1
|
Yan W, Li Y, Wang G, Huang Y, Xie P. Clinical application and immune infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail 2024. [PMID: 39275894 DOI: 10.1002/ehf2.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.
Collapse
Affiliation(s)
- Wenting Yan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanling Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yuan Huang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ping Xie
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang X, Zhen D, Yi F, Zhang T, Li X, Wang Y, Li X, Sheng Y, Liu X, Jin T, He Y. Identification of Six Pathogenic Genes for Tibetan Familial Ventricular Septal Defect by Whole Exome Sequencing. J Surg Res 2024; 296:18-28. [PMID: 38215673 DOI: 10.1016/j.jss.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Ventricular septal defect (VSD) is the most common congenital heart malformation in children. This study aimed to investigate potential pathogenic genes associated with Tibetan familial VSD. METHODS Whole genomic DNA was extracted from eight Tibetan children with VSD and their healthy parents (a total of 16 individuals). Whole-exome sequencing was performed using the Illumina HiSeq platform. After filtration, detection, and annotation, single nucleotide variations and insertion-deletion markers were examined. Comparative evaluations using the Sorting Intolerant from Tolerant, PolyPhen V2, Mutation Taster, and Combined Annotation Dependent Depletion databases were conducted to predict harmful mutant genes associated with the etiology of Tibetan familial VSD. RESULTS A total of six missense mutations in genetic disease-causing genes associated with the development of Tibetan familial VSD were identified: activin A receptor type II-like 1 (c.652 C > T: p.R218 W), ATPase cation transporting 13A2 (c.1363 C > T: p.R455 W), endoplasmic reticulum aminopeptidase 1 (c.481 G > A: p.G161 R), MRI1 (c.629 G > A: p.R210Q), tumor necrosis factor receptor-associated protein 1 (c.224 G > A: p.R75H), and FBN2 (c.2260 G > A: p.G754S). The Human Gene Mutation Database confirmed activin A receptor type II-like 1, MRI1, and tumor necrosis factor receptor-associated protein 1 as pathogenic mutations, while FBN2 was classified as a probable pathogenic mutation. CONCLUSIONS This novel study directly screens genetic variations associated with Tibetan familial VSD using whole-exome sequencing, providing new insights into the pathogenesis of VSD.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; Department of Ultrasound, the Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Da Zhen
- Department of Medical, Tibet Autonomous Region Maternity and Children's Hospital, Lhasa, Tibet, China
| | - Faling Yi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianyi Zhang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuemei Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yuhe Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; Department of Clinical Laboratory, the Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xuguang Li
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yemeng Sheng
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoli Liu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.
| | - Yongjun He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China.
| |
Collapse
|
4
|
Ramos-Medina MJ, Echeverría-Garcés G, Kyriakidis NC, León Cáceres Á, Ortiz-Prado E, Bautista J, Pérez-Meza ÁA, Abad-Sojos A, Nieto-Jaramillo K, Espinoza-Ferrao S, Ocaña-Paredes B, López-Cortés A. CardiOmics signatures reveal therapeutically actionable targets and drugs for cardiovascular diseases. Heliyon 2024; 10:e23682. [PMID: 38187312 PMCID: PMC10770621 DOI: 10.1016/j.heliyon.2023.e23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, with heart failure being a complex condition that affects millions of individuals. Single-nucleus RNA sequencing has recently emerged as a powerful tool for unraveling the molecular mechanisms behind cardiovascular diseases. This cutting-edge technology enables the identification of molecular signatures, intracellular networks, and spatial relationships among cardiac cells, including cardiomyocytes, mast cells, lymphocytes, macrophages, lymphatic endothelial cells, endocardial cells, endothelial cells, epicardial cells, adipocytes, fibroblasts, neuronal cells, pericytes, and vascular smooth muscle cells. Despite these advancements, the discovery of essential therapeutic targets and drugs for precision cardiology remains a challenge. To bridge this gap, we conducted comprehensive in silico analyses of single-nucleus RNA sequencing data, functional enrichment, protein interactome network, and identification of the shortest pathways to physiological phenotypes. This integrated multi-omics analysis generated CardiOmics signatures, which allowed us to pinpoint three therapeutically actionable targets (ADRA1A1, PPARG, and ROCK2) and 15 effective drugs, including adrenergic receptor agonists, adrenergic receptor antagonists, norepinephrine precursors, PPAR receptor agonists, and Rho-associated kinase inhibitors, involved in late-stage cardiovascular disease clinical trials.
Collapse
Affiliation(s)
- María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jhommara Bautista
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Álvaro A. Pérez-Meza
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Karol Nieto-Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador
| | | | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
5
|
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, Brunetti G. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. Int J Mol Sci 2023; 25:288. [PMID: 38203459 PMCID: PMC10779015 DOI: 10.3390/ijms25010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular assist devices (LVADs) represent the final treatment for patients with end-stage heart failure (HF) not eligible for transplantation. Although LVAD design has been further improved in the last decade, their use is associated with different complications. Specifically, inflammation, fibrosis, bleeding events, right ventricular failure, and aortic valve regurgitation may occur. In addition, reverse remodeling is associated with substantial cellular and molecular changes of the failing myocardium during LVAD support with positive effects on patients' health. All these processes also lead to the identification of biomarkers identifying LVAD patients as having an augmented risk of developing associated adverse events, thus highlighting the possibility of identifying new therapeutic targets. Additionally, it has been reported that LVAD complications could cause or exacerbate a state of malnutrition, suggesting that, with an adjustment in nutrition, the general health of these patients could be improved.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| |
Collapse
|
6
|
Papaioannou P, Wallace MJ, Malhotra N, Mohler PJ, El Refaey M. Biochemical Structure and Function of TRAPP Complexes in the Cardiac System. JACC Basic Transl Sci 2023; 8:1599-1612. [PMID: 38205348 PMCID: PMC10774597 DOI: 10.1016/j.jacbts.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 01/12/2024]
Abstract
Trafficking protein particle (TRAPP) is well reported to play a role in the trafficking of protein products within the Golgi and endoplasmic reticulum. Dysfunction in TRAPP has been associated with disorders in the nervous and cardiovascular systems, but the majority of literature focuses on TRAPP function in the nervous system solely. Here, we highlight the known pathways of TRAPP and hypothesize potential impacts of TRAPP dysfunction on the cardiovascular system, particularly the role of TRAPP as a guanine-nucleotide exchange factor for Rab1 and Rab11. We also review the various cardiovascular phenotypes associated with changes in TRAPP complexes and their subunits.
Collapse
Affiliation(s)
- Peter Papaioannou
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nipun Malhotra
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
7
|
Ren Y, Wu Y, He W, Tian Y, Zhao X. SMOC2 plays a role in heart failure via regulating TGF-β1/Smad3 pathway-mediated autophagy. Open Med (Wars) 2023; 18:20230752. [PMID: 37465345 PMCID: PMC10350896 DOI: 10.1515/med-2023-0752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-β1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-β agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-β1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-β1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-β1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yun Wu
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Wenshuai He
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Yingjie Tian
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| | - Xingsheng Zhao
- Cardiology Department, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
- Clinical Medical Research Center in Cardiovascular Diseases, Inner Mongolia People’s Hospital, Inner Mongolia Autonomous Region, Hohhot, 010017, China
| |
Collapse
|
8
|
Zhou L, Peng F, Li J, Gong H. Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments. Exp Ther Med 2023; 26:325. [PMID: 37346398 PMCID: PMC10280324 DOI: 10.3892/etm.2023.12024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 06/23/2023] Open
Abstract
Despite the availability of several effective and promising treatment methods, heart failure (HF) remains a significant public health concern that requires advanced therapeutic strategies and techniques. Dilated cardiomyopathy (DCM) is a crucial factor that contributes to the development and deterioration of HF. The aim of the present study was to identify novel biomarkers and biological pathways to enhance the diagnosis and treatment of patients with DCM-induced HF using weighted gene co-expression network analysis (WGCNA). A total of 24 co-expressed gene modules connected with DCM-induced HF were obtained by WGCNA. Among these, the blue module had the highest correlation with DCM-induced HF (r=0.91; P<0.001) and was enriched in the AGE-RAGE signaling pathway in diabetic complications, the p53 and MAPK signaling pathway, adrenergic signaling in cardiomyocytes, the Janus kinase-STAT signaling pathway and cGMP/PKG signaling. Eight key genes, including secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2), serpin family A member 3 (SERPINA3), myosin heavy chain 6 (MYH6), S100 calcium binding protein A9 (S100A9), tubulin α (TUBA)3E, TUBA3D, lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) and phospholipase C ε1 (PLCE1), were selected as the therapeutic targets of DCM-induced HF based on WGCNA and differentially expressed gene analysis. Immune cell infiltration analysis revealed that the proportion of naive B cells and CD4-activated memory T cells was markedly upregulated in DCM-induced HF tissues compared with tissues from healthy controls. Furthermore, reverse transcription-quantitative PCR in AC16 human cardiomyocyte cells treated with doxorubicin showed that among the eight key genes, only SERPINA3, MYH6, S100A9, LYVE1 and PLCE1 exhibited expression levels identical to those revealed by bioinformatics analysis, suggesting that these genes may be involved in the development of DCM-induced HF.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Stamm P, Kirmes I, Palmer A, Molitor M, Kvandova M, Kalinovic S, Mihalikova D, Reid G, Wenzel P, Münzel T, Daiber A, Jansen T. Doxorubicin induces wide-spread transcriptional changes in the myocardium of hearts distinguishing between mice with preserved and impaired cardiac function. Life Sci 2021; 284:119879. [PMID: 34390723 DOI: 10.1016/j.lfs.2021.119879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
AIMS Doxorubicin (DOX) is an important drug for the treatment of various tumor entities. However, the occurrence of heart failure limits its application. This study investigated differential gene expression profiles in the left and right ventricles of DOX treated mice with either preserved or impaired myocardial function. We provide new mechanistic insights into the pathophysiology of DOX-induced heart failure and have discovered pathways that counteract DOX-induced cardiotoxicity. MAIN METHODS We used in total 48 male mice and applied a chronic low dose DOX administration (5 mg/kg per injection, in total 20 mg/kg over 4 weeks) to induce heart failure. Echocardiographic parameters were evaluated one week after the final dose and mice were separated according to functional parameters into doxorubicin responding and non-responding animals. Post mortem, measurements of reactive oxygen species (ROS) and gene expression profiling was performed in separated right and left hearts. KEY FINDINGS We detected significant ROS production in the left heart of the mice in response to DOX treatment, although interestingly, not in the right heart. We found that transcriptional changes differ between right and left heart correlating with the occurrence of myocardial dysfunction. SIGNIFICANCE Doxorubicin induces changes in gene expression in the entire heart of animals without necessarily impairing cardiac function. We identified a set of transcripts that are associated with DOX cardiotoxicity. These might represent promising targets to ameliorate DOX-induced heart failure. Moreover, our results emphasize that parameters of left and right heart function should be evaluated during standardized echocardiography in patients undergoing DOX therapy.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ina Kirmes
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Alexander Palmer
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michael Molitor
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, Mainz, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | | | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Jansen
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
11
|
Zhai W, Li Y, Luo Y, Gao W, Liu S, Han J, Geng J. Sevoflurane prevents pulmonary vascular remodeling and right ventricular dysfunction in pulmonary arterial hypertension in rats. Am J Transl Res 2021; 13:11302-11315. [PMID: 34786059 PMCID: PMC8581939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The cardioprotective properties of sevoflurane have been reported in studies of the left ventricle. However, whether this volatile anesthetic would also be beneficial for pulmonary vascular remodeling and associated right ventricular hypertrophy (RVH) remained to be explored. Here, we investigated the potential benefit of sevoflurane to right heart function in experimental pulmonary arterial hypertension (PAH). METHODS Adult Wistar rats received one dose peritoneal injection of monocrotaline (MCT, 60 mg/kg) or the equal volume of normal saline. Two weeks later, rats were treated with sevoflurane or sham exposure. PAH status and cardiac function were assessed by echocardiography weekly, and the body weight (BW) was monitored every week. After 6 weeks of exercise, Fulton's index calculation, histological observation, IL-6 and TNF-α immunohistochemical analyses, evaluation of MDA, SOD and GSH-Px levels and NF-κB and MAPK active determination were performed in lung and RV tissue samples. RESULTS MCT induced pulmonary vascular remodeling, RVH, increased Fulton's index (P<0.01), and right ventricular failure (RVF) in rats. Animals inhaled sevoflurane had an increased cardiac output (P<0.05) and lower incidence of RVF (P<0.05). Also, these animals had a reduced RVEDD, RVWTd and PAID (P<0.05), increased PV (P<0.05), reduced wall thickness and vascular wall area of pulmonary small vascular (vascular external diameter 50-150 um) (P<0.01), reduced RV fibrosis, and increased RV cardiomyocyte area (P<0.01). Furthermore, sevoflurane reduced IL-6 and TNF-α expression in lungs and heart (P<0.01), decreased level of MDA (P<0.01) and increased activity of SOD and GSH-Px (P<0.01). In addition, it decreased the activities of NF-κB and MAPK pathways (P<0.01). CONCLUSION Sevoflurane reduces pulmonary vascular remodeling and RVH in PAH induced by MCT in rats. This effect is likely due to down-regulation of inflammatory factors IL-6 and TNF-α, reduced level of oxidative stress and the inhibition of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Wenqian Zhai
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Yunfei Li
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Yongjuan Luo
- Department of Ultrasonics, Tianjin Chest HospitalTianjin 300222, China
| | - Weidong Gao
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of MedicineBaltimore 21205, MD, USA
| | - Shan Liu
- Tianjin Cardiovascular Institute, Tianjin Chest HospitalTianjin 300051, China
| | - Jiange Han
- Department of Anesthesiology, Tianjin Chest HospitalTianjin 300222, China
| | - Jie Geng
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| |
Collapse
|
12
|
Wang T, Tian J, Jin Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep 2021; 11:19488. [PMID: 34593936 PMCID: PMC8484263 DOI: 10.1038/s41598-021-98998-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) are the two most common etiologies of heart failure (HF). Both forms share common characteristics including ventricle dilation in the final stage. Immune mechanisms in HF are increasingly highlighted and have been implicated in the pathogeneses of IHD and DCM. A better understanding of adhesion molecule expression and correlated immune cell infiltration could enhance disease detection and improve therapeutic targets. This study was performed to explore the common mechanisms underlying IHD and DCM. After searching the Gene Expression Omnibus database, we selected the GSE42955, GSE76701, GSE5406, GSE133054 and GSE57338 datasets for different expressed gene (DEGs) selection and new cohort establishment. We use xcell to calculate immune infiltration degree, ssGSEA and GSEA to calculate the pathway and biological enrichment score, consensus cluster to identify the m6A modification pattern, and LASSO regression to make risk predicting model and use new combined cohort to validate the results. The screening stage revealed that vascular cell adhesion molecule 1 (VCAM1) play pivotal roles in regulating DEGs. Subsequent analyses revealed that VCAM1 was differentially expressed in the myocardium and involved in regulating immune cell infiltration. We also found that dysregulated VCAM1 expression was associated with a higher risk of HF by constructing a clinical risk-predicting model. Besides, we also find a connection among the m6A RNA modification ,expression of VCAM1 and immune regulation. Those connection can be linked by the Wnt pathway enrichment alternation. Collectively, our results suggest that VCAM-1 have the potential to be used as a biomarker or therapy target for HF and the m6A modification pattern is associated with the VCAM1 expression and immune regulation.
Collapse
Affiliation(s)
- Tongyu Wang
- The Fourth Affiliated Hospital of China Medical University, Yuanzhe Jin, No. 4 Chongshan East Road, Huanggu District, Shenyang, Liaoning Province, China
| | - Jiahu Tian
- The Fourth Affiliated Hospital of China Medical University, Yuanzhe Jin, No. 4 Chongshan East Road, Huanggu District, Shenyang, Liaoning Province, China
| | - Yuanzhe Jin
- The Fourth Affiliated Hospital of China Medical University, Yuanzhe Jin, No. 4 Chongshan East Road, Huanggu District, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
14
|
Cavus O, Williams J, Musa H, El Refaey M, Gratz D, Shaheen R, Schwieterman NA, Koenig S, Antwi-Boasiako S, Young LJ, Xu X, Han M, Wold LE, Hund TJ, Mohler PJ, Bradley EA. Giant ankyrin-G regulates cardiac function. J Biol Chem 2021; 296:100507. [PMID: 33675749 PMCID: PMC8040283 DOI: 10.1016/j.jbc.2021.100507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular disease (CVD) remains the most common cause of adult morbidity and mortality in developed nations. As a result, predisposition for CVD is increasingly important to understand. Ankyrins are intracellular proteins required for the maintenance of membrane domains. Canonical ankyrin-G (AnkG) has been shown to be vital for normal cardiac function, specifically cardiac excitability, via targeting and regulation of the cardiac voltage-gated sodium channel. Noncanonical (giant) AnkG isoforms play a key role in neuronal membrane biogenesis and excitability, with evidence for human neurologic disease when aberrant. However, the role of giant AnkG in cardiovascular tissue has yet to be explored. Here, we identify giant AnkG in the myocardium and identify that it is enriched in 1-week-old mice. Using a new mouse model lacking giant AnkG expression in myocytes, we identify that young mice displayed a dilated cardiomyopathy phenotype with aberrant electrical conduction and enhanced arrhythmogenicity. Structural and electrical dysfunction occurred at 1 week of age, when giant AnkG was highly expressed and did not appreciably change in adulthood until advanced age. At a cellular level, loss of giant AnkG results in delayed and early afterdepolarizations. However, surprisingly, giant AnkG cKO myocytes display normal INa, but abnormal myocyte contractility, suggesting unique roles of the large isoform in the heart. Finally, transcript analysis provided evidence for unique pathways that may contribute to the structural and electrical findings shown in giant AnkG cKO animals. In summary, we identify a critical role for giant AnkG that adds to the diversity of ankyrin function in the heart.
Collapse
Affiliation(s)
- Omer Cavus
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jordan Williams
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Hassan Musa
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mona El Refaey
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dan Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Neill A Schwieterman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara Koenig
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay J Young
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mei Han
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Loren E Wold
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Elisa A Bradley
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
15
|
Park JF, Clark VR, Banerjee S, Hong J, Razee A, Williams T, Fishbein G, Saddic L, Umar S. Transcriptomic Analysis of Right Ventricular Remodeling in Two Rat Models of Pulmonary Hypertension: Identification and Validation of Epithelial-to-Mesenchymal Transition in Human Right Ventricular Failure. Circ Heart Fail 2021; 14:e007058. [PMID: 33541093 DOI: 10.1161/circheartfailure.120.007058] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Right ventricular (RV) dysfunction is a significant prognostic determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Despite the importance of RV function in PAH, the underlying molecular mechanisms of RV dysfunction secondary to PAH remain unclear. We aim to identify and compare molecular determinants of RV failure using RNA sequencing of RV tissue from 2 clinically relevant animal models of PAH. METHODS We performed RNA sequencing on RV from rats treated with monocrotaline or Sugen with hypoxia/normoxia. PAH and RV failure were confirmed by catheterization and echocardiography. We validated the RV transcriptome results using quantitative real-time polymerase chain reaction, immunofluorescence, and Western blot. Immunohistochemistry and immunofluorescence were performed on human RV tissue from control (n=3) and PAH-induced RV failure patients (n=5). RESULTS We identified similar transcriptomic profiles of RV from monocrotaline- and Sugen with hypoxia-induced RV failure. Pathway analysis showed genes enriched in epithelial-to-mesenchymal transition, inflammation, and metabolism. Histological staining of human RV tissue from patients with RV failure secondary to PAH revealed significant RV fibrosis and endothelial-to-mesenchymal transition, as well as elevated cellular communication network factor 2 (top gene implicated in epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition) expression in perivascular areas compared with normal RV. CONCLUSIONS Transcriptomic signature of RV failure in monocrotaline and Sugen with hypoxia models showed similar gene expressions and biological pathways. We provide translational relevance of this transcriptomic signature using RV from patients with PAH to demonstrate evidence of epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition and protein expression of cellular communication network factor 2 (CTGF [connective tissue growth factor]). Targeting specific molecular mechanisms responsible for RV failure in monocrotaline and Sugen with hypoxia models may identify novel therapeutic strategies for PAH-associated RV failure.
Collapse
Affiliation(s)
- John F Park
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Varina R Clark
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Somanshu Banerjee
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Jason Hong
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
- Division of Pulmonary Critical Care Medicine, Department of Medicine, UCLA, Los Angeles, CA (J.H.)
| | - Asif Razee
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Tiffany Williams
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Gregory Fishbein
- Department of Pathology (G.F.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Lou Saddic
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine (J.F.P., V.R.C., S.B., J.H., A.R., T.W., L.S., S.U.), David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
16
|
Li D, Lin H, Li L. Multiple Feature Selection Strategies Identified Novel Cardiac Gene Expression Signature for Heart Failure. Front Physiol 2020; 11:604241. [PMID: 33304275 PMCID: PMC7693561 DOI: 10.3389/fphys.2020.604241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Heart failure (HF) is a serious condition in which the support of blood pumped by the heart is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 26 million patients worldwide are suffering from heart failure and about 17–45% of patients with heart failure die within 1-year, and the majority die within 5-years admitted to a hospital. The molecular mechanisms underlying the progression of heart failure have been poorly studied. We compared the gene expression profiles between patients with heart failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies and identified 38 HF signature genes. The support vector machine (SVM) classifier based on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great performance with sensitivity of 0.983 and specificity of 0.963. The network analysis suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate the early detection of heart failure and can reveal its molecular mechanisms.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Hong Lin
- Internal Medicine-Cardiovascular Department, Harbin Chest Hospital, Harbin, China
| | - Luyifei Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Edwards JJ, Brandimarto J, Hu DQ, Jeong S, Yucel N, Li L, Bedi KC, Wada S, Murashige D, Hwang HTV, Zhao M, Margulies KB, Bernstein D, Reddy S, Arany Z. Noncanonical WNT Activation in Human Right Ventricular Heart Failure. Front Cardiovasc Med 2020; 7:582407. [PMID: 33134326 PMCID: PMC7575695 DOI: 10.3389/fcvm.2020.582407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Background: No medical therapies exist to treat right ventricular (RV) remodeling and RV failure (RVF), in large part because molecular pathways that are specifically activated in pathologic human RV remodeling remain poorly defined. Murine models have suggested involvement of Wnt signaling, but this has not been well-defined in human RVF. Methods: Using a candidate gene approach, we sought to identify genes specifically expressed in human pathologic RV remodeling by assessing the expression of 28 WNT-related genes in the RVs of three groups: explanted nonfailing donors (NF, n = 29), explanted dilated and ischemic cardiomyopathy, obtained at the time of cardiac transplantation, either with preserved RV function (pRV, n = 78) or with RVF (n = 35). Results: We identified the noncanonical WNT receptor ROR2 as transcriptionally strongly upregulated in RVF compared to pRV and NF (Benjamini-Hochberg adjusted P < 0.05). ROR2 protein expression correlated linearly to mRNA expression (R2 = 0.41, P = 8.1 × 10−18) among all RVs, and to higher right atrial to pulmonary capillary wedge ratio in RVF (R2 = 0.40, P = 3.0 × 10−5). Utilizing Masson's trichrome and ROR2 immunohistochemistry, we identified preferential ROR2 protein expression in fibrotic regions by both cardiomyocytes and noncardiomyocytes. We compared RVF with high and low ROR2 expression, and found that high ROR2 expression was associated with increased expression of the WNT5A/ROR2/Ca2+ responsive protease calpain-μ, cleavage of its target FLNA, and FLNA phosphorylation, another marker of activation downstream of ROR2. ROR2 protein expression as a continuous variable, correlated strongly to expression of calpain-μ (R2 = 0.25), total FLNA (R2 = 0.67), calpain cleaved FLNA (R2 = 0.32) and FLNA phosphorylation (R2 = 0.62, P < 0.05 for all). Conclusion: We demonstrate robust reactivation of a fetal WNT gene program, specifically its noncanonical arm, in human RVF characterized by activation of ROR2/calpain mediated cytoskeleton protein cleavage.
Collapse
Affiliation(s)
- Jonathan J Edwards
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong-Qing Hu
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora Yucel
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle Murashige
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Tae V Hwang
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Mingming Zhao
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Bernstein
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Sushma Reddy
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, United States
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerlé J, Clevers H, Koo BK, Dollé P, Bloch-Zupan A, Niederreither K. Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep 2020; 10:14817. [PMID: 32908163 PMCID: PMC7481257 DOI: 10.1038/s41598-020-71749-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted extracellular matrix components which regulate craniofacial development could be reactivated and play roles in adult wound healing. We report a patient with a loss-of-function of the secreted matricellular protein SMOC2 (SPARC related modular calcium binding 2) presenting severe oligodontia, microdontia, tooth root deficiencies, alveolar bone hypoplasia, and a range of skeletal malformations. Turning to a mouse model, Smoc2-GFP reporter expression indicates SMOC2 dynamically marks a range of dental and bone progenitors. While germline Smoc2 homozygous mutants are viable, tooth number anomalies, reduced tooth size, altered enamel prism patterning, and spontaneous age-induced periodontal bone and root loss are observed in this mouse model. Whole-genome RNA-sequencing analysis of embryonic day (E) 14.5 cap stage molars revealed reductions in early expressed enamel matrix components (Odontogenic ameloblast-associated protein) and dentin dysplasia targets (Dentin matrix acidic phosphoprotein 1). We tested if like other matricellular proteins SMOC2 was required for regenerative repair. We found that the Smoc2-GFP reporter was reactivated in adjacent periodontal tissues 4 days after tooth avulsion injury. Following maxillary tooth injury, Smoc2−/− mutants had increased osteoclast activity and bone resorption surrounding the extracted molar. Interestingly, a 10-day treatment with the cyclooxygenase 2 (COX2) inhibitor ibuprofen (30 mg/kg body weight) blocked tooth injury-induced bone loss in Smoc2−/− mutants, reducing matrix metalloprotease (Mmp)9. Collectively, our results indicate that endogenous SMOC2 blocks injury-induced jaw bone osteonecrosis and offsets age-induced periodontal decay.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatrics Division, Preventive Department, Khon Kaen University, Khon Kaen, Thailand
| | - François Clauss
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France.,Regenerative NanoMedicine, INSERM UMR1260, FMTS, Hôpitaux Universitaires de Strasbourg, 11 rue Humann, 67000, Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Joseph Hemmerlé
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculté de Médecine, Université de Strasbourg, FMTS, 4 Rue Kirschleger, 67000, Strasbourg, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France. .,Eastman Dental Institute, University College London, London, UK.
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.
| |
Collapse
|
19
|
Zhou J, Zhang W, Wei C, Zhang Z, Yi D, Peng X, Peng J, Yin R, Zheng Z, Qi H, Wei Y, Wen T. Weighted correlation network bioinformatics uncovers a key molecular biosignature driving the left-sided heart failure. BMC Med Genomics 2020; 13:93. [PMID: 32620106 PMCID: PMC7333416 DOI: 10.1186/s12920-020-00750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Left-sided heart failure (HF) is documented as a key prognostic factor in HF. However, the relative molecular mechanisms underlying left-sided HF is unknown. The purpose of this study is to unearth significant modules, pivotal genes and candidate regulatory components governing the progression of left-sided HF by bioinformatical analysis. METHODS A total of 319 samples in GSE57345 dataset were used for weighted gene correlation network analysis (WGCNA). ClusterProfiler package in R was used to conduct functional enrichment for genes uncovered from the modules of interest. Regulatory networks of genes were built using Cytoscape while Enrichr database was used for identification of transcription factors (TFs). The MCODE plugin was used for identifying hub genes in the modules of interest and their validation was performed based on GSE1869 dataset. RESULTS A total of six significant modules were identified. Notably, the blue module was confirmed as the most crucially associated with left-sided HF, ischemic heart disease (ISCH) and dilated cardiomyopathy (CMP). Functional enrichment conveyed that genes belonging to this module were mainly those driving the extracellular matrix-associated processes such as extracellular matrix structural constituent and collagen binding. A total of seven transcriptional factors, including Suppressor of Zeste 12 Protein Homolog (SUZ12) and nuclear factor erythroid 2 like 2 (NFE2L2), adrenergic receptor (AR), were identified as possible regulators of coexpression genes identified in the blue module. A total of three key genes (OGN, HTRA1 and MXRA5) were retained after validation of their prognostic value in left-sided HF. The results of functional enrichment confirmed that these key genes were primarily involved in response to transforming growth factor beta and extracellular matrix. CONCLUSION We uncovered a candidate gene signature correlated with HF, ISCH and CMP in the left ventricle, which may help provide better prognosis and therapeutic decisions and in HF, ISCH and CMP patients.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zhiliang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Hongmei Qi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China.
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|
20
|
Taverne YJHJ, Sadeghi A, Bartelds B, Bogers AJJC, Merkus D. Right ventricular phenotype, function, and failure: a journey from evolution to clinics. Heart Fail Rev 2020; 26:1447-1466. [PMID: 32556672 PMCID: PMC8510935 DOI: 10.1007/s10741-020-09982-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The right ventricle has long been perceived as the "low pressure bystander" of the left ventricle. Although the structure consists of, at first glance, the same cardiomyocytes as the left ventricle, it is in fact derived from a different set of precursor cells and has a complex three-dimensional anatomy and a very distinct contraction pattern. Mechanisms of right ventricular failure, its detection and follow-up, and more specific different responses to pressure versus volume overload are still incompletely understood. In order to fully comprehend right ventricular form and function, evolutionary biological entities that have led to the specifics of right ventricular physiology and morphology need to be addressed. Processes responsible for cardiac formation are based on very ancient cardiac lineages and within the first few weeks of fetal life, the human heart seems to repeat cardiac evolution. Furthermore, it appears that most cardiogenic signal pathways (if not all) act in combination with tissue-specific transcriptional cofactors to exert inductive responses reflecting an important expansion of ancestral regulatory genes throughout evolution and eventually cardiac complexity. Such molecular entities result in specific biomechanics of the RV that differs from that of the left ventricle. It is clear that sole descriptions of right ventricular contraction patterns (and LV contraction patterns for that matter) are futile and need to be addressed into a bigger multilayer three-dimensional picture. Therefore, we aim to present a complete picture from evolution, formation, and clinical presentation of right ventricular (mal)adaptation and failure on a molecular, cellular, biomechanical, and (patho)anatomical basis.
Collapse
Affiliation(s)
- Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands. .,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Unit for Cardiac Morphology and Translational Electrophysiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Amir Sadeghi
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Beatrijs Bartelds
- Division of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Tzimas C, Rau CD, Buergisser PE, Jean-Louis G, Lee K, Chukwuneke J, Dun W, Wang Y, Tsai EJ. WIPI1 is a conserved mediator of right ventricular failure. JCI Insight 2019; 5:122929. [PMID: 31021818 DOI: 10.1172/jci.insight.122929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Right ventricular dysfunction is highly prevalent across cardiopulmonary diseases and independently predicts death in both heart failure (HF) and pulmonary hypertension (PH). Progression towards right ventricular failure (RVF) can occur in spite of optimal medical treatment of HF or PH, highlighting current insufficient understanding of RVF molecular pathophysiology. To identify molecular mechanisms that may distinctly underlie RVF, we investigated the cardiac ventricular transcriptome of advanced HF patients, with and without RVF. Using an integrated systems genomic and functional biology approach, we identified an RVF-specific gene module, for which WIPI1 served as a hub and HSPB6 and MAP4 as drivers, and confirmed the ventricular specificity of Wipi1, Hspb6, and Map4 transcriptional changes in adult murine models of pressure overload induced RV- versus LV- failure. We uncovered a shift towards non-canonical autophagy in the failing RV that correlated with RV-specific Wipi1 upregulation. In vitro siRNA silencing of Wipi1 in neonatal rat ventricular myocytes limited non-canonical autophagy and blunted aldosterone-induced mitochondrial superoxide levels. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and non-canonical autophagy in cardiac myocytes. Together with our human transcriptomic analysis and corroborating studies in an RVF mouse model, these data render Wipi1 a potential target for RV-directed HF therapy.
Collapse
Affiliation(s)
- Christos Tzimas
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Christoph D Rau
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Petra E Buergisser
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gaston Jean-Louis
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Katherine Lee
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jeffrey Chukwuneke
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Wen Dun
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Emily J Tsai
- Division of Cardiology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|