1
|
Zhou Y, Bai Y, Zhang P, Weng P, Xie W. Propofol alleviates spinal cord ischemia-reperfusion injury by preserving PI3K/AKT/GIT1 axis. J Investig Med 2024; 72:705-714. [PMID: 38715211 DOI: 10.1177/10815589241254044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) is a major contributor to neurological damage and mortality associated with spinal cord dysfunction. This study aims to explore the possible mechanism of Propofol and G-protein-coupled receptor-interacting protein 1 (GIT1) in regulating SCIRI in rat models. SCIRI rat models were established and injected with Propofol, over expression of GIT1 (OE-GIT1), or PI3K inhibitor (LY294002). The neurological function was assessed using Tarlov scoring system, and Hematoxylin & Eosin (H&E) staining was applied to observe morphology changes in spinal cord tissues. Cell apoptosis, blood-spinal cord barriers (BSCB) permeability, and inflammatory cytokines were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, evans blue (EB) staining, and enzyme-linked immuno sorbent assay (ELISA), respectively. Reverse transcription-quantitative polymerase chain reaction and western blot were used to detect the expression levels of GIT1, endothelial nitric oxide synthase (eNOS), PI3K/AKT signal pathway and apoptosis-related proteins. SCIRI rats had decreased expressions of GIT1 and PI3K/AKT-related proteins, whose expressions can be elevated in response to Propofol treatment. LY294002 can also decrease GIT1 expression levels in SCIRI rats. Propofol can attenuate neurological dysfunction induced by SCIRI, decrease spinal cord tissue injury and BSCB permeability in addition to suppressing cell apoptosis and inflammatory cytokines, whereas further treatment by LY294002 can partially reverse the protective effect of Propofol on SCIRI. Propofol can activate PI3K/AKT signal pathway to increase GIT1 expression level, thus attenuating SCIRI in rat models.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Yuyan Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Peisen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Peiqing Weng
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Wenxi Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| |
Collapse
|
2
|
Hu Z, Wu T, Zhou Z, Zhang Y, Chen Q, Yao H, Ji M, Shen G, Dong C, Shi C, Huang Z, Jiang N, Han N, Tian X. Asiaticoside Attenuates Blood-Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury. Mol Neurobiol 2024; 61:678-692. [PMID: 37653222 DOI: 10.1007/s12035-023-03605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The blood-spinal cord barrier (BSCB) plays a vital role in the recovery of spinal cord function after spinal cord injury (SCI). Pericytes, pluripotent members of the neurovascular unit (NVU), receive signals from neighboring cells and are critical for maintaining CNS function. Therapeutic targets for the BSCB include endothelial cells (ECs) and glial cells, but few drugs target pericytes. This study was designed to explore whether asiaticoside has a positively effect on pericytes and the integrity of the BSCB. In this study, we found that asiaticoside could inhibit the loss of junction proteins just 1 day after SCI in vivo, but our in vitro study showed no significant differences in the expression of endothelial junction proteins between the control and asiaticoside treatment groups. We also found that asiaticoside could inhibit endoplasmic reticulum (ER) stress and pericyte apoptosis, which might be associated with the inhibition of junction protein reduction in ECs. Thus, we investigated the interactions between pericytes and ECs. Our results showed that asiaticoside could decrease the release of matrix metalloproteinase (MMP)-9 in pericytes and therefore upregulate the expression of junction proteins in ECs. Furthermore, the protective effect of asiaticoside on pericytes is related to the inhibition of ER stress via the MAPK signaling pathway. Taken together, our results demonstrate that asiaticoside treatment inhibits BSCB disruption and enhances functional recovery after SCI.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Tingting Wu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziheng Zhou
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315302, China
| | - Qiyue Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbing Yao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengchu Ji
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ge Shen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenling Dong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chengge Shi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhixian Huang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nizhou Jiang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Nan Han
- Department of Ultrasonography, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
3
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Xu B, Fang J, Wang J, Jin X, Liu S, Song K, Wang P, Liu J, Liu S. Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother 2023; 165:115165. [PMID: 37459660 DOI: 10.1016/j.biopha.2023.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
The disruption of the blood spinal cord barrier (BSCB) after spinal cord injury (SCI) can trigger secondary tissue damage. Edaravone is likely to protect the BSCB as a free radical scavenger, whereas it has been rarely reported thus far. In this study, the protective effect of edaravone was investigated with the use of compression spinal cord injured rats and human brain microvascular endothelial cells (HBMECs) injury. As indicated by the result of this study, edaravone treatment facilitated functional recovery after rats were subjected to SCI, ameliorated the vascular damage, and up-regulated the expression of BSCB-associated proteins. In vitro results, edaravone improved HBMECs viability, restored intercellular junctions, and promoted cellular angiogenic activities. It is noteworthy that autophagy was activated and RIP1/RIP3/MLKL phosphorylation was notably up-regulated. However, edaravone treatment exhibited the capability of mitigating above-mentioned tendency in vivo and in vitro. Moreover, rapamycin (Rapa) treatment deteriorated the protective effect of edaravone while aggravating the phosphorylation of RIP1/RIP3/MLKL expression. In the model of necrotic activator-induced HBMECs, autophagic expression was increased, whereas edaravone prevented autophagy and phosphorylation of RIP1/RIP3/MLKL. In general, our results suggested that edaravone is capable of reducing the destruction of BSCB and promoting functional recovery after SCI. The possible underlying mechanism is that edaravone is capable of protecting angiogenic activity and improving autophagy and the phosphorylation of RIP1/RIP3/MLKL, as well as their mutual deterioration. Accordingly, edaravone can be a favorable option for the treatment of SCI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianguang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuehan Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengfu Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Department of Operating Room, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Junjian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shuhao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Schepici G, Silvestro S, Mazzon E. Regenerative Effects of Exosomes-Derived MSCs: An Overview on Spinal Cord Injury Experimental Studies. Biomedicines 2023; 11:biomedicines11010201. [PMID: 36672709 PMCID: PMC9855467 DOI: 10.3390/biomedicines11010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition usually induced by the initial mechanical insult that can lead to permanent motor and sensory deficits. At present, researchers are investigating potential therapeutic strategies to ameliorate the neuro-inflammatory cascade that occurs post-injury. Although the use of mesenchymal stromal/stem (MSCs) as a potential therapy in application to regenerative medicine promoted anti-inflammatory and neuroprotective effects, several disadvantages limit their use. Therefore, recent studies have reported the effects of exosomes-derived MSCs (MSC-EXOs) as an innovative therapeutic option for SCI patients. It is noteworthy that MSC-EXOs can maintain the integrity of the blood-spinal cord barrier (BSCB), promoting angiogenic, proliferative, and anti-oxidant effects, as well as immunomodulatory, anti-inflammatory, and antiapoptotic properties. Therefore, in this study, we summarized the preclinical studies reported in the literature that have shown the effects of MSC-EXOs as a new molecular target to counteract the devastating effects of SCI.
Collapse
|
6
|
Xie C, Wang Y, Wang J, Xu Y, Liu H, Guo J, Zhu L. Perlecan Improves Blood Spinal Cord Barrier Repair Through the Integrin β1/ROCK/MLC Pathway After Spinal Cord Injury. Mol Neurobiol 2023; 60:51-67. [PMID: 36216996 DOI: 10.1007/s12035-022-03041-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) can lead to the destruction of the blood-spinal cord barrier (BSCB), causing various inflammatory cytokines, neutrophils, and macrophages to infiltrate the lesion area, resulting in secondary injury. Basement membranes (BMs) are maintained by all types of cells in the BSCB and contribute to BSCB maintenance. Perlecan is an important constituent of vascular BMs, maintaining vascular integrity and neuroprotection. However, it is not clear whether Perlecan is involved in BSCB repair after SCI. In this study, we found that Perlecan was specifically expressed in the BMs in the spinal cord and underwent degradation/remodeling after SCI. Subsequently, a CRISPR/Cas9-based SAM system was used to overexpress Perlecan in the injured spinal cord, resulting in significantly enhanced locomotor recovery and neural regeneration. Overexpression of Perlecan reduced BSCB permeability along with the neuroinflammatory response. Interestingly, Perlecan inhibited stress fiber formation by interacting with integrin β1 and inhibiting downstream ROCK/MLC signaling, resulting in reduced tight junctions (TJs) disassembly and improved BSCB integrity. Furthermore, the integrin receptor antagonist GRGDSP abolished the effects of Perlecan overexpression on BSCB permeability and TJs integrity. Overall, our findings suggest that Perlecan reduces BSCB permeability and the neuroinflammatory response by interacting with integrin β1 and inhibiting the downstream ROCK/MLC pathway to promote neurological recovery after SCI.
Collapse
Affiliation(s)
- Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinfeng Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yizhou Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiasong Guo
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Department of Histology and Embryology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, 510515, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
7
|
Hou Y, Luo D, Hou Y, Luan J, Zhan J, Chen Z, E S, Xu L, Lin D. Bu Shen Huo Xue decoction promotes functional recovery in spinal cord injury mice by improving the microenvironment to promote axonal regeneration. Chin Med 2022; 17:85. [PMID: 35820953 PMCID: PMC9277908 DOI: 10.1186/s13020-022-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery. METHODS The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS. SCI mice were induced by a pneumatic impact device at T9-T10 level of the vertebra, and treated with BSHX decoction. Basso-Beattie-Bresnahan (BBB) score, footprint analysis, hematoxylin-eosin (H&E) staining, Nissl staining and a series of immunofluorescence staining were performed to investigate the functional recovery, glial scar formation and axon regeneration after BSHX treatment. Immunofluorescent staining of bromodeoxyuridine (BrdU), neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) was performed to evaluate the effect of BSHX decoction on neural stem cells (NSCs) proliferation and differentiation. RESULTS We found that the main compounds in BSHX decoction were Gallic acid, 3,4-Dihydroxybenzaldehyde, (+)-Catechin, Paeoniflorin, Rosmarinic acid, and Diosmetin. BSHX decoction improved the pathological findings in SCI mice through invigorating blood circulation and cleaning blood stasis in the lesion site. In addition, it reduced tissue damage and neuron loss by inhibiting astrocytes activation, and promoting the polarization of microglia towards M2 phenotype. The functional recovery test revealed that BSHX treatment improved the motor function recovery post SCI. CONCLUSIONS Our study provided evidence that BSHX treatment could improve the microenvironment of the injured spinal cord to promote axonal regeneration and functional recovery in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiyao Luan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zepeng Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Shunmei E
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Liangliang Xu
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China. .,Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Wu C, Zhu Q, Yao Y, Shi Z, Jin C, Chen L. Exosome miR-23a-3p From Osteoblast Alleviates Spinal Cord Ischemia/Reperfusion Injury by Down-regulating KLF3-activated CCNL2 Transcription. Dev Neurosci 2021; 44:121-130. [PMID: 34937039 DOI: 10.1159/000521167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spinal cord ischemia/reperfusion injury (SCIRI) is usually caused by spinal surgery or aortic aneurysm surgery and can eventually lead to paralysis or paraplegia and neurological dysfunction. Exosomes are considered as one of the most promising therapeutic strategies for SCIRI as they can pass the blood-spinal barrier. Previous studies have proved that exosomes secreted by osteocytes have a certain slowing effect on SCIRI. AIM We aimed to explore the effect of osteoblast secreted exosomes on SCIRI. METHODS Firstly, neurons and osteoblasts were co-cultured under different conditions. GEO database was utilized to detect the expression of miR-23a-3p in osteoblast exosomes. SCIRI cells were treated with exosomes, and the detection was taken to prove whether miR-23a-3p could slow the progression of SCIRI. Downstream gene and the potential regulatory mechanism were explored through database and functional experiments. RESULTS MiR-23a-3p was highly expressed in exosomes and it slowed down the process of SCIRI. Downstream mRNA KLF3 could bind to miR-23a-3p and was highly expressed in IRI. Moreover, CCNL2 was regulated by KLF3 and was highly expressed in IRI. Rescue experiments verified that miR-23a-3p suppressed the transcription of CCNL2 by targeting KLF3. CONCLUSION Exosome miR-23a-3p from osteoblast alleviates SCIRI by down-regulating KLF3-activated CCNL2 transcription.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Hand Surgery and Plastic Surgery, The First People's Hospital of Linping District, Hangzhou, China
| | - Qinghua Zhu
- Department of Pediatric Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yi Yao
- Department of Hand Surgery and Plastic Surgery, The First People's Hospital of Linping District, Hangzhou, China
| | - Zhaoyang Shi
- Department of Hand Surgery and Plastic Surgery, The First People's Hospital of Linping District, Hangzhou, China
| | - Chaojie Jin
- Department of Hand Surgery and Plastic Surgery, The First People's Hospital of Linping District, Hangzhou, China
| | - Leilei Chen
- Department of Hand Surgery and Plastic Surgery, The First People's Hospital of Linping District, Hangzhou, China
| |
Collapse
|
9
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222413672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| |
Collapse
|
10
|
Eryilmaz F, Farooque U. The Efficacy of Combined Medication With Methylprednisolone and Erythropoietin in the Treatment of Ischemia-Reperfusion Injury to the Spinal Cord in Patients With Cervical Spondylotic Myelopathy. Cureus 2021; 13:e14018. [PMID: 33767939 PMCID: PMC7982140 DOI: 10.7759/cureus.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction Cervical myelopathy (CM) is caused by degenerative or congenital changes in the discs and soft tissues of the cervical spine, leading to chronic compression of the spinal cord. The current treatment for moderate-to-severe CM is surgical decompression, which is effective in most cases; however, it can cause inflammation of the nervous system and spinal cord reperfusion injury, resulting in perioperative neurological complications and suboptimal neurological recovery. The aim of this study was to investigate the therapeutic effects of the combination of erythropoietin and methylprednisolone in the treatment of ischemia-reperfusion injury to the spinal cord and to analyze its effects on the levels of interleukin-1 beta (IL-1β), interleukin-1 receptor antagonist (IL-1RA), and interleukin-8 (IL-8). Materials and methods This study included 110 patients admitted to the hospital due to cervical spondylotic myelopathy. They were randomized into two groups of 55 patients each: a control and an observation group. In both groups of patients, fusion internal fixation and anterior cervical discectomy were performed. The difference, however, was that the control group received a rapid intravenous injection of 30 mg/kg methylprednisolone 30 minutes prior to spinal cord decompression, while the observation group received an intravenous injection of 30 mg/kg methylprednisolone and 3,000 U/kg erythropoietin 30 minutes before spinal cord decompression. The study was approved by the Hospital Ethical Committee of the Dow University of Health Sciences, Karachi. The neurological function of both groups of patients was assessed before the procedure and three months after the treatment using the Japanese Orthopedic Association (JOA) method of assessing spinal cord function (40-point rating method). Enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of neuron-specific enolase (NSE), S-100β, IL-1RA, IL-1β, and IL-8 in both groups. The quality of life of patients in both groups was assessed three months after the treatment with the World Health Organization Quality of Life assessment instrument (WHOQOL-100). Results Before the treatment, there was no significant variance between the two groups in the JOA score and the 40-point rating method. Similarly, there was no significant difference in the levels of IL-1β, IL-1RA, and IL-8 between the two groups (p-value = 0.262, 0.387, and 0.154 respectively) prior to the treatment. Three months after the treatment, the levels of IL-1β and IL-8 in the observation group were 21.83 ±3.65 ng/l and 357.07 ±32.36 ng/l respectively, both lower than the control group value (p-value = 0.026, 0.028 respectively). The level of IL-1RA in follow-up was 21.59 ±1.15 ng/l, which was higher than that in the control group. Three months after the treatment, all the WHOQOL-100 parameters of the observation group for psychology, physiology, social relations, independence, spirituality, environment, and general quality of life were higher than those of the control group; the variance among the groups was statistically significant (p-value: <0.001). Conclusions The combination therapy with erythropoietin and methylprednisolone is effective for ischemia-reperfusion injuries of the spinal cord. It also reduces S-100β and NSE, inhibits IL-1β, and increases IL-8 and IL-1RA. Therefore, it preserves and improves spinal nerve function and the quality of life of patients.
Collapse
Affiliation(s)
- Fahri Eryilmaz
- Neurological Surgery, Hitit University Erol Olcok Training and Research Hospital, Corum, TUR
| | - Umar Farooque
- Neurology, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
11
|
Wang H, Chen FS, Zhang ZL, Zhou HX, Ma H, Li XQ. MiR-126-3p-Enriched Extracellular Vesicles from Hypoxia-Preconditioned VSC 4.1 Neurons Attenuate Ischaemia-Reperfusion-Induced Pain Hypersensitivity by Regulating the PIK3R2-Mediated Pathway. Mol Neurobiol 2021; 58:821-834. [PMID: 33029740 DOI: 10.1007/s12035-020-02159-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1β were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- He Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong-Xu Zhou
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
12
|
Khachatryan Z, Haunschild J, von Aspern K, Borger MA, Etz CD. Ischemic spinal cord injury - experimental evidence and evolution of protective measures. Ann Thorac Surg 2021; 113:1692-1702. [PMID: 33434541 DOI: 10.1016/j.athoracsur.2020.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 11/01/2022]
Abstract
BACKGROUND Paraplegia remains one of the most devastating complications of descending and thoracoabdominal aortic repair. The aim of this review is to outline the current state of art in the rapidly developing field of spinal cord injury (SCI) research. METHODS A review of PubMed and Web of Science databases was performed using the following terms and their combinations: spinal cord, injury, ischemia, ischemia-reperfusion, ischemic spinal cord injury, paraplegia, paraparesis. Articles published before July 2019 were screened and included if considered relevant. RESULTS The review focuses on the topic of SCI and the developments concerning methods of monitoring, diagnostics and prevention of SCI. CONCLUSIONS Translation of novel technologies from bench to bedside and into everyday clinical practice is challenging, however each of the developing areas hold great promise in SCI prevention.
Collapse
Affiliation(s)
- Zara Khachatryan
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Josephina Haunschild
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Konstantin von Aspern
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Michael A Borger
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany
| | - Christian D Etz
- University Department for Cardiac Surgery, Leipzig Heart Center, Struempellstrasse 39, 04289 Leipzig, Germany.
| |
Collapse
|
13
|
Ren Z, Qi Y, Sun S, Tao Y, Shi R. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells Dev 2020; 29:1467-1478. [PMID: 33045910 DOI: 10.1089/scd.2020.0133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating medical condition with profound social and economic impacts. Although research is ongoing, current treatment options are limited and do little to restore functionality. However, recent studies suggest that mesenchymal stem cell-derived exosomes (MSC-exosomes) may hold the key to exciting new treatment options for SCI patients. MSCs are self-renewing multipotent stem cells with multi-directional differentiation and can secrete a large number of exosomes (vesicles secreted into the extracellular environment through endocytosis, called MSC-exosomes). These MSC-exosomes play a critical role in repairing SCI through promoting angiogenesis and axonal growth, regulating inflammation and the immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be utilized to transport genetic material or drugs to target cells, and their relatively small size makes them able to permeate the blood-brain barrier. In this review, we summarize recent advances in MSC-exosome themed SCI treatments and cell-free therapies to better understand this newly emerging methodology.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yao Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Orthopedics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Tao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
Intravenous delivery of mesenchymal stem cells protects both white and gray matter in spinal cord ischemia. Brain Res 2020; 1747:147040. [DOI: 10.1016/j.brainres.2020.147040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
15
|
Lin S, Xu C, Lin J, Hu H, Zhang C, Mei X. Regulation of inflammatory cytokines for spinal cord injury recovery. Histol Histopathol 2020; 36:137-142. [PMID: 33001420 DOI: 10.14670/hh-18-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is one of the most destructive traumatic diseases in human beings. The balance of inflammation in the microenvironment is crucial to the repair process of spinal cord injury. Inflammatory cytokines are direct mediators of local lesion inflammation and affect the prognosis of spinal cord injury to varying degrees. In spinal cord injury models, some inflammatory cytokines are beneficial for spinal cord repair, while others are harmful. A large number of animal studies have shown that local targeted administration can effectively regulate the secretion and delivery of inflammatory cytokines and promote the repair of spinal cord injury. In addition, many clinical studies have shown that drugs can promote the repair of spinal cord injury by regulating the content of inflammatory cytokines. However, topical administration affects only a small portion of inflammatory cytokines. In addition, different individuals have different inflammatory cytokine profiles during spinal cord injury. Therefore, future research should aim to develop a personalized local delivery therapeutic cocktail strategy to effectively and accurately regulate inflammation and obtain substantial functional recovery from spinal cord injury.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Jiaquan Lin
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Hengshuo Hu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chuanjie Zhang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| |
Collapse
|
16
|
Pan C, Zheng X, Wang L, Chen Q, Lin Q. Pretreatment with human urine-derived stem cells protects neurological function in rats following cardiopulmonary resuscitation after cardiac arrest. Exp Ther Med 2020; 20:112. [PMID: 32989390 PMCID: PMC7517276 DOI: 10.3892/etm.2020.9240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) often leads to neurological deficits in the absence of effective treatment. The aim of the present basic research study was to investigate the effects of human urine-derived stem cells (hUSCs) on the recovery of neurological function in rats after CA/CPR. hUSCs were isolated in vitro and identified using flow cytometry. A rat model of CA was established, and CPR was performed. Animals were scored for neurofunctional deficits following hUSC transplantation. The expression levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the hippocampus and temporal cortex were detected via immunofluorescence. Moreover, brain water content and serum S100 calcium binding protein B (S100B) levels were measured 7 days following hUSC transplantation. The results demonstrated that hUSCs had upregulated expression levels of CD29, CD90, CD44, CD105, CD73, CD224 and CD146, and expressed low levels of CD34 and human leukocyte antigen-DR isotype. In addition, hUSCs were able to differentiate into neuronal cells in vitro. The SPSS 19.0 statistical package was used for statistical analysis, and it was found that the neurological function of the rats after CA/CPR was significantly improved following hUSC transplantation. Furthermore, hUSCs aggregated in the hippocampus and temporal cortex, and secreted large amounts of BDNF and VEGF. hUSC transplantation also effectively inhibited brain edema and serum S100B levels after CPR. Therefore, the results suggested that hUSC transplantation significantly improved the neurological function of rats after CA/CPR, possibly by promoting the expression levels of BDNF and VEGF, as well as inhibiting brain edema.
Collapse
Affiliation(s)
- Chun Pan
- Emergency Department, Suzhou Emergency Center, Suzhou, Jiangsu 215008, P.R. China
| | - Xu Zheng
- Department of Anesthesiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Liang Wang
- Emergency Department, Suzhou Emergency Center, Suzhou, Jiangsu 215008, P.R. China
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Qi Lin
- Dispatch Department, Suzhou Emergency Center, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
17
|
Jia H, Ma H, Li Z, Chen F, Fang B, Cao X, Chang Y, Qiang Z. Downregulation of LncRNA TUG1 Inhibited TLR4 Signaling Pathway-Mediated Inflammatory Damage After Spinal Cord Ischemia Reperfusion in Rats via Suppressing TRIL Expression. J Neuropathol Exp Neurol 2020; 78:268-282. [PMID: 30715406 DOI: 10.1093/jnen/nly126] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) and TLR4 interactor with leucine-rich repeats (TRIL) play a crucial role in the inflammatory response. This study investigated the role of long noncoding RNA taurine-upregulated gene 1 (lncRNA TUG1) in TRIL/TLR4 signaling in spinal cord ischemia reperfusion (IR) injury. IR injury was induced in experimental rats; knockdown of TUG1 and TRIL was induced by intrathecal injection of siRNAs and overexpression of TRIL was induced by pcDNA3.3-TRIL. The results showed that the mRNA levels of TUG1 were increased at 12 hours after IR; this was accompanied by increased expression of the TRIL- and TLR4-mediated NF-κB/IL-1β signaling pathway. Activated microglia, detected with increased ionized calcium-binding adapter molecule 1 as a marker, exacerbated the hind-limb neurological impairment and blood-spinal cord barrier (BSCB) leakage after IR. TUG1 knockdown inhibited expression of TRIL and TLR4 signaling proinflammatory cytokines and microglial activation, and attenuated neurological deficit and BSCB leakage. TRIL knockdown inhibited the TLR4-mediated inflammatory response, while TRIL expression reversed the inhibited inflammatory effect caused by TUG1 knockdown. These data suggest that TUG1 knockdown inhibited inflammatory damage of the TLR4-mediated NF-κB/IL-1β signaling pathway after IR via suppressing TRIL expression.
Collapse
Affiliation(s)
- Hui Jia
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Li
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengshou Chen
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Fang
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhao Cao
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yi Chang
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziyun Qiang
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Res Ther 2020; 22:75. [PMID: 32272965 PMCID: PMC7146970 DOI: 10.1186/s13075-020-2146-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) often leads to neurological damage and mortality. In this regard, understanding the pathology of SCIRI and preventing its development are of great clinic value. Methods Herein, we analyzed the role of bone marrow mesenchymal stem cell (BMMSC)-derived exosomal microRNA (miR)-124-3p in SCIRI. A SCIRI rat model was established, and the expression of Ern1 and M2 macrophage polarization markers (Arg1, Ym1, and Fizz) was determined using immunohistochemistry, immunofluorescence assay, RT-qPCR, and western blot analysis. Targeting relationship between miR-124-3p and Ern1 was predicted using bioinformatic analysis and verified by dual-luciferase reporter assay. Macrophages were co-cultured with miR-124-3p-containing BMMSC-derived exosomes. M2 macrophages were identified using flow cytometry, and the expression of Arg1, Ym1, and Fizz was determined. In addition, SCIRI rats were injected with miR-124-3p-containing exosomes, spinal cord cell apoptosis was observed using TUNEL assay, and the pathological condition was evaluated with H&E staining. Results In SCIRI, Ern1 was highly expressed and M2 polarization markers were poorly expressed. Silencing Ern1 led to elevated expression of M2 polarization markers. MiR-124-3p targeted and negatively regulated Ern1. Exosomal miR-124-3p enhanced M2 polarization. Highly expressed exosomal miR-124-3p impeded cell apoptosis and attenuated SCIRI-induced tissue impairment and nerve injury. miR-124-3p from BMMSC-derived exosomes ameliorated SCIRI and its associated nerve injury through inhibiting Ern1 and promoting M2 polarization. Conclusion In summary, exosomal miR-124-3p derived from BMMSCs attenuated nerve injury induced by SCIRI by regulating Ern1 and M2 macrophage polarization.
Collapse
Affiliation(s)
- Ran Li
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| | - Qing Ruan
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
19
|
Wang G, Rayner S, Chung R, Shi B, Liang X. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio 2020; 6:100055. [PMID: 32529183 PMCID: PMC7280770 DOI: 10.1016/j.mtbio.2020.100055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurodegenerative disease that affects both upper and lower motor neurons, which results in loss of muscle control and eventual paralysis [1]. Currently, there are as yet unresolved challenges regarding efficient drug delivery into the central nervous system (CNS). These challenges can be attributed to multiple factors including the presence of the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), as well as the inherent characteristics of the drugs themselves (e.g. low solubility, insufficient bioavailability/bio-stability, 'off-target' effects) etc. As a result, conventional drug delivery systems may not facilitate adequate dosage of the required drugs for functional recovery in ALS patients. Nanotechnology-based strategies, however, employ engineered nanostructures that show great potential in delivering single or combined therapeutic agents to overcome the biological barriers, enhance interaction with targeted sites, improve drug bioavailability/bio-stability and achieve real-time tracking while minimizing the systemic side-effects. This review provides a concise discussion of recent advances in nanotechnology-based strategies in relation to combating specific pathophysiology relevant to ALS disease progression and investigates the future scope of using nanotechnology to develop innovative treatments for ALS patients.
Collapse
Affiliation(s)
- G.Y. Wang
- Huaihe Hospital, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - S.L. Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - R. Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - B.Y. Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - X.J. Liang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 2020; 245:117351. [PMID: 31981629 DOI: 10.1016/j.lfs.2020.117351] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
AIMS To study the specific therapeutic effect of zinc on spinal cord injury (SCI) and its specific protective mechanism. MAIN METHODS The effects of zinc ions on neuronal cells were examined in a mouse SCI model and in vitro. In vivo, neurological function was assessed by Basso Mouse Scaleat (BMS) at 1, 3, 5, 7, 10, 14, 21, and 28 days after spinal cord injury. The number of neurons and histomorphology were observed by nissl staining and hematoxylin-eosin staining (HE). The chromatin and mitochondrial structure of neurons were detected by transmission electron microscopy (TEM). The expression of nuclear factor erythroid 2 related factor 2 (Nrf2)-related antioxidant protein and NLRP3 inflammation-related protein were detected in vivo and in vitro by western blot (WB) and immunofluorescence (IF), respectively. KEY FINDINGS Zinc treatment promoted motor function recovery on days 3, 5, 7, 14, 21 and 28 after SCI. In addition, zinc reduces the mitochondrial void rate in spinal neuronal cells and promotes neuronal recovery. At the same time, zinc reduced the levels of reactive oxygen species (ROS) and malondialdehyde in spinal cord tissue after SCI, while increasing superoxide dismutase activity and glutathione peroxidase production. Zinc treatment resulted in up-regulation of Nrf2/Ho-1 levels and down-regulation of nlrp3 inflammation-associated protein expression in vitro and in vivo. SIGNIFICANCE Zinc has a protective effect on spinal cord injury by inhibiting oxidative damage and nlrp3 inflammation. Potential mechanisms may include activation of the Nrf 2/Ho-1 pathway to inhibit nlrp3 inflammation following spinal cord injury. Zinc has the potential to treat SCI.
Collapse
|
21
|
Pan YL, Guo Y, Ma Y, Wang L, Zheng SY, Liu MM, Huang GC. Aquaporin-4 expression dynamically varies after acute spinal cord injury-induced disruption of blood spinal cord barrier in rats. Neuropathology 2019; 39:181-186. [PMID: 30919512 DOI: 10.1111/neup.12539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/25/2018] [Accepted: 01/22/2019] [Indexed: 11/28/2022]
Abstract
The blood-spinal cord barrier (BSCB) changes badly after spinal cord injury (SCI), and it is an important pathophysiological basis of SCI secondary damage. Aquaporin-4 (AQP4), one of the transmembrane proteins in spinal cord, has been shown to be closely related to the development of the BSCB and edema. We established a SCI model in rats using a free-falling weight drop device to subsequently investigate AQP4 expression. AQP4 messenger RNA (mRNA) and protein expression and immunoreactivity were detected in spinal cord tissue using reverse transcription-real-time quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry and Western blot analysis. We found the water content and edema of the spinal cord were significantly higher than the control group after SCI, which was related to the growth of BSCB permeability; both reached their peak on the third day after injury. One, 3, 5, 7 days after injury, the immune response and protein expression in the model group increased from 1 to 3 days, with a plateau period from 3 to 5 days and a decline from 5 to 7 days, showing a significant difference compared with the sham group at each time point (P < 0.05), while the RT-qPCR results showed a decline of mRNA just after 3 days. In conclusion, after SCI, the water content of the spinal cord and the BSCB permeability increases, together with the excessive expression of AQP4, which reached a peak on the third day. AQP4 expression is closely relative to the permeability of BSCB and the water content of the spinal cord.
Collapse
Affiliation(s)
- Ya-Lan Pan
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Su-Yang Zheng
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Ming Liu
- Department of Traumatology & Orthopedics, Traditional Chinese Medicine Hospital of Xuzhou, Xuzhou, China
| | - Gui-Cheng Huang
- Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Li XQ, Yu Q, Chen FS, Tan WF, Zhang ZL, Ma H. Inhibiting aberrant p53-PUMA feedback loop activation attenuates ischaemia reperfusion-induced neuroapoptosis and neuroinflammation in rats by downregulating caspase 3 and the NF-κB cytokine pathway. J Neuroinflammation 2018; 15:250. [PMID: 30172256 PMCID: PMC6119253 DOI: 10.1186/s12974-018-1271-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ischaemia reperfusion (IR) induces multiple pathophysiological changes. In addition to its classical role in regulating tumourigenesis, the feedback loop formed by p53 and its driven target p53-upregulated modulator of apoptosis (PUMA) was recently demonstrated to be the common node tightly controlling various cellular responses during myocardial IR. However, the roles of the p53-PUMA feedback loop in the spinal cord remain unclear. This study aimed to elucidate the roles of p53-PUMA feedback interactions in the spinal cord after IR, specifically investigating their regulation of caspase 3-mediated apoptosis and nuclear factor (NF)-κB-mediated cytokine release. Methods SD rats subjected to 12 min of aortic arch occlusion served as IR models. Neurological assessment as well as p53 and PUMA mRNA and protein expression analyses were performed at 12-h intervals during a 48-h reperfusion period. The cellular distributions of p53 and PUMA were determined via double immunofluorescence staining. The effects of the p53-PUMA feedback loop on modulating hind-limb function; the number of TUNEL-positive cells; and protein levels of caspase 3, NF-κB and cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α, were evaluated by intrathecal treatment with PUMA-specific or scramble siRNA and pifithrin (PFT)-α. Blood-spinal cord barrier (BSCB) breakdown was examined by Evans blue (EB) extravasation and water content analyses. Results IR induced significant behavioural deficits as demonstrated by deceased Tarlov scores, which displayed trends opposite those of PUMA and p53 protein and mRNA expression. Upregulated PUMA and p53 fluorescent labels were widely distributed in neurons, astrocytes and microglia. Injecting si-PUMA and PFT-α exerted significant anti-apoptosis effects as shown by the reduced number of TUNEL-positive cells, nuclear abnormalities and cleaved caspase 3 levels at 48 h post-IR. Additionally, p53 colocalized with NF-κB within the cell. Similarly, injecting si-PUMA and PFT-α exerted anti-inflammatory effects as shown by the decreased NF-κB translocation and release of IL-1β and TNF-α. Additionally, injecting si-PUMA and PFT-α preserved the BSCB integrity as determined by decreased EB extravasation and spinal water content. However, injecting si-Con did not induce any of the abovementioned effects. Conclusions Inhibition of aberrant p53-PUMA feedback loop activation by intrathecal treatment with si-PUMA and PFT-α prevented IR-induced neuroapoptosis, inflammatory responses and BSCB breakdown by inactivating caspase 3-mediated apoptosis and NF-κB-mediated cytokine release.
Collapse
Affiliation(s)
- Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Qian Yu
- Department of Thoracic Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Wen-Fei Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
23
|
Cai XJ, Zhao JJ, Lu Y, Zhang JP, Ren BY, Cao TT, Xi GJ, Li ZW. The microenvironment following oxygen glucose deprivation/re-oxygenation-induced BSCB damage in vitro. Brain Res Bull 2018; 143:171-180. [PMID: 30086352 DOI: 10.1016/j.brainresbull.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the microenvironment following blood-spinal cord barrier (BSCB) damage and to evaluate the role of BSCB disruption in secondary damage of spinal cord injury (SCI). METHODS A model of BSCB damage was established by co-culture of primary microvascular endothelial cells and glial cells obtained from rat spinal cord tissue followed by oxygen glucose deprivation/re-oxygenation (OGD/R). Permeability was evaluated by measuring the transendothelial electrical resistance (TEER) and the leakage test of Fluorescein isothiocyanate-dextran (FITC-dextran). The expression of tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1) were evaluated by Western blot and immunofluorescence microscopy. Proinflammatory factors (TNF-α, iNOS, COX-2 and IL-1β), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were detected in the culture medium under different conditions by enzyme-linked immuno sorbent assay (ELISA). RESULTS The model of BSCB damage induced by OGD/R was successfully constructed. The maximum BSCB permeability occurred 6-12 hours but not within the first 3 h after OGD/R-induced damage. Likewise, the most significant period of TJ protein loss was also detected 6-12 hours after induction. During the hyper-acute period (3 h) following OGD/R-induced damage of BSCB, leukocyte chemotactic factors and leukocyte adhesion factors were significantly increased in the BSCB model. Pro-inflammation factors (TNF-α, IL-1β, iNOS, COX-2), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were also sharply produced during the acute period (3-6 hours) and maintained plateau levels 6-12 hours following OGD/R-induced damage, which overlapped with the period of BSCB permeability maximum. A negative linear correlation was observed between the abundance of proinflammatory factors and the expression of TJ proteins (ZO-1 and occludin) and transepithelial electrical resistance (TEER), and a positive linear correlation was found with transendothelial FITC-dextran. CONCLUSIONS Secondary damage continues after primary BSCB damage induced by OGD/R, exhibiting close ties with inflammation injury.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China
| | - Jing-Jing Zhao
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Yi Lu
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Jian-Ping Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Bing-Yan Ren
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Ting-Ting Cao
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Guang-Jun Xi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Zai-Wang Li
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China.
| |
Collapse
|
24
|
Lochhead JJ, Ronaldson PT, Davis TP. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS JOURNAL 2017; 19:910-920. [PMID: 28353217 DOI: 10.1208/s12248-017-0076-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Collapse
Affiliation(s)
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|