1
|
Li J, Yan C, Li J, Yong X, Han S, Yang X, Du J, Xu H. Insight into the compositional variation of volatile and polar compounds of Radix Bupleuri from different processing technologies by GC-MS and UHPLC-Q-TOF/MS metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39233523 DOI: 10.1002/pca.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Insight into comparing key active ingredients of Radix Bupleuri (RB) based on different processing technologies is a key step to reveal the material basis of drug efficacy and a challenging task for developing traditional Chinese medicine (TCM). OBJECTIVE This work aims to establish a comprehensive comparative analysis method of TCM and its processed products, which can be used to analyze the changing trend of active components of RB before and after processing. METHODS First, RB was processed with rice vinegar, rice wine, and honey. Then, ultra-high-performance liquid chromatography (UHPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) technology as well as multiple statistical analyses were used to comprehensively evaluate the compositional variation of polar and volatile compounds in RB under different processing processes. Meanwhile, in UHPLC-MS, a sequential window acquisition of all theoretical fragment ion spectral and information-dependent acquisition mutual authentication (SIMA) was developed. RESULTS A total of 30 polar components and 33 volatile components were identified as chemical markers (mainly type II saikosaponins, terpenes, and fatty acid esters). These may be the material basis for giving unique pharmacological activities to RB and its processed products. CONCLUSIONS These findings provided a solid foundation for the differentiated clinical application of RB, and the SIMA method held great potential for achieving accurate analysis of TCM processing ingredients.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Jiahao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xin Yong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Siming Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xiaotong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Jie Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Zhong Y, Li J, Zhu X, Huang N, Liu R, Sun R. A comprehensive review of bupleuri radix and its bioactive components: with a major focus on treating chronic liver diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118244. [PMID: 38663781 DOI: 10.1016/j.jep.2024.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.
Collapse
Affiliation(s)
- Ying Zhong
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Jianchao Li
- Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Xiaomin Zhu
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China.
| | - Nana Huang
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan, Shandong, 250355, China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Rong Sun
- The Second Hospital of Shandong University, 247 Beiyuan Ave, Jinan, Shandong, 250033, China; Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Li S, Liu Y. Intestinal absorption mechanism and nutritional synergy promotion strategy of dietary flavonoids: transintestinal epithelial pathway mediated by intestinal transport proteins. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39086266 DOI: 10.1080/10408398.2024.2387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.
Collapse
Affiliation(s)
- Shuqiong Li
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
4
|
Lei S, Wu S. Zang Siwei Qingfei Mixture Alleviates Inflammatory Response to Attenuate Acute Lung Injury by the ACE2/NF-κB Signaling Pathway in Mice. Comb Chem High Throughput Screen 2024; 27:2871-2884. [PMID: 37957855 DOI: 10.2174/0113862073259884231024111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI. OBJECTIVE To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway. METHODS Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p- ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR. RESULTS AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment. CONCLUSION Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.
Collapse
Affiliation(s)
- Si Lei
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Hunan, Changsha, China
| |
Collapse
|
5
|
Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int J Biol Macromol 2023; 237:124146. [PMID: 36965565 DOI: 10.1016/j.ijbiomac.2023.124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Bupleuri Radix (BR), as a well-known plant medicine of relieving exterior syndrome, has a long history of usage in China. Bupleuri Radix Polysaccharide (BRP), as the main component and an important bioactive substance of BR, has a variety of pharmacological activities, including immunoregulation, antioxidant, antitumor, anti-diabetic and anti-aging, etc. In this review, the advancements on extraction, purification, structure characteristics, biological activities and pharmaceutical application of BRP from different sources (Bupleurum chinense DC., Bupleurum scorzonerifolium Willd., Bupleurum falcatum L. and Bupleurum smithii Woiff. var. Parvifolium Shan et Y. Li.) are summarized. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research on BRP, and new valuable insights for the future researches of BRP are proposed.
Collapse
Affiliation(s)
- Xinyue Yu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Zhuang Miao
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Lizhen Zhang
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China
| | - Liqiao Zhu
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Huagang Sheng
- College of pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| |
Collapse
|
6
|
Peng D, Chen Y, Sun Y, Zhang Z, Cui N, Zhang W, Qi Y, Zeng Y, Hu B, Yang B, Wang Q, Kuang H. Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice. Molecules 2023; 28:molecules28030967. [PMID: 36770631 PMCID: PMC9919285 DOI: 10.3390/molecules28030967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1β in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1β genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased.
Collapse
Affiliation(s)
- Donghui Peng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yuchan Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Ying Qi
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, No. 1, Medical College Road, Ganzhou 341004, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
- Correspondence: (Q.W.); (H.K.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
- Correspondence: (Q.W.); (H.K.)
| |
Collapse
|
7
|
Shah D, Ajazuddin, Bhattacharya S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J Cancer Res Clin Oncol 2023; 149:367-391. [PMID: 36269390 DOI: 10.1007/s00432-022-04387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Multi-drug resistance has shown to be one of the leading threats faced currently in many chemotherapeutic agents. Permeability glycoprotein (P-gp) is an efflux transporter in membrane, an integral part of ATP-binding cassette (ABC) transporters widely distributed in the body for cellular uptake. It is present enormously in cancerous cells and is in charge of generating transporter mediated resistance to treatments of tumorous cells in addition to blocking the entry of chemotherapeutic drugs into the cell. Natural P-gp inhibitors are derived from natural plant sources possessing basic structures like alkaloids, flavonoids, phenolics, terpenoids, saponins, sapogenins, sterols, coumarins and miscellaneous structures acting on P-gp substrate for inhibition of multi-drug resistance via inhibiting the efflux pump. They do not depict their action on the healthy cells and thus it is proven to be more effective and less toxic than synthetic P-gp inhibitor leading to enhancement in bioavailability of chemotherapeutic drugs. The significant objective of the present review is surfing through the impact of natural P-gp inhibitors having basic structures derived from the plant sources and how it inhibits the resistance of chemotherapeutic drugs together with how well it delivers chemotherapy medicines.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
8
|
Zhao Y, Wang J, Liu L, Wu Y, Hu Q, Zhao R. Vinegar-baked Radix Bupleuri enhances the liver-targeting effect of rhein on liver injury rats by regulating transporters. J Pharm Pharmacol 2022; 74:1588-1597. [PMID: 36181768 DOI: 10.1093/jpp/rgac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to explore whether the liver-targeting enhancing effect of vinegar-baked Radix Bupleuri (VBRB) on rhein was achieved by affecting transporters, metabolism enzymes as well as hepatocyte nuclear factor 1α/4α (HNF1α/HNF4α) in liver injury. METHODS The effect of VBRB on the efficacy of rhein was performed with the LPS-induced acute liver injury rat model. Aspartate aminotransferase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) levels were determined and histopathological examination was taken. Drug concentrations in tissues were determined by high performance liquid chromatography (HPLC). The protein expressions of drug transporters, metabolic enzymes and hepatic nuclear factors were determined by Western blotting and ELISA assays. KEY FINDING VBRB improved the liver protecting effect of rhein, which was consistent with its promoting effect on targeted enrichment of rhein in the liver. VBRB or in combination with rhein inhibited P-glycoprotein (Pgp) and multi-resistance related protein 2 (MRP2), while increased organic anion transporting polypeptide 2 (OATP2), which might be the reason why VBRB promoted liver-targeting effect of rhein. CONCLUSION VBRB enhances the liver-protecting effect of rhein by down-regulating Pgp, MRP2, and up-regulating OATP2.
Collapse
Affiliation(s)
- Ya Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jinqiu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yayun Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiaohong Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
9
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
10
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
11
|
Liu Q, Xue Y, Liu J, Ren S, Xu J, Yang J, Xing Y, Zhang Z, Song R. Saikosaponins and the deglycosylated metabolites exert liver meridian guiding effect through PXR/CYP3A4 inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114344. [PMID: 34147617 DOI: 10.1016/j.jep.2021.114344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/18/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri (RB), traditionally used to treat inflammatory disorders and infectious diseases, represents one of the most successful and widely used herbal drugs in Asia over the past 2000 years. Being realized the role in regulating metabolism and controlling Yin/Yang, RB is not only chosen specifically for treating liver meridian and the corresponding organs, but also believed to have liver meridian guiding property and help potentiate the therapeutic effects of liver. However, the ingredients in RB with liver meridian guiding property and the underly mechanism have not been comprehensively investigated. AIM OF STUDY Considering the important role of CYP3A4 in first-pass metabolism and the liver exposure of drugs, the present study aimed to determine whether saikosaponins (SSs) and the corresponding saikogenins (SGs) have a role in inhibiting the catalytic activity of CYP3A4 in human liver microsomes and HepG2 hepatoma cells and whether they could suppress CYP3A4 expression by PXR-mediated pathways in HepG2 hepatoma cells. MATERIALS AND METHODS The effect of SSs and SGs on CYP3A4-mediated midazolam1'-hydroxylation activities in pooled human liver microsomes (HLMs) was first studied. Dose-dependent experiments were performed to obtain the half inhibit concentration (IC50) values. HepG2 cells were used to assay catalytic activity of CYP3A4, reporter function, mRNA levels, and protein expression. The inhibitory effects of SSa and SSd on CYP3A4 activity are negligible, while the corresponding SGs (SGF and SGG) have obvious inhibitory effects on CYP3A4 activity, with IC50 values of 0.45 and 1.30 μM. The similar results were obtained from testing CYP3A4 catalytic activity in HepG2 cells, which correlated well with the suppression of the mRNA and protein levels of CYP3A4. Time-dependent testing of CYP3A4 mRNA and protein levels, as well as co-transfection experiments using the CYP3A4 promoter luciferase plasmid, further confirmed that SSs and SGs could inhibit the expression of CYP3A4 at the transcription level. Furthermore, PXR protein expression decreased in a concentration- and time-dependent manner after cells were exposed to SSs and SGs. PXR overexpression and RNA interference experiments further showed that SSs and SGs down-regulate the catalytic activity and expression of CYP3A4 in HepG2 may be mainly through PXR-dependent manner. CONCLUSION SSs and SGs inhibit the catalytic activity and expression of CYP3A4 in a PXR-dependent manner, which may be highly related to the liver meridian guiding property of RB.
Collapse
Affiliation(s)
- Qiwei Liu
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunwen Xue
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingjing Liu
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Siqi Ren
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Xu
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinni Yang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyue Xing
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Song
- Key Laboratory of Drug Quality Control & Pharmacovigilance (China Pharmaceutical University), Ministry of Educational, Nanjing, 210009, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Attia YA, Alagawany MM, Farag MR, Alkhatib FM, Khafaga AF, Abdel-Moneim AME, Asiry KA, Mesalam NM, Shafi ME, Al-Harthi MA, Abd El-Hack ME. Phytogenic Products and Phytochemicals as a Candidate Strategy to Improve Tolerance to Coronavirus. Front Vet Sci 2020; 7:573159. [PMID: 33195565 PMCID: PMC7606864 DOI: 10.3389/fvets.2020.573159] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses are the causative agents of many infectious diseases in human and animals. These included severe acute respiratory syndrome (SARS), avian infectious bronchitis (IBV) in poultry, Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) in humans. These results had considerable death burdens and negative influences on social-economic life. Since the appearance of the outbreak of the COVID-19 pandemic, continuous investigations have been carried out by researchers to find active compounds, mainly from plants, as natural sources, that could inhibit or stop the proliferation of the causative agent of COVID-19 (SARS-CoV-2). The most common symptoms caused by infections with COVID-19 can include cough, fever, and sore throat. Nevertheless, there is a shortage of active antiviral compounds for treating different strains of coronavirus. Herbal medicine is a class of medication that originates from nature and is aimed at decreasing the use of preservatives, excipients, or other additives and, consequently, lesser side effects. The rapid spread of COVID-19 infection besides the lack of knowledge about any treatments and the growing concern of the public from the virus directed us toward writing this review article in an aim to provide alternatives to the allopathic medicine use. There is a wealth of chemical diversity in the naturally existing compounds, including their antiviral activities, which may encourage their utilization as therapeutics against viral infections, including coronaviruses. The majority of publications on the herbal remedies of coronavirus, MERS, or SARS focused primarily on the use of polar compounds. These substances displayed encouraging inhibitory influences on coronavirus in humans. These include psoralidin, scutellarein, silvestrol, tryptanthrin, caffeic acid, quercetin, myricetin, saikosaponin B2, griffithsin (lectins), and isobavachalcone. Some other agents like lycorine may be useful, if the antiviral activity is obtained by concentrations below the toxic plasma levels. According to the available literatures, the most promising inhibitors of coronaviruses are polyphenolic compounds, which are small molecules with conjugated fused ring structures.
Collapse
Affiliation(s)
- Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mahmoud M. Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatmah M. Alkhatib
- Chemistry Department, Faculty of Applied Science, UmmAl-Qura University, Makkah, Saudi Arabia
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | | | - Khalid A. Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura M. Mesalam
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Al-Harthi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
13
|
Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284:197989. [PMID: 32360300 PMCID: PMC7190535 DOI: 10.1016/j.virusres.2020.197989] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Coronaviruses are responsible for a growing economic, social and mortality burden, as the causative agent of diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), avian infectious bronchitis virus (IBV) and COVID-19. However, there is a lack of effective antiviral agents for many coronavirus strains. Naturally existing compounds provide a wealth of chemical diversity, including antiviral activity, and thus may have utility as therapeutic agents against coronaviral infections. The PubMed database was searched for papers including the keywords coronavirus, SARS or MERS, as well as traditional medicine, herbal, remedy or plants, with 55 primary research articles identified. The overwhelming majority of publications focussed on polar compounds. Compounds that show promise for the inhibition of coronavirus in humans include scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins such as griffithsin. Other compounds such as lycorine may be suitable if a therapeutic level of antiviral activity can be achieved without exceeding toxic plasma concentrations. It was noted that the most promising small molecules identified as coronavirus inhibitors contained a conjugated fused ring structure with the majority being classified as being polyphenols.
Collapse
Affiliation(s)
- Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia
| | - Jason C Steel
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia
| | - Daniel A Broszczak
- Institute of Health & Biomedical Innovation (Q-Block), Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Paul M Neilsen
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia
| | - Kerry B Walsh
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia; Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, QLD, Australia.
| |
Collapse
|
14
|
Comparative Effect of Aqueous and Methanolic Bupleuri Radix Extracts on Hepatic Uptake of High-Density Lipoprotein and Identification of the Potential Target in HFD-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9074289. [PMID: 31885672 PMCID: PMC6915136 DOI: 10.1155/2019/9074289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 11/08/2019] [Indexed: 12/02/2022]
Abstract
Our previous study found saikosaponin b2 (SSb2) increased high-density lipoprotein (HDL) uptake in HepG2 cells. SSb2 is only found in aqueous Bupleuri Radix extract, and it is one of the secondary saponins derived from saikosaponin d (SSd), which exists in the methanolic extract. This study aimed to compare the effect of aqueous extract of Bupleuri Radix on hepatic uptake of HDL with methanolic extract and to reveal the underlying mechanism of enhancing HDL uptake in mice fed with high-fat diet (HFD). Cellular HDL uptake in each group was quantified by flow cytometry. Bioactive components bound to the HepG2 cytomembrane were detected with HPLC-DAD. RNA sequencing was performed to screen the underlying target on hepatic HDL-uptake, and western blotting was conducted to verify differential protein expression. Significant increases of HDL uptake by HepG2 cells were observed in all groups of aqueous extract of Bupleuri Radix, while no effect or negative effect was observed in the methanolic extract. Saikosaponin b1 (SSb1) and SSb2 were detected in the desorption elute of the aqueous extract from the HepG2 cytomembrane, while saikosaponin a (SSa) and SSd were not found. Remarkable upregulation of FGF21 in HFD-fed mice liver was affirmed after treatment with aqueous extract. This study suggested that aqueous Bupleuri Radix extract could promote hepatic HDL uptake in vitro but methanolic extract could not, and FGF21 might be the potential target.
Collapse
|