1
|
Hannan FM, Leow MKS, Lee JKW, Kovats S, Elajnaf T, Kennedy SH, Thakker RV. Endocrine effects of heat exposure and relevance to climate change. Nat Rev Endocrinol 2024; 20:673-684. [PMID: 39080505 DOI: 10.1038/s41574-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 10/09/2024]
Abstract
Climate change is increasing both seasonal temperatures and the frequency and severity of heat extremes. As the endocrine system facilitates physiological adaptations to temperature changes, diseases with an endocrinological basis have the potential to affect thermoregulation and increase the risk of heat injury. The effect of climate change and associated high temperature exposure on endocrine axis development and function, and on the prevalence and severity of diseases associated with hormone deficiency or excess, is unclear. This Perspective summarizes current knowledge relating to the hormonal effects of heat exposure in species ranging from rodents to humans. We also describe the potential effect of high temperature exposures on patients with endocrine diseases. Finally, we highlight the need for more basic science, clinical and epidemiological research into the effects of heat on endocrine function and health; this research could enable the development of interventions for people most at risk, in the context of rising environmental temperatures.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Melvin K S Leow
- Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sari Kovats
- NIHR Health Protection Research Unit in Environmental Change and Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
2
|
Rudolph TE, Roths M, Freestone AD, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. The contribution of biological sex to heat stress-mediated outcomes in growing pigs. Animal 2024; 18:101168. [PMID: 38762992 DOI: 10.1016/j.animal.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Heat stress (HS) negatively impacts a variety of production parameters in growing pigs; however, the impact of biological sex on the HS response is largely unknown. To address this, 48 crossbred barrows and gilts (36.8 ± 3.7 kg BW) were individually housed and assigned to one of three constant environmental conditions: (1) thermoneutral (TN) (20.8 ± 1.6 °C; 62.0 ± 4.7% relative humidity; n = 8/sex), (2) HS (39.4 ± 0.6 °C; 33.7 ± 6.3% relative humidity) for 1 d (HS1; n = 8/sex), or (3) or for 7 d (HS7; n = 8/sex). As expected, HS increased rectal temperature (Tr) following 1 d of HS (1.0 °C; P < 0.0001) and 7 d of HS (0.9 °C; P < 0.0001). By 7 d, heat-stressed gilts were cooler than barrows (0.4 °C; P = 0.016), despite identical heating conditions. There was a main effect of sex such that barrows had higher Tr than gilts (P = 0.031). Heat-stressed pigs on d 1 had marked reductions in feed intake and BW compared to TN (P < 0.0001). One day of HS resulted in negative gain to feed (G:F) in barrows and gilts and was reduced compared to TN (P < 0.0001). Notably, following 1 d of HS, the variability of G:F was greater in gilts than in barrows. Between 1 and 7 d of HS, G:F improved in barrows and gilts and were similar to TN pigs, even though HS barrows had higher Tr than gilts over this period. Heat stress for 1 and 7 d reduced empty gastrointestinal tract weight compared to TN (P < 0.0001). Interestingly, HS7 gilts had decreased gastrointestinal tract weight compared to HS1 gilts (2.43 vs 2.72 kg; P = 0.03), whereas it was similar between HS1 and HS7 barrows. Lastly, a greater proportion of gastrointestinal contents was in the stomach of HS1 pigs compared to TN and HS7 (P < 0.05), which is suggestive of decreased gastric emptying. Overall, HS barrows maintained an elevated Tr compared to HS gilts through the duration of the experiment but also maintained similar growth and production metrics compared to gilts, despite this higher temperature.
Collapse
Affiliation(s)
- T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R P Rhoads
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - S H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA. %
| |
Collapse
|
3
|
Grant AD, Kriegsfeld LJ. Continuous body temperature as a window into adolescent development. Dev Cogn Neurosci 2023; 60:101221. [PMID: 36821877 PMCID: PMC9981811 DOI: 10.1016/j.dcn.2023.101221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Continuous body temperature is a rich source of information on hormonal status, biological rhythms, and metabolism, all of which undergo stereotyped change across adolescence. Due to the direct actions of these dynamic systems on body temperature regulation, continuous temperature may be uniquely suited to monitoring adolescent development and the impacts of exogenous reproductive hormones or peptides (e.g., hormonal contraception, puberty blockers, gender affirming hormone treatment). This mini-review outlines how traditional methods for monitoring the timing and tempo of puberty may be augmented by markers derived from continuous body temperature. These features may provide greater temporal precision, scalability, and reduce reliance on self-report, particularly in females. Continuous body temperature data can now be gathered with ease across a variety of wearable form factors, providing the opportunity to develop tools that aid in individual, parental, clinical, and researcher awareness and education.
Collapse
Affiliation(s)
- Azure D Grant
- Levels Health, Inc., New York City, NY 10003, United States
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720, United States; Department of Integrative Biology, University of California, Berkeley, CA 94720, United States; Graduate Group in Endocrinology, University of California, Berkeley, CA 94720, United States; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
4
|
Huang Y, Song H, Wang Z, Cheng Y, Liu Y, Hao S, Li N, Wang Y, Wang Y, Zhang X, Sun B, Li Y, Yao X. Heat and outpatient visits of skin diseases – A multisite analysis in China, 2014–2018. Heliyon 2022; 8:e11203. [PMID: 36339999 PMCID: PMC9626933 DOI: 10.1016/j.heliyon.2022.e11203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Many studies have shown that various kinds of diseases were associated with the variation of ambient temperature. However, there’s only a scrap of evidence paying attention to the link between temperature and skin diseases, and no relevant national research was performed in China. Objective This study aimed to quantify the effect of heat on skin diseases and identify the vulnerable populations and areas in China. Methods Daily meteorological data, air pollutant data and outpatient data were collected from in 18 sites of China during 2014–2018. A time-series study with distributed lag nonlinear model and multivariate meta-analysis was applied to analyze the site-specific and pooled associations between daily mean temperature and daily outpatient visits of skin diseases by using the data of warm season (from June to September). Stratified analysis by age, sex and climate zones and subtypes of skin diseases were also conducted. Results We found a positive linear relationship between the ambient temperature and risk of skin diseases, with a 1.25% (95%CI: 0.34%, 2.16%) increase of risk of outpatient visits for each 1 °C increase in daily mean temperature during the warm season. In general, groups aged 18–44 years, males and people living in temperate climate regions were more susceptible to high temperature. Immune dysfunction including dermatitis and eczema were heat-sensitive skin diseases. Conclusions Our findings suggested that people should take notice of heat-related skin diseases and also provided some references about related health burden for strategy-makers. Targeted measures for vulnerable populations need to be taken to reduce disease burden, including monitoring and early warning systems, and sun-protection measures.
Collapse
|
5
|
Garcia CK, Robinson GP, Gambino BJ, Rua MT, Laitano O, Clanton TL. The impact of castration on physiological responses to exertional heat stroke in mice. PLoS One 2022; 17:e0275715. [PMID: 36227921 PMCID: PMC9560521 DOI: 10.1371/journal.pone.0275715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The capability of male mice to exercise in hot environments without succumbing to exertional heat stroke (EHS) is markedly blunted compared to females. Epidemiological evidence in humans and other mammals also suggests some degree of greater vulnerability to heat stroke in males compared to females. The origins of these differences are unknown, but testosterone has previously been shown to induce faster elevations in core temperature during acute, passive heat exposure. In this study, we tested the hypothesis that loss of testosterone and related sex hormones through castration would improve the performance and heat tolerance of male mice during EHS exposure. METHODS Twenty-four male mice were randomly divided into 3 groups, untreated EHS mice (SHAM-EHS), castrated EHS mice (CAS+EHS) and naïve exercise controls (NAIVE). Exercise performance and physiological responses in the heat were monitored during EHS and early recovery. Two weeks later, blood and tissues were collected and analyzed for biomarkers of cardiac damage and testosterone. RESULTS Core temperature in CAS+EHS rose faster to 39.5°C in the early stages of the EHS trial (P<0.0001). However, both EHS groups ran similar distances, exhibited similar peak core temperatures and achieved similar exercise times in the heat, prior to symptom limitation (unconsciousness). CAS+EHS mice had ~10.5% lower body mass at the time of EHS, but this provided no apparent advantage in performance. There was no evidence of myocardial damage in any group, and testosterone levels were undetectable in CAS+EHS after gonadectomy. CONCLUSIONS The results of these experiments exclude the hypothesis that reduced performance of male mice during EHS trials is due to the effects of male sex hormones or intact gonads. However, the results are consistent with a role of male sex hormones or intact gonads in suppressing the early and rapid rise in core temperature during the early stages of exercise in the heat.
Collapse
Affiliation(s)
- Christian K. Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Gerard P. Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Bryce J. Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
6
|
Majeed H, Floras JS. Warmer summer nocturnal surface air temperatures and cardiovascular disease death risk: a population-based study. BMJ Open 2022; 12:e056806. [PMID: 35346980 PMCID: PMC8968994 DOI: 10.1136/bmjopen-2021-056806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent summers, some populous mid-latitude to high-latitude regions have experienced greater heat intensity, more at night than by day. Such warming has been associated with increased cause-specific adult mortality. Sex-specific and age-specific associations between summer nocturnal surface air temperatures (SAT) and cardiovascular disease (CVD) deaths have yet to be established. METHODS A monthly time series analysis (June-July, 2001-2015) was performed on sex-specific CVD deaths in England and Wales of adults aged 60-64 and 65-69 years. Using negative binomial regression with autocorrelative residuals, associations between summer (June-July) nocturnal SAT anomalies (primary exposure) and CVD death rates (outcome) were computed, controlling for key covariates. To explore external validity, similar associations with respect to CVD death in King County, Washington, USA, also were calculated, but only for men aged 60-64 and 65-69 years. Results are reported as incidence rate ratios. RESULTS From 2001 to 2015, within these specific cohorts, 39 912 CVD deaths (68.9% men) were recorded in England and Wales and 488 deaths in King County. In England and Wales, after controlling for covariates, a 1°C rise in anomalous summer nocturnal SAT associated significantly with a 3.1% (95% CI 0.3% to 5.9%) increased risk of CVD mortality among men aged 60-64, but not older men or either women age groups. In King County, after controlling for covariates, a 1°C rise associated significantly with a 4.8% (95% CI 1.7% to 8.1%) increased risk of CVD mortality among those <65 years but not older men. CONCLUSION In two mid-latitude regions, warmer summer nights are accompanied by an increased risk of death from CVD among men aged 60-64 years.
Collapse
Affiliation(s)
- Haris Majeed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Yu T, Dohl J, Park YM, Brown LL, Costello RB, Chen Y, Deuster PA. Protective effects of dietary curcumin and astaxanthin against heat-induced ROS production and skeletal muscle injury in male and female C57BL/6J mice. Life Sci 2022; 288:120160. [PMID: 34801514 DOI: 10.1016/j.lfs.2021.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022]
Abstract
AIMS This study aimed to: 1) investigate sex differences in heat-induced mitochondrial dysfunction, ROS production, and skeletal muscle injury in mice; 2) evaluate whether curcumin and astaxanthin, alone or together, would prevent those heat-induced changes. MAIN METHODS Male and female C57BL/6J mice were treated with curcumin and astaxanthin for 10 days, then exposed to 39.5 °C heat for up to 3 h. Heat-induced hyperthermia, changes in mitochondrial morphology and function, and oxidative damage to skeletal muscle were evaluated. KEY FINDINGS Although female mice had a slightly higher basal core body temperature (Tc) than male mice, peak Tc during heat exposure was significantly lower in females than in males. Heat increased ROS levels in skeletal muscle in both sexes; interestingly, the increases in ROS were greater in females than in males. Despite the above-mentioned differences, heat induced similar levels of mitochondrial fragmentation and membrane potential depolarization, caspase 3/7 activation, and injury in male and female skeletal muscle. Individual treatment of curcumin or astaxanthin did not affect basal and peak Tc but prevented heat-induced mitochondrial dysfunction, ROS increases, and apoptosis in a dose-dependent manner. Moreover, a low-dose combination of curcumin and astaxanthin, which individually showed no effect, reduced the heat-induced oxidative damage to skeletal muscle. SIGNIFICANCE Both male and female mice can develop mitochondrial dysfunction and oxidative stress in skeletal muscle when exposed to heat stress. High doses of either curcumin or astaxanthin limit heat-induced skeletal muscle injury, but a low-dose combination of these ingredients may increase their efficacy.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Jacob Dohl
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Yu Min Park
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - LaVerne L Brown
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca B Costello
- Office of Dietary Supplements, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Chen
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
8
|
Pan R, Yao Z, Yi W, Wei Q, He Y, Tang C, Liu X, Son S, Ji Y, Song J, Cheng J, Ji Y, Su H. Temporal trends of the association between temperature variation and hospitalizations for schizophrenia in Hefei, China from 2005 to 2019: a time-varying distribution lag nonlinear model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5184-5193. [PMID: 34417696 DOI: 10.1007/s11356-021-15797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Along with climate change, unstable weather patterns are becoming more frequent. However, the temporal trend associated with the effect of temperature variation on schizophrenia (SCZ) is not clear. Daily time-series data on SCZ and meteorological factors for 15-year between January 1, 2005 and December 31, 2019 were collected. And we used the Poisson regression model combined with the time-varying distribution lag nonlinear model (DLNM) to explore the temporal trend of the association between three temperature variation indicators (diurnal temperature range, DTR; temperature variability, TV; temperature change between neighboring days, TCN) and SCZ hospitalizations, respectively. Meanwhile, we also explore the temporal trend of the interaction between temperature and temperature variation. Stratified analyses were performed in different gender, age, and season. Across the whole population, we found a decreasing trend in the risk of SCZ hospitalizations associated with high DTR (from 1.721 to 1.029), TCN (from 1.642 to 1.066), and TV (TV0-1, from 1.034 to 0.994; TV0-2, from 1.041 to 0.994, TV0-3, from 1.044 to 0.992, TV0-4, from 1.049 to 0.992, TV0-5, from 1.055 to 0.993, TV0-6, from 1.059 to 0.991, TV0-7, from 1.059 to 0.990), but an increasing trend in low DTR (from 0.589 to 0.752). Subgroup analysis results further revealed different susceptible groups. Besides, the interactive effect suggests that temperature variation may cause greater harm under low-temperature conditions. There was a synergy between TCN and temperature on the addition and multiplication scales, which were 1.068 (1.007, 1.133) and 0.067 (0.009, 0.122), respectively. Our findings highlight public health interventions to mitigate temperature variation effects needed to focus not only on high temperature variations but also moderately low temperature variations. Future hospitalizations for SCZ associated with temperature variation may be more severely affected by temperature variability from low temperature environments. The temporal trend is associated with the effect of temperature variation on schizophrenia (SCZ).
Collapse
Affiliation(s)
- Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Zhenhai Yao
- Anhui Public Meteorological Service Center, Hefei, 230011, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Shasha Son
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Yifu Ji
- The Fourth People's Hospital, Hefei, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| |
Collapse
|
9
|
Abdollahi F, Farhang Dehghan S, Amanpour S, Haghparast A, Sabour S, Zendehdel R. Effect of Co-exposure to Heat and Psychological Stressors on Sperm DNA and Semen Parameters. Toxicol Rep 2021; 8:1948-1954. [PMID: 34917486 PMCID: PMC8646159 DOI: 10.1016/j.toxrep.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Co-exposure to heat and psychological stressors on semen quality have been studied. Combined exposure group had significantly lower semen quality compared with those of others. Heat exposure group had a higher percentage of sperm DNA damage compared to others.
The present study aims to investigate the effects of co-exposure to heat and psychological stress on sperm DNA and semen parameters among male rats. The study was conducted on 40 healthy adult male Wistar rats. The rats were randomly categorized into four groups of same size consisting of a control group, a heat stress, psychological and co-exposure groups. The heat stress group was exposed to a temperature of 36 °C at 20% relative humidity. The psychological stress exposure group was subjected to three stressors including exposure to strobe light, noise and tilting cage. According the results,the co-exposure group had lower mean sperm parameters including sperm count (17.22 ± 4.22 106/ml), motility (42.63 ± 12.95 %), viability (48.50 ± 23.25 %), normal morphology (56 ± 7.5%), progressive motility (11.61 ± 7.81%), non-progressive motility (31.18 ± 7.77%), curvilinear velocity (24.11 ± 3.81 μm/s) and straight-line velocity (3.2 ± 1.4 μm/s) when compared with those of the other groups (P = 0.001). Mean sperm immobility (57.36 ± 12.95%) and non-progressive motility (37.93 ± 11.15%) in the co-exposure group was higher compared to the other groups (P = 0.001 and P = 0.333, respectively). Assessment of damage to sperm DNA revealed that the heat exposure group had a higher percentage of sperm DNA damage (9.44 ± 6.80 %) compared to others (P = 0.185). In case of all of exposure scenario, the chance that the semen quality decreased compared to the control group has been increased. In general the combined stress had a greater significant effect on sperm parameters compared to other exposure groups, except for DNA damage.
Collapse
Affiliation(s)
- Farnaz Abdollahi
- Department of Health and Safety at work, School of Public Health and Safety, Shahid Beheshti Medical Sciences, Tehran, Iran
| | - Somayeh Farhang Dehghan
- Environmental and Occupational Hazards Control Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Aono K, Matsumoto J, Nakagawa S, Matsumoto T, Koga M, Migita K, Tominaga K, Sakai Y, Yamauchi A. Testosterone deficiency promotes the development of pulmonary emphysema in orchiectomized mice exposed to elastase. Biochem Biophys Res Commun 2021; 558:94-101. [PMID: 33906112 DOI: 10.1016/j.bbrc.2021.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/31/2023]
Abstract
Testosterone deficiency is commonly observed in male patients with chronic obstructive pulmonary disease (COPD), which is characterized by chronic inflammation of the airways and pulmonary emphysema. Although clinical trials have indicated that testosterone replacement therapy can improve respiratory function in patients with COPD, the role of testosterone in the pathogenesis of COPD remains unclear. The aim of this study was to explore the effect of testosterone deficiency on the development of pulmonary emphysema in orchiectomized (ORX) mice exposed to porcine pancreatic elastase (PPE). ORX mice developed more severe emphysematous changes 21 d after PPE inhalation than non-ORX mice. Testosterone propionate supplementation significantly reduced PPE-induced emphysematous changes in ORX mice. PPE exposure also increased the number of neutrophils and T cells in bronchoalveolar lavage fluid (BALF) of mice that had undergone ORX and sham surgery. T cell counts were significantly higher in the BALF of ORX mice than of sham mice. Testosterone supplementation reduced the infiltration of T cells into BALF and alleviated emphysematous changes in the lungs of ORX mice. Our findings suggest that testosterone, a male-specific hormone, may suppress the development of pulmonary emphysema through the regulation of T cell-mediated immunity.
Collapse
Affiliation(s)
- Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mitsuhisa Koga
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Koji Tominaga
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yuna Sakai
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
11
|
Edmands S. Sex Ratios in a Warming World: Thermal Effects on Sex-Biased Survival, Sex Determination, and Sex Reversal. J Hered 2021; 112:155-164. [PMID: 33585893 DOI: 10.1093/jhered/esab006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Pan R, Wang Q, Yi W, Wei Q, Cheng J, Su H. Temporal trends of the association between extreme temperatures and hospitalisations for schizophrenia in Hefei, China from 2005 to 2014. Occup Environ Med 2021; 78:oemed-2020-107181. [PMID: 33737328 DOI: 10.1136/oemed-2020-107181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE We aimed to examine the temporal trends of the association between extreme temperature and schizophrenia (SCZ) hospitalisations in Hefei, China. METHODS We collected time-series data on SCZ hospitalisations for 10 years (2005-2014), with a total of 36 607 cases registered. We used quasi-Poisson regression and distributed lag non-linear model (DLNM) to assess the association between extreme temperature (cold and heat) and SCZ hospitalisations. A time-varying DLNM was then used to explore the temporal trends of the association between extreme temperature and SCZ hospitalisations in different periods. Subgroup analyses were conducted by age (0-39 and 40+ years) and gender, respectively. RESULTS We found that extreme cold and heat significantly increased the risk of SCZ hospitalisations (cold: 1st percentile of temperature 1.19 (95% CI 1.04 to 1.37) and 2.5th percentile of temperature 1.16 (95% CI 1.03 to 1.31); heat: 97.5th percentile of temperature 1.37 (95% CI 1.13 to 1.66) and 99th percentile of temperature 1.38 (95% CI 1.13 to 1.69)). We found a slightly decreasing trend in heat-related SCZ hospitalisations and a sharp increasing trend in cold effects from 2005 to 2014. However, the risk of heat-related hospitalisation has been rising since 2008. Stratified analyses showed that age and gender had different modification effects on temporal trends. CONCLUSIONS The findings highlight that as temperatures rise the body's adaptability to high temperatures may be accompanied by more threats from extreme cold. The burden of cold-related SCZ hospitalisations may increase in the future.
Collapse
Affiliation(s)
- Rubing Pan
- Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Qizhi Wang
- Chinese Academy of Agricultural Sciences, Haidian District, Beijing, China
| | - Weizhuo Yi
- Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Qiannan Wei
- Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Jian Cheng
- Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Hong Su
- Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Mohammadi H, Dehghan SF, Moradi N, Suri S, Pirposhteh EA, Ardakani SK, Golbabaei F. Assessment of sexual hormones in foundry workers exposed to heat stress and electromagnetic fields. Reprod Toxicol 2021; 101:115-123. [PMID: 33582240 DOI: 10.1016/j.reprotox.2020.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
The presence of hazardous agents in workplaces has raised concerns regarding their possible impacts on male reproductive system. The present study investigated the individual and combined effects of exposure to heat stress and electromagnetic fields with low-frequency characteristics on the levels of sex hormones in two foundry sections (Aluminum and Cast Iron) of an automobile parts manufacturing plant. The level of workers' exposure (n = 110) to each of the mentioned stressors, was measured through standard methods and for each person and the time-weighted average (TWA) of exposure was calculated. The participants of each sections were classified into separate exposure groups based on the 33rd and 66th percentile of the level of to heat stress and electromagnetic fields exposure. In order to determine serum sex hormones, blood samples were taken from all participants between 7-9 am and then the blood samples were analyzed by ELISA method. In total of two sections, the lowest mean testosterone levels was observed in the third exposure group of the electromagnetic fields (magnetic field>1.40 μT; electric field >0.42 V/m), however, the mean difference in testosterone levels between the three different groups of exposure wasn't statistically significant (P > 0.05). According to the results of Logistic Regression, the electric field had the greatest effect on testosterone levels as the main male hormone. Drawing a definitive conclusion regarding the effects of each harmful physical hazards is difficult due to the existence of psychological stressors and other environmental stressors such as chemical pollution, ergonomic hazards and other physical stressors.
Collapse
Affiliation(s)
- Hamzeh Mohammadi
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Farhang Dehghan
- Environmental and Occupational Hazards Control Research Center, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sheari Suri
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Akhlaghi Pirposhteh
- Department of Occupational Health and Safety at Work, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soheila Khodakarim Ardakani
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farideh Golbabaei
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Lu P, Xia G, Zhao Q, Xu R, Li S, Guo Y. Temporal trends of the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016: A time-stratified case-crossover study. PLoS Med 2020; 17:e1003176. [PMID: 32692738 PMCID: PMC7373260 DOI: 10.1371/journal.pmed.1003176] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the context of global warming, studies have turned to assess the temporal trend of the association between temperature and health outcomes, which can be used to reflect whether human beings have adapted to the local temperature. However, most studies have only focused on hot temperature and mortality. We aim to investigate the temporal variations in the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016. METHODS AND FINDINGS We obtained data on 1,855,717 cardiovascular hospitalisations (mean age: 65.9 years, 42.7% female) from all 443 postal areas in Queensland, Australia between January 1, 1995 and December 31, 2016. Grid-level meteorological data were downloaded from scientific information for landowners. We used a time-stratified case-crossover design fitted with a conditional quasi-Poisson regression model and time-varying distributed lag nonlinear model (DLNM) to evaluate the association between temperature and cardiovascular hospitalisations and the temporal trends of the associations. Stratified analyses were performed in different age, sex, and climate zones. In all groups, relative risks (RRs) of cardiovascular hospitalisations associated with high temperatures (heat effects) increased, but cold effects showed a decreasing trend from 1995 to 2016. The increasing magnitude of heat effects was larger (p = 0.002) in men than in women and larger (p < 0.001) in people aged ≤69 years than in those aged ≥70 years. There was no apparent difference amongst different climate zones. The study was limited by the switch from ICD-9 to ICD-10 coding systems, by being unable to separate first-time hospitalisation from repeated hospitalisations, and possibly by confounding by air pollution or by influenza infections. CONCLUSION The impacts of cold temperatures on cardiovascular hospitalisations have decreased, but the impacts of high temperatures have increased in Queensland, Australia. The findings highlight that Queensland people have adapted to the impacts of cold temperatures, but not high temperatures. The burden of cardiovascular hospitalisations due to high temperatures is likely to increase in the context of global warming.
Collapse
Affiliation(s)
- Peng Lu
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Guoxin Xia
- School of Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rongbin Xu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yuming Guo
- School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Matas D, Doniger T, Sarid S, Asfur M, Yadid G, Khokhlova IS, Krasnov BR, Kam M, Degen AA, Koren L. Sex differences in testosterone reactivity and sensitivity in a non-model gerbil. Gen Comp Endocrinol 2020; 291:113418. [PMID: 32027878 DOI: 10.1016/j.ygcen.2020.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
Although testosterone (T) is a key regulator in vertebrate development, physiology, and behaviour in both sexes, studies suggest that its regulation may be sex-specific. We measured circulating T levels in Baluchistan gerbils (Gerbillus nanus) in the field and in the lab all year round and found no significant sex differences. However, we observed sex differences in circulating T levels following gonadotropin-releasing hormone (GnRH) challenge and T implants in this non-model species. Whereas only males elevated T following a GnRH challenge, females had higher serum T concentrations following T implant insertion. These differences may be a result of different points of regulation along the hypothalamic-pituitary-gonadal (HPG) axis. Consequently, we examined sex differences in the mRNA expression of the androgen receptor (AR) in multiple brain regions. We identified AR and β-actin sequences in assembled genomic sequences of members of the Gerbillinae, which were analogous to rat sequences, and designed primers for them. The distribution of the AR in G. nanus brain regions was similar to documented expression profiles in rodents. We found lower AR mRNA levels in females in the striatum. Additionally, G. nanus that experienced housing in mixed-sex pairs had higher adrenal AR expression than G. nanus that were housed alone. Regulation of the gerbil HPG axis may reflect evolutionary sex differences in life-history strategies, with males ready to reproduce when receptive females are available, while the possible reproductive costs associated with female T direct its regulation upstream.
Collapse
Affiliation(s)
- Devorah Matas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shani Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mustafa Asfur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Leslie and Susan Gonda (Goldschmidt) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Irina S Khokhlova
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Michael Kam
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
16
|
Li Z, Li Y, Ren Y, Li C. High ambient temperature disrupted the circadian rhythm of reproductive hormones and changed the testicular expression of steroidogenesis genes and clock genes in male mice. Mol Cell Endocrinol 2020; 500:110639. [PMID: 31705921 DOI: 10.1016/j.mce.2019.110639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
High ambient temperature-related male reproduction disruptions are well illustrated across species, the effects on circadian oscillation in reproduction hormones and testicular steroidogenesis remain unclear. Here, we showed the changes in circadian behaviour in rectal temperature, ingestion and serum hormones as well as the testicular oscillations of steroidogenesis genes and clock genes in heat-treated male mice. We observed that daily heat exposure from 11:00 (ZT4) to 15:00 (ZT8) increased the rectal temperature at ZT8 and water intake from ZT4 to ZT8 and decreased the feed consumption from ZT4 to ZT12 (19:00). Serum testosterone levels were arrhythmic after heat exposure, with an increase at ZT4 and a reduce at ZT8. Heat exposure enhanced testicular StAR and AR mRNA transcription at ZT4 and Cyp11a1 protein levels at ZT16. A much higher Clock mRNA level was observed at ZT4 in the testis of heat-treated mice, and the Clock protein content was reduced at ZT4. The Bmal1 protein level in the testis at ZT16 was increased in heat-treated mice. These results suggest that high external environmental temperature changes the circadian rhythms of body temperature and serum reproduction hormones and the testicular oscillations of clock genes and steroidogenesis genes, supporting the hypothesis that high temperatures arrest spermatogenesis by a disrupted reproductive rhythm.
Collapse
Affiliation(s)
- Zhaojian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Cintron-Colon R, Shankar K, Sanchez-Alavez M, Conti B. Gonadal hormones influence core body temperature during calorie restriction. Temperature (Austin) 2019; 6:158-168. [PMID: 31286026 DOI: 10.1080/23328940.2019.1607653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
During calorie restriction (CR), endotherms adjust several physiological processes including the decrease of core body temperature (Tb) and reduction of energy expenditure. We recently found that CR-induced hypothermia is regulated in a sex-dependent manner in mice with lowered central insulin-like growth factor receptor signaling. Here, we describe the contribution of sex hormones to CR-induced hypothermia in wild type C57BL6 mice by measuring Tb of female and male mice following bilateral gonadectomy and hormonal replacement. Specifically, we evaluated the effects of progesterone (P4), 17-ß estradiol (E2), a combination of both (P4 + E2) in females and of 5-α dihydrotestosterone (5-α DHT) in males. Gonadectomy resulted in an earlier and stronger CR-induced hypothermia in both sexes. These effects were fully antagonized in females by E2 replacement, but not by P4, which had only minor and partial effects when used alone and did not prevent the action of E2 during CR when both hormones were given in combination. 5-α-DHT had only minor and transient effects on preventing the reduction of Tb during CR on gonadectomized male mice. These findings indicate that gonadal hormones contribute to sex-specific regulation of Tb and energy expenditure when nutrient availability is scarce. Abbreviations: AL: ad libitum; ANOVA: analysis of variance; CR: calorie restriction; E2: 17-ß estradiol; GNX: gonadectomy or gonadectomized; IGF-1R: insulin-like growth factor 1 receptor; POA: preoptic area; P4: progesterone; RM: repeated measures; SD: standard deviation; SEM: standard error of mean; Tb: core body temperature; WT: wildtype; 5-α DHT: 5-α dihydrotestosterone.
Collapse
Affiliation(s)
- Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kokila Shankar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, México
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|