1
|
Li X, Lv Q, Liu P, Han G, Yu S. Understanding of Endomucin: a Multifaceted Glycoprotein Functionality in Vascular Inflammatory-Related Diseases, Bone Diseases and Cancers. Adv Biol (Weinh) 2024; 8:e2400061. [PMID: 38955667 DOI: 10.1002/adbi.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Endomucin (MUC14), encoded by EMCN gene, is an O-glycosylated transmembrane mucin that is mainly found in venous endothelial cells (ECs) and highly expressed in type H vessels of bone tissue. Its main biological functions include promoting endothelial generation and migration through the vascular endothelial growth factor (VEGF) signaling pathway and inhibiting the adhesion of inflammatory cells to ECs. In addition, it induces angiogenesis and promotes bone formation. Due to the excellent functions of Endomucin in the above aspects, it provides a new research target for the treatment of vascular inflammatory-related diseases and bone diseases. Based on the current understanding of its function, the research of Endomucin mainly focuses on the above two diseases. As it is known, the progression of cancer is closely related to angiogenesis. Endomucin recently is found to be differentially expressed in a variety of tumors and correlated with survival rate. The biological role of Endomucin in cancer is opaque. This article introduces the research progress of Endomucin in vascular inflammatory-related diseases and bone diseases, discusses its application value and prospect in the treatment, and collects the latest research situation of Endomucin in tumors, to provide meaningful evidence for expanding the research field of Endomucin.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qing Lv
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Heilongjiang Mental Hospital, Harbin, 150036, China
| |
Collapse
|
2
|
Wu L, Liu H, Xu X, Huang C, Li Y, Xiao X, Zhan Y, Gao C. Serum N-glycomic profiling identifies candidate biomarker panels for assessing coronary artery stenosis severity. Heliyon 2024; 10:e29443. [PMID: 38633623 PMCID: PMC11021961 DOI: 10.1016/j.heliyon.2024.e29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Stenosis severity may escalate over the course of coronary artery disease (CAD), increasing the risk of death for the patient. Conventionally, the assessment of stenosis degree relies on invasive coronary angiography (ICA), an invasive examination unsuitable for patients in poor physical condition or those with contrast allergies and one that imposes a psychological burden on patients. Although abnormal serum N-glycan profiles have exhibited robust associations with various cardiovascular diseases, including CAD, their potential in diagnosing CAD stenosis remains to be determined. In this study, we performed a comprehensive analysis of serum N-glycome from 132 patients who underwent ICA and 27 healthy controls using MALDI-TOF-mass spectrometry. The patients who underwent ICA examination were categorized into four groups based on stenosis severity: no/mild/moderate/severe stenosis. Twenty-seven N-glycans were directly quantified, and 47 derived glycan traits were obtained. Notably, among these 74 glycan features, 18 exhibited variations across the study groups. Using a combination of least absolute shrinkage and selection operator and logistic regression analyses, we developed five diagnostic models for recognizing stenosis degree. Our results suggested that alterations in serum N-glycosylation modifications might be valuable for identifying stenosis degree and monitoring disease progression in individuals with CAD. It is expected to offer a noninvasive alternative for those who could not undergo ICA because of various reasons. However, the diagnostic potential of serum N-glycan panels as biomarkers requires multicenter, large cohort validation in the future.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Haoqi Liu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueping Zhan
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
3
|
Yang X, Ma L, Zhang J, Chen L, Zou Z, Shen D, He H, Zhang L, Chen J, Yuan Z, Qin X, Yu C. Hypofucosylation of Unc5b regulated by Fut8 enhances macrophage emigration and prevents atherosclerosis. Cell Biosci 2023; 13:13. [PMID: 36670464 PMCID: PMC9854080 DOI: 10.1186/s13578-023-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is the leading underlying cause of the majority of clinical cardiovascular events. Retention of foamy macrophages in plaques is the main factor initiating and promoting the atherosclerotic process. Our previous work showed that ox-LDL induced macrophage retention in plaques and that the guidance receptor Uncoordinated-5 homolog B (Unc5b) was involved in this process. However, little is known about the role of Unc5b in regulating macrophage accumulation within plaques. RESULTS In the present study, we found that Unc5b controls macrophage migration and thus promotes plaque progression in ApoE-/- mice. The immunofluorescence colocalization assay results first suggested that fucosyltransferase 8 (Fut8) might participate in the exacerbation of atherosclerosis. Animals with Unc5b overexpression showed elevated levels of Fut8 and numbers of macrophages and an increased lesion size and intimal thickness. However, these effects were reversed in ApoE-/- mice with Unc5b knockdown. Furthermore, Raw264.7 macrophages with siRNA-mediated silencing of Unc5b or overexpression of Unc5b were used to confirm the regulatory mechanisms of Unc5b and Fut8 in vitro. In response to ox-LDL exposure, Unc5b and Fut8 were both upregulated, and macrophages showed reduced pseudopod formation and migratory capacities. However, these capacities were restored by blocking Unc5b or Fut8. Furthermore, the IP assay indicated that Fut8 regulated the level of α-1,6 fucosylation of Unc5b, which mainly occurs in the endoplasmic reticulum (ER), and genetic deletion of the main fucosylation sites or Fut8 resulted in hypofucosylation of Unc5b. Moreover, the macrophage migration mediated by Unc5b depended on inactivation of the p-CDC42/p-PAK pathway. Conversely, macrophages with Unc5b overexpression displayed activation of the p-CDC42/p-PAK pathway and decreased migration both in vivo and in vitro. CONCLUSION These results demonstrated that hypofucosylation of Unc5b regulated by Fut8 is positively associated with the delay of the atherosclerotic process by promoting the migration of foamy macrophages. These findings identify a promising therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xi Yang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China ,grid.410612.00000 0004 0604 6392College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110 China
| | - Limei Ma
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Jun Zhang
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Linmu Chen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Zhen Zou
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Di Shen
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Hui He
- grid.203458.80000 0000 8653 0555Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Lei Zhang
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Jun Chen
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Zhiyi Yuan
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Xia Qin
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| | - Chao Yu
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
4
|
Effects of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection on the Surface Glycoprofiling of Porcine Pulmonary Microvascular Endothelial Cells. Viruses 2022; 14:v14112569. [PMID: 36423178 PMCID: PMC9695484 DOI: 10.3390/v14112569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Previously, our study has demonstrated that porcine pulmonary microvascular endothelial cells (PPMVECs) were susceptible to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and produced a significant non-specific immune response to it. The significance of microvascular endothelial glycocalyx is increasingly attracting attention, and its rich carbohydrate components are not only important signaling molecules, but also remarkably influence the signaling of most proteins. Comprehending changes in the carbohydrate chains contributes to understanding cell functions. This study aimed to reveal the effects of HP-PRRSV infection on the surface carbohydrate chains of PPMVECs. PPMVECs were isolated and cultured in vitro and infected with HP-PRRSV HN and JXA1 strains. Scanning electron microscopy analysis indicated that at 48 h post-infection, some broken holes were in their cell membranes, and that the surface fibrous glycocalyx was obviously reduced or even disappeared. Lectin microarray analysis indicated that the fluorescence intensities of 8 and 7 lectin sites were significantly changed by the HP-PRRSV HN and JXA1 strains, respectively, among which there were 6 common lectin sites. The up-regulation of common lectins (RCA-I, LEL, and STL) and the down-regulation of common lectins (LCA, DSA, and PHA-E) were confirmed by lectin fluorescence staining and lectin flow cytometry, respectively. Together, the results show that the HP-PRRSV infection can induce the glycocalyx disruption of PPMVECs and their surface glycoprofiling changes, and that the poly-N-acetyllactosamine and complex N-glycan are the main up-regulated and down-regulated carbohydrate chains, respectively. Our findings may provide insights into revealing the pathogenesis of HP-PRRSV from the perspective of glycobiology.
Collapse
|
5
|
Ramirez-Perez S, Oregon-Romero E, Reyes-Perez IV, Bhattaram P. Targeting MyD88 Downregulates Inflammatory Mediators and Pathogenic Processes in PBMC From DMARDs-Naïve Rheumatoid Arthritis Patients. Front Pharmacol 2021; 12:800220. [PMID: 35002734 PMCID: PMC8735861 DOI: 10.3389/fphar.2021.800220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
MyD88-dependent intracellular signalling cascades and subsequently NF-kappaB-mediated transcription lead to the dynamic inflammatory processes underlying the pathogenesis of rheumatoid arthritis (RA) and related autoimmune diseases. This study aimed to identify the effect of the MyD88 dimerization inhibitor, ST2825, as a modulator of pathogenic gene expression signatures and systemic inflammation in disease-modifying antirheumatic drugs (DMARDs)-naïve RA patients. We analyzed bulk RNA-seq from peripheral blood mononuclear cells (PBMC) in DMARDs-naïve RA patients after stimulation with LPS and IL-1β. The transcriptional profiles of ST2825-treated PBMC were analyzed to identify its therapeutic potential. Ingenuity Pathway Analysis was implemented to identify downregulated pathogenic processes. Our analysis revealed 631 differentially expressed genes between DMARDs-naïve RA patients before and after ST2825 treatment. ST2825-treated RA PBMC exhibited a gene expression signature similar to that of healthy controls PBMC by downregulating the expression of proinflammatory cytokines, chemokines and matrix metalloproteases. In addition, B cell receptor, IL-17 and IL-15 signalling were critically downregulated pathways by ST2825. Furthermore, we identified eight genes (MMP9, CXCL9, MZB1, FUT7, TGM2, IGLV1-51, LINC01010, and CDK1) involved in pathogenic processes that ST2825 can potentially inhibit in distinct cell types within the RA synovium. Overall, our findings indicate that targeting MyD88 effectively downregulates systemic inflammatory mediators and modulates the pathogenic processes in PBMC from DMARDs-naïve RA patients. ST2825 could also potentially inhibit upregulated genes in the RA synovium, preventing synovitis and joint degeneration.
Collapse
Affiliation(s)
- Sergio Ramirez-Perez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edith Oregon-Romero
- Biomedical Sciences Research Institute (IICB), University of Guadalajara, Guadalajara, Mexico
| | | | - Pallavi Bhattaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Lin A, Forsyth JK, Hoftman GD, Kushan-Wells L, Jalbrzikowski M, Dokuru D, Coppola G, Fiksinski A, Zinkstok J, Vorstman J, Nachun D, Bearden CE. Transcriptomic profiling of whole blood in 22q11.2 reciprocal copy number variants reveals that cell proportion highly impacts gene expression. Brain Behav Immun Health 2021; 18:100386. [PMID: 34841284 PMCID: PMC8607166 DOI: 10.1016/j.bbih.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
22q11.2 reciprocal copy number variants (CNVs) offer a powerful quasi-experimental "reverse-genetics" paradigm to elucidate how gene dosage (i.e., deletions and duplications) disrupts the transcriptome to cause further downstream effects. Clinical profiles of 22q11.2 CNV carriers indicate that disrupted gene expression causes alterations in neuroanatomy, cognitive function, and psychiatric disease risk. However, interpreting transcriptomic signal in bulk tissue requires careful consideration of potential changes in cell composition. We first characterized transcriptomic dysregulation in peripheral blood from reciprocal 22q11.2 CNV carriers using differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify modules of co-expressed genes. We also assessed for group differences in cell composition and re-characterized transcriptomic differences after accounting for cell type proportions and medication usage. Finally, to explore whether CNV-related transcriptomic changes relate to downstream phenotypes associated with 22q11.2 CNVs, we tested for associations of gene expression with neuroimaging measures and behavioral traits, including IQ and psychosis or ASD diagnosis. 22q11.2 deletion carriers (22qDel) showed widespread expression changes at the individual gene as well as module eigengene level compared to 22q11.2 duplication carriers (22qDup) and controls. 22qDup showed increased expression of 5 genes within the 22q11.2 locus, and CDH6 located outside of the locus. Downregulated modules in 22qDel implicated altered immune and inflammatory processes. Celltype deconvolution analyses revealed significant differences between CNV and control groups in T-cell, mast cell, and macrophage proportions; differential expression of individual genes between groups was substantially attenuated after adjusting for cell composition. Individual gene, module eigengene, and cell proportions were not significantly associated with psychiatric or neuroanatomic traits. Our findings suggest broad immune-related dysfunction in 22qDel and highlight the importance of understanding differences in cell composition when interpreting transcriptomic changes in clinical populations. Results also suggest novel directions for future investigation to test whether 22q11.2 CNV effects on macrophages have implications for brain-related microglial function that may contribute to psychiatric phenotypes in 22q11.2 CNV carriers.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Washington, WA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Deepika Dokuru
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ania Fiksinski
- Wilhelmina Children's Hospital & University Medical Center Utrecht, Brain Center, the Netherlands
- Maastricht University, Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, the Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center Utrecht, the Netherlands
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
8
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
9
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|
11
|
Jackson AO, Regine MA, Subrata C, Long S. Molecular mechanisms and genetic regulation in atherosclerosis. IJC HEART & VASCULATURE 2018; 21:36-44. [PMID: 30276232 PMCID: PMC6161413 DOI: 10.1016/j.ijcha.2018.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Atherosclerosis (AS) manifested by lipid accumulation, extracellular matrix protein deposition, and calcification in the intima and media of the large to medium size arteries promoting arterial stiffness and reduction of elasticity. It has been accepted that AS leads to increased morbidity and mortality worldwide. Recent studies indicated that genetic abnormalities play an important role in the development of AS. Specific genetic mutation and histone modification have been found to induce AS formation. Furthermore, specific RNAs such as microRNAs and circular RNAs have been identified to play a crucial role in the progression of AS. Nevertheless, the mechanisms by which genetic mutation, DNA and histone modification, microRNAs and circular RNA induce AS still remain elusive. This review describes specific mechanisms and pathways through which genetic mutation, DNA and histone modification, microRNAs and circular RNA instigate AS. This review further provides a therapeutic strategic direction for the treatment of AS targeting genetic mechanisms. DNA and histone modifications promote transcriptional changes in atherosclerosis. Gene mutations cause dyslipidemia and hyperglycemia to promote atherosclerosis. miRNAs and cirRNA are involved in the development of atherosclerosis. Gene mutations associated oxidative stress and altered inflammatory and nutritive factors promote atherosclerosis.
Collapse
Affiliation(s)
- Ampadu-Okyere Jackson
- Research lab of translational medicine, Medical school, University of South China, Hengyang, Hunan Province 421001, China.,International college, University of South China, Hengyang, Hunan Province 421001, China
| | - Mugwaneza Annick Regine
- Research lab of translational medicine, Medical school, University of South China, Hengyang, Hunan Province 421001, China.,International college, University of South China, Hengyang, Hunan Province 421001, China
| | - Chakrabarti Subrata
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Shiyin Long
- Department of Biochemistry and Molecular Biology, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
12
|
Zhang J, Liu Y, Deng X, Chen L, Yang X, Yu C. ST6GAL1 negatively regulates monocyte transendothelial migration and atherosclerosis development. Biochem Biophys Res Commun 2018; 500:249-255. [DOI: 10.1016/j.bbrc.2018.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 11/26/2022]
|