Src kinase: Key effector in mechanosignalling. Int J Biochem Cell Biol 2020; 131:105908. [PMID: 33359015 DOI: 10.1016/j.biocel.2020.105908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Cells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information. Src kinase appears to be one of the central components of the mechanotransduction network mediating force-induced signalling across multiple cellular contexts. In tight cooperation with primary sensors and the cytoskeleton, Src functions as an effector molecule necessary for transformation of mechanical stimuli into biochemical outputs executing cellular response and adaptation to mechanical cues.
Collapse
Affiliation(s)
- Lenka Koudelková
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University, 12800, Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25250, Vestec, Czech Republic.
| |
Collapse
|