1
|
Zhao J, Huang H. Extracellular Vesicle-Derived Non-Coding RNAs: Key Mediators in Remodelling Heart Failure. Curr Issues Mol Biol 2024; 46:9430-9448. [PMID: 39329911 PMCID: PMC11430706 DOI: 10.3390/cimb46090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heart failure (HF), a syndrome of persistent development of cardiac insufficiency due to various heart diseases, is a serious and lethal disease for which specific curative therapies are lacking and poses a severe burden on all aspects of global public health. Extracellular vesicles (EVs) are essential mediators of intercellular and interorgan communication, and are enclosed nanoscale vesicles carrying biomolecules such as RNA, DNA, and proteins. Recent studies have showed, among other things, that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNA), and circular RNAs (circRNAs) can be selectively sorted into EVs and modulate the pathophysiological processes of HF in recipient cells, acting on both healthy and diseased hearts, which makes them promising targets for the diagnosis and therapy of HF. This review aims to explore the mechanism of action of EV-ncRNAs in heart failure, with emphasis on the potential use of differentially expressed miRNAs and circRNAs as biomarkers of cardiovascular disease, and recent research advances in the diagnosis and treatment of heart failure. Finally, we focus on summarising the latest advances and challenges in engineering EVs for HF, providing novel concepts for the diagnosis and treatment of heart failure.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Carvalho T, Bártolo R, Correia A, Vilela C, Wang S, Santos HA, Freire CSR. Implantable Patch of Oxidized Nanofibrillated Cellulose and Lysozyme Amyloid Nanofibrils for the Regeneration of Infarcted Myocardium Tissue and Local Delivery of RNA-Loaded Nanoparticles. Macromol Rapid Commun 2024; 45:e2400129. [PMID: 38778746 DOI: 10.1002/marc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carla Vilela
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
3
|
Stougiannou TM, Christodoulou KC, Dimarakis I, Mikroulis D, Karangelis D. To Repair a Broken Heart: Stem Cells in Ischemic Heart Disease. Curr Issues Mol Biol 2024; 46:2181-2208. [PMID: 38534757 DOI: 10.3390/cimb46030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Despite improvements in contemporary medical and surgical therapies, cardiovascular disease (CVD) remains a significant cause of worldwide morbidity and mortality; more specifically, ischemic heart disease (IHD) may affect individuals as young as 20 years old. Typically managed with guideline-directed medical therapy, interventional or surgical methods, the incurred cardiomyocyte loss is not always completely reversible; however, recent research into various stem cell (SC) populations has highlighted their potential for the treatment and perhaps regeneration of injured cardiac tissue, either directly through cellular replacement or indirectly through local paracrine effects. Different stem cell (SC) types have been employed in studies of infarcted myocardium, both in animal models of myocardial infarction (MI) as well as in clinical studies of MI patients, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), Muse cells, multipotent stem cells such as bone marrow-derived cells, mesenchymal stem cells (MSCs) and cardiac stem and progenitor cells (CSC/CPCs). These have been delivered as is, in the form of cell therapies, or have been used to generate tissue-engineered (TE) constructs with variable results. In this text, we sought to perform a narrative review of experimental and clinical studies employing various stem cells (SC) for the treatment of infarcted myocardium within the last two decades, with an emphasis on therapies administered through thoracic incision or through percutaneous coronary interventions (PCI), to elucidate possible mechanisms of action and therapeutic effects of such cell therapies when employed in a surgical or interventional manner.
Collapse
Affiliation(s)
- Theodora M Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece
| | - Konstantinos C Christodoulou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece
| | - Ioannis Dimarakis
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece
| | - Dimos Karangelis
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece
| |
Collapse
|
4
|
Shyam R, Palaniappan A. Development and optimization of starch-based biomaterial inks and the effect of infill patterns on the mechanical, physicochemical, and biological properties of 3D printed scaffolds for tissue engineering. Int J Biol Macromol 2024; 258:128986. [PMID: 38154358 DOI: 10.1016/j.ijbiomac.2023.128986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/26/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Plant-based hydrogels have wide application as scaffolds in tissue engineering and regenerative medicine due to their low cost and excellent biocompatibility. Scaffolds act as vehicles for cell-based therapeutics and regenerating diseased tissue. While there is a plethora of methods to generate hydrogels with tunable properties to mimic the tissue of interest, 3D bioprinting is a novel emerging technology with the capability to generate versatile patient-specific scaffolds typically embedded with tissue specific cells. Starch-based hydrogels are garnering attention in extrusion-based 3D printing, however owing to their poor mechanical strength and degradation render this material inefficient in its native form. Additionally, the effect of various printing process parameters on mechanical strength and bioactivity is poorly understood. In the present study, we investigate the use of starch and gelatin as composite biomaterial ink and its effect on mechanical, physical and biological properties. We also investigated printability of composite hydrogels with the aim to understand the correlation between two infill patterns and its effect on mechanical, physicochemical, and biological properties. Our results showed that the composite hydrogels had competent mechanical properties and suitable bioactivity when seeded with H9C2 cardiomyocytes. Rheometric analyses provided a broader insight into the required viscosity for printing and has a direct correlation with the composition of the hydrogel. Thus, the composite materials are found to have tissue-specific mechanical properties and may serve as a better, cheaper and personalized alternative to existing scaffolds for the fabrication of engineered cardiac tissue.
Collapse
Affiliation(s)
- Rohin Shyam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ganeson K, Tan Xue May C, Abdullah AAA, Ramakrishna S, Vigneswari S. Advantages and Prospective Implications of Smart Materials in Tissue Engineering: Piezoelectric, Shape Memory, and Hydrogels. Pharmaceutics 2023; 15:2356. [PMID: 37765324 PMCID: PMC10535616 DOI: 10.3390/pharmaceutics15092356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these "smart" behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality.
Collapse
Affiliation(s)
- Keisheni Ganeson
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| | - Cindy Tan Xue May
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Amirul Al Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia;
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor 11700, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
7
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Endo Y, Homma J, Sekine H, Matsuura K, Shimizu T, Niinami H. Bioartificial pulsatile cuffs fabricated from human induced pluripotent stem cell-derived cardiomyocytes using a pre-vascularization technique. NPJ Regen Med 2022; 7:22. [PMID: 35361794 PMCID: PMC8971499 DOI: 10.1038/s41536-022-00218-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
There is great interest in the development of techniques to bioengineer pulsatile myocardial tissue as a next-generation regenerative therapy for severe heart failure. However, creation of thick myocardial grafts for regenerative medicine requires the incorporation of blood vessels. In this study, we describe a new method of constructing a vascular network in vivo that allows the construction of thick human myocardial tissue from multi-layered cell sheets. A gelatin sheet pre-loaded with growth factors was transplanted onto the superficial femoral artery and vein of the rat. These structures were encapsulated together within an ethylene vinyl alcohol membrane and incubated in vivo for 3 weeks (with distal superficial femoral artery ligation after 2 weeks to promote blood flow to the vascular bed). Subsequently, six cardiomyocyte sheets were transplanted onto the vascular bed in two stages (three sheets, two times). Incubation of this construct for a further week generated vascularized human myocardial tissue with an independent circulation supplied by an artery and vein suitable for anastomosis to host vessels. Notably, laminating six cell sheets on the vascular bed in two stages rather than one allowed the creation of thicker myocardial tissue while suppressing tissue remodeling and fibrosis. Finally, the pulsatile myocardial tissue was shown to generate auxiliary pressure when wrapped around the common iliac artery of a rat. Further development of this technique might facilitate the generation of circulatory assist devices for patients with heart failure.
Collapse
Affiliation(s)
- Yuki Endo
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Niinami
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
9
|
Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Universal Scientific Education and Research Network (USERN) Tabriz Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA
- Department of Medicine Stanford University School of Medicine Stanford California USA
| |
Collapse
|
10
|
Do Human iPSC-Derived Cardiomyocytes Cultured on PLA Scaffolds Induce Expression of CD28/CTLA-4 by T Lymphocytes? J Funct Biomater 2022; 13:jfb13010006. [PMID: 35076538 PMCID: PMC8788528 DOI: 10.3390/jfb13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.
Collapse
|
11
|
Pittenger MF, Eghtesad S, Sanchez PG, Liu X, Wu Z, Chen L, Griffith BP. MSC Pretreatment for Improved Transplantation Viability Results in Improved Ventricular Function in Infarcted Hearts. Int J Mol Sci 2022; 23:694. [PMID: 35054878 PMCID: PMC8775864 DOI: 10.3390/ijms23020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Many clinical studies utilizing MSCs (mesenchymal stem cells, mesenchymal stromal cells, or multipotential stromal cells) are underway in multiple clinical settings; however, the ideal approach to prepare these cells in vitro and to deliver them to injury sites in vivo with maximal effectiveness remains a challenge. Here, pretreating MSCs with agents that block the apoptotic pathways were compared with untreated MSCs. The treatment effects were evaluated in the myocardial infarct setting following direct injection, and physiological parameters were examined at 4 weeks post-infarct in a rat permanent ligation model. The prosurvival treated MSCs were detected in the hearts in greater abundance at 1 week and 4 weeks than the untreated MSCs. The untreated MSCs improved ejection fraction in infarcted hearts from 61% to 77% and the prosurvival treated MSCs further improved ejection fraction to 83% of normal. The untreated MSCs improved fractional shortening in the infarcted heart from 52% to 68%, and the prosurvival treated MSCs further improved fractional shortening to 77% of normal. Further improvements in survival of the MSC dose seems possible. Thus, pretreating MSCs for improved in vivo survival has implications for MSC-based cardiac therapies and in other indications where improved cell survival may improve effectiveness.
Collapse
Affiliation(s)
- Mark F. Pittenger
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Saman Eghtesad
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Pablo G. Sanchez
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Xiaoyan Liu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Zhongjun Wu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Ling Chen
- Departments of Physiology and Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Bartley P. Griffith
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| |
Collapse
|
12
|
Liang Y, Mitriashkin A, Lim TT, Goh JCH. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials 2021; 276:121008. [PMID: 34265591 DOI: 10.1016/j.biomaterials.2021.121008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Polypyrrole (PPy) has been utilized in smart scaffolds to improve the functionality of the engineered cardiac tissue. Compared to the commonly used aqueous coating, here, PPy was blended into silk fibroin (SF) solution to electrospin conductive PPy-encapsulated SF nanofibers. Combinations of various SF concentrations (5%, 7%, and 12%) and different PPy-to-SF ratios (15:85, 30:70, and 40:60) were compared. PPy reduced the fiber diameter (0.431 ± 0.060 μm), better-mimicking the myocardium fibrils. Conductive mats with 7% SF showed the closest mechanical properties (1.437 ± 0.044 MPa) to the native myocardium; meanwhile, a PPy-to-SF ratio of 15:85 exhibited sufficient electrical conductivity for cardiomyocytes (CMs). In vitro studies using three different types of CM demonstrated that the hybrid mats support CM contraction. Primary neonatal rat CMs on the mat with a PPy-to-SF ratio of 15:85 were elongated and orientated anisotropically with locally organized sarcomeric striations. By contrast, human-induced pluripotent stem cell derived-CMs on the mat with a PPy-to-SF ratio of 30:70 exhibited the strongest contractions. Contraction synchrony was further improved by external stimulation. Taken together, these findings indicated the great potential of the PPy-encapsulated SF electrospun mat for cardiac tissue engineering.
Collapse
Affiliation(s)
- Yeshi Liang
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - Aleksandr Mitriashkin
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - Ting Ting Lim
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore
| | - James Cho-Hong Goh
- National University of Singapore, Department of Biomedical Engineering, 4 ENGINEERING DR 3, #04-08, 117583, Singapore; National University of Singapore, Life Sciences Institute, Tissue Engineering Programme, DSO (Kent Ridge) Building, 27 Medical Drive, #04-01, 117510, Singapore.
| |
Collapse
|
13
|
Kato B, Wisser G, Agrawal DK, Wood T, Thankam FG. 3D bioprinting of cardiac tissue: current challenges and perspectives. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:54. [PMID: 33956236 PMCID: PMC8102287 DOI: 10.1007/s10856-021-06520-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/30/2021] [Indexed: 05/02/2023]
Abstract
Demand for donor hearts has increased globally due to cardiovascular diseases. Recently, three-dimensional (3D) bioprinting technology has been aimed at creating clinically viable cardiac constructs for the management of myocardial infarction (MI) and associated complications. Advances in 3D bioprinting show promise in aiding cardiac tissue repair following injury/infarction and offer an alternative to organ transplantation. This article summarizes the basic principles of 3D bioprinting and recent attempts at reconstructing functional adult native cardiac tissue with a focus on current challenges and prospective strategies.
Collapse
Affiliation(s)
- Brian Kato
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Gary Wisser
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Tim Wood
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
14
|
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021; 138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | | | - Parvathy Prasad
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW 2000, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France
| |
Collapse
|
15
|
Roshandel M, Dorkoosh F. Cardiac tissue engineering, biomaterial scaffolds, and their fabrication techniques. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marjan Roshandel
- School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Medical Biomaterial Research Centre (MBRC) Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J Funct Biomater 2021; 12:jfb12010014. [PMID: 33672492 PMCID: PMC8006220 DOI: 10.3390/jfb12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers are widely accepted natural materials in regenerative medicine, and further development of their bioactivities and discoveries on their composition/function relationships could greatly advance the field. However, a concise insight on commonly investigated biopolymers, their current applications and outlook of their modifications for multibioactivity are scarce. This review bridges this gap for professionals and especially freshmen in the field who are also interested in modification methods not yet in commercial use. A series of polymeric materials in research and development uses are presented as well as challenges that limit their efficacy in tissue regeneration are discussed. Finally, their roles in the regeneration of select tissues including the skin, bone, cartilage, and tendon are highlighted along with modifiable biopolymer moieties for different bioactivities.
Collapse
|
17
|
Lu B, Li M, Fang Y, Liu Z, Zhang T, Xiong Z. Rapid Fabrication of Cell-Laden Microfibers for Construction of Aligned Biomimetic Tissue. Front Bioeng Biotechnol 2021; 8:610249. [PMID: 33585412 PMCID: PMC7873948 DOI: 10.3389/fbioe.2020.610249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Bottom-up engineering of tissue constructs is being rapidly developed and broadly applied in biomanufacturing. As one type of building block, cell-laden microfibers are promising for reconstruction of oriented structures and functions of linear tissues, such as skeletal muscles, myocardia, and spinal cord tissues. Herein, we propose wet-spinning method with agitating collection, wherein alginate-based material is extruded into an agitated CaCl2 bath with a magnetic rotor acting as the microfiber collector. By applying this method, we achieve rapid fabrication and oriented collection of hydrogel microfibers with diameters ranging from 100 to 400 μm. In addition, we encapsulate myoblasts in the hydrogel to form cell-laden microfibers, which show a high viability (more than 94%) during in vitro culture. Moreover, the method allows to fabricate of cell-laden core-sheath microfibers and hollow microfibers. We also fabricate 3D constructs using various methods of microfiber assembly like weaving and braiding. The assembling results suggest that the proposed method is a promising technology for bottom-up engineering of aligned biomimetic tissue constructs.
Collapse
Affiliation(s)
- Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Mingfeng Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Zibo Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, China
| |
Collapse
|
18
|
Sridharan D, Palaniappan A, Blackstone BN, Dougherty JA, Kumar N, Seshagiri PB, Sayed N, Powell HM, Khan M. In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111354. [PMID: 33254974 PMCID: PMC7708677 DOI: 10.1016/j.msec.2020.111354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) derived cardiomyocytes (hiPSC-CMs) have been explored for cardiac regeneration and repair as well as for the development of in vitro 3D cardiac tissue models. Existing protocols for cardiac differentiation of hiPSCs utilize a 2D culture system. However, the efficiency of hiPSC differentiation to cardiomyocytes in 3D culture systems has not been extensively explored. In the present study, we investigated the efficiency of cardiac differentiation of hiPSCs to functional cardiomyocytes on 3D nanofibrous scaffolds. Coaxial polycaprolactone (PCL)-gelatin fibrous scaffolds were fabricated by electrospinning and characterized using scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. hiPSCs were cultured and differentiated into functional cardiomyocytes on the nanofibrous scaffold and compared with 2D cultures. To assess the relative efficiencies of both the systems, SEM, immunofluorescence staining and gene expression analyses were performed. Contractions of differentiated cardiomyocytes were observed in 2D cultures after 2 weeks and in 3D cultures after 4 weeks. SEM analysis showed no significant differences in the morphology of cells differentiated on 2D versus 3D cultures. However, gene expression data showed significantly increased expression of cardiac progenitor genes (ISL-1, SIRPA) in 3D cultures and cardiomyocytes markers (TNNT, MHC6) in 2D cultures. In contrast, immunofluorescence staining showed no substantial differences in the expression of NKX-2.5 and α-sarcomeric actinin. Furthermore, uniform migration and distribution of the in situ differentiated cardiomyocytes was observed in the 3D fibrous scaffold. Overall, our study demonstrates that coaxial PCL-gelatin nanofibrous scaffolds can be used as a 3D culture platform for efficient differentiation of hiPSCs to functional cardiomyocytes.
Collapse
Affiliation(s)
- Divya Sridharan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Arunkumar Palaniappan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, India
| | - Britani N Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Polani B Seshagiri
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, C V Raman Road, Bangalore KA-560012, India
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Research Department, Shriners Hospitals for Children, Cincinnati, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Xing M, Jiang Y, Bi W, Gao L, Zhou YL, Rao SL, Ma LL, Zhang ZW, Yang HT, Chang J. Strontium ions protect hearts against myocardial ischemia/reperfusion injury. SCIENCE ADVANCES 2021; 7:7/3/eabe0726. [PMID: 33523909 PMCID: PMC7810382 DOI: 10.1126/sciadv.abe0726] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Timely restoration of blood supply following myocardial infarction is critical to save the infarcted myocardium, while reperfusion would cause additional damage. Strontium ions have been shown to promote angiogenesis, but it is unknown whether they can save the damaged myocardium. We report that myocardial ischemia/reperfusion (I/R)-induced functional deterioration and scar formation were notably attenuated by injection of strontium ion-containing composite hydrogels into murine infarcted myocardium at 20 minutes of reperfusion following 60 minutes of ischemia. These beneficial effects were accompanied by reduced cardiomyocyte apoptosis and increased angiogenesis. The effects of strontium ions were further confirmed by the enhanced viability of cardiomyocytes and stimulated angiogenesis in vitro. These findings are the first to reveal the cardioprotective effects of strontium ions against I/R injury, which may provide a new therapeutic approach to ischemic heart disease at a lower cost, with higher stability, and with potentially greater safety.
Collapse
Affiliation(s)
- Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yan-Ling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Ling-Ling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Zhao-Wenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China.
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| |
Collapse
|
20
|
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of mortality worldwide and a number one killer in the USA. Cell-based approaches to treat CVDs have only shown modest improvement due to poor survival, retention, and engraftment of the transplanted cells in the ischemic myocardium. Recently, tissue engineering and the use of 3D scaffolds for culturing and delivering stem cells for ischemic heart disease are gaining rapid potential. Here, we describe a protocol for the fabrication of aligned coaxial nanofibrous scaffold comprising of a polycaprolactone (PCL) core and gelatin shell. Furthermore, we describe a detailed protocol for the efficient seeding and maintenance of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on these nanofibrous scaffolds, which could have a potential application in the generation of functional "cardiac patch" for myocardial repair applications as well as an in vitro 3D cardiac tissue model to evaluate the efficacy of cardiovascular drugs and cardiac toxicities.
Collapse
|
21
|
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151:1012-1029. [DOI: 10.1016/j.ijbiomac.2019.11.066] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
22
|
Arunkumar P, Dougherty JA, Weist J, Kumar N, Angelos MG, Powell HM, Khan M. Sustained Release of Basic Fibroblast Growth Factor (bFGF) Encapsulated Polycaprolactone (PCL) Microspheres Promote Angiogenesis In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1037. [PMID: 31330782 PMCID: PMC6669517 DOI: 10.3390/nano9071037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.
Collapse
Affiliation(s)
- Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jessica Weist
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mark G Angelos
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Research Department, Shriners Hospitals for Children, Cincinnati, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Partho P Sengupta
- Division of Cardiology, WVU Heart & Vascular Institute, West Virginia University, Morgantown, West Virginia
| | - Y Chandrashekhar
- Division of Cardiology, University of Minnesota and Veterans Affairs Medical Center, Minneapolis, Minnesota.
| |
Collapse
|