1
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Tong G, Shen Y, Li H, Qian H, Tan Z. NLRC4, inflammation and colorectal cancer (Review). Int J Oncol 2024; 65:99. [PMID: 39239759 PMCID: PMC11387119 DOI: 10.3892/ijo.2024.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Chronic inflammation is recognized as a major risk factor for cancer and is involved in every phase of the disease. Inflammasomes are central to the inflammatory response and play a crucial role in cancer development. The present review summarizes the role of Nod‑like receptor C4 (NLRC4) in inflammation and colorectal cancer (CRC). Reviews of the literature were conducted using Web of Science, PubMed and CNKI, with search terms including 'NLRC4', 'colorectal cancer', 'auto‑inflammatory diseases' and 'prognosis'. Variants of NLRC4 can cause recessive immune dysregulation and autoinflammation or lead to ulcerative colitis as a heterozygous risk factor. Additionally, genetic mutations in inflammasome components may increase susceptibility to cancer. NLRC4 is considered a tumor suppressor in CRC. The role of NLRC4 in CRC signaling pathways is currently understood to involve five key aspects (caspase 1, NLRP3/IL‑8, IL‑1β/IL‑1, NAIP and p53). The mechanisms by which NLRC4 is involved in CRC are considered to be threefold (through pyroptosis, apoptosis, necroptosis and PANoptosis; regulating the immune response; and protecting intestinal epithelial cells to prevent CRC). However, the impact of NLRC4 mutations on CRC remains unclear. In conclusion, NLRC4 is a significant inflammasome that protects against CRC through various signaling pathways and mechanisms. The association between NLRC4 mutations and CRC warrants further investigation.
Collapse
Affiliation(s)
- Guojun Tong
- Department of Colorectal Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Yan Shen
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hui Li
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hai Qian
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Zhenhua Tan
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
3
|
Pucinelli CM, da Silva RAB, Nelson-Filho P, Lima RB, Lucisano MP, Marchesan JT, da Silva LAB. The effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis induced in mice. Clin Oral Investig 2024; 28:285. [PMID: 38684528 DOI: 10.1007/s00784-024-05691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To evaluate the effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis (AP) induced in mice. METHODS The experimental AP was induced by pulpal exposure. To evaluate NLRP3-specific inhibitor medication (MCC950), WT mice received intraperitoneal injections, while the control received PBS (n = 10). In addition, to evaluate NLRP3 knockout, 35 wild-type (WT) and 35 NLRP3-/- mice were divided into a control group (without pulpal exposure, n = 5) and three experimental groups: after 2, 14 and 42 days after pulpal exposure (n = 10). Microscopic and molecular analyzes were carried out using a significance level of 5%. RESULTS Exposure to MCC950 did not affect the periapical lesion size after 14 days (P = 0.584). However, exposed mice had a lower expression of IL-1β, IL-18 and caspase-1 (P = 0.010, 0.016 and 0.002, respectively). Moreover, NLRP3-/- mice showed a smaller periapical lesion after 14 and 42 days (P = 0.023 and 0.031, respectively), as well as a lower expression of IL-1β after 42 days (P < 0.001), of IL-18 and caspase-1 after 14 (P < 0.001 and 0.035, respectively) and 42 days (P = 0.002 and 0.002, respectively). NLRP3-/- mice also showed a lower mRNA for Il-1β, Il-18 and Casp1 after 2 (P = 0.002, 0.036 and 0.001, respectively) and 14 days (P = 0.002, 0.002 and 0.001, respectively). CONCLUSIONS NLRP3 inflammasome inhibition or knockout can attenuate the inflammatory events that result in the periapical lesion (AP) formation after pulpal exposure in mice. CLINICAL RELEVANCE The NLRP3 inflammasome may be a therapeutic target for AP, and new approaches may verify the impact of its inhibition (through intracanal medications or filling materials) on the bone repair process and treatment success.
Collapse
Affiliation(s)
- Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Barbosa Lima
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Marília Pacífico Lucisano
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julie Teresa Marchesan
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Wang A, Wang Y, Du C, Yang H, Wang Z, Jin C, Hamblin MR. Pyroptosis and the tumor immune microenvironment: A new battlefield in ovarian cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189058. [PMID: 38113952 DOI: 10.1016/j.bbcan.2023.189058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Ovarian cancer is a less common tumor in women compared to cervical or breast cancer, however it is more malignant and has worse outcomes. Ovarian cancer patients still have a five-year survival rate < 50% despite advances in therapy. Due to recent developments in immune checkpoint inhibitors (ICIs), cancer immunotherapy has attracted increased interest. Pyroptosis is a highly inflammatory form of cell death, which is essential for bridging innate and adaptive immunity, and is involved in immune regulation within the tumor microenvironment (TME). Recent research has shown that pyroptosis can promote immunotherapy of ovarian cancer, including treatment with chimeric antigen receptor T-cells (CAR-T) or ICIs. Moreover, inflammasomes, various signaling pathways and lncRNAs can all affect pyroptosis in ovarian cancer. Here we discuss how pyroptosis affects the development and progression of ovarian cancer as well as the TME. We also provide a summary of small molecule drugs that could target pyroptotic cell death processes and may be useful in ovarian cancer therapy.
Collapse
Affiliation(s)
- Aihong Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Yin Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Chenxiang Du
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Huilun Yang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Zhengping Wang
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Canhui Jin
- Department of Gynecologic Oncology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
5
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
6
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Bi K, Yang J, Wei X. Alternative splicing variants involved in pyroptosis and cuproptosis contribute to phenotypic remodeling of the tumor microenvironment in cervical cancer. Reprod Sci 2023; 30:3648-3660. [PMID: 37434062 DOI: 10.1007/s43032-023-01284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Cervical cancer (CC) remains a prevalent gynecological malignancy, posing a significant health burden among women worldwide. With the remarkable discoveries of cellular pyroptosis and cuproptosis, there has been a growing focus on exploring the intricate relationship between these two forms of cell death and their impact on tumor progression. In recent years, alternative splicing has emerged as a significant field in cancer research. Thus, the integration of alternative splicing, pyroptosis, and cuproptosis holds immense value in studying their collective impact on the occurrence and progression of cervical cancer. In this study, alternative splicing data of pyroptosis- and cuproptosis-associated genes were integrated with public databases, including TCGA, to establish a prognostic model for cervical cancer based on COX regression modeling. Subsequently, the tumor microenvironment (TME) phenotypes in the high-risk and low-risk patient groups were characterized through a comprehensive bioinformatics analysis. The findings of this study revealed that the low-risk group exhibited a predominant immune-active TME phenotype, while the high-risk group displayed a tumor-favoring metabolic phenotype. These results indicate that the alternative splicing of pyroptosis- and cuproptosis-associated genes plays a pivotal role in remodeling the phenotypic landscape of the cervical cancer TME by modulating immune responses and metabolic pathways. This study provides valuable insights into the interplay between alternative splicing variants involved in pyroptosis and cuproptosis and the TME, contributing to a deeper understanding of cervical cancer pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kewei Bi
- Department of Physiology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jialin Yang
- Department of Pathology, College of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Xuge Wei
- Department of Bioinformatics, Faculty of Biology, College of Basic Medicine, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
8
|
Xie W, Peng M, Liu Y, Zhang B, Yi L, Long Y. Simvastatin induces pyroptosis via ROS/caspase-1/GSDMD pathway in colon cancer. Cell Commun Signal 2023; 21:329. [PMID: 37974278 PMCID: PMC10652480 DOI: 10.1186/s12964-023-01359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The outcome of patients with colon cancer is still unsatisfied nowadays. Simvastatin is a type of statins with anti-cancer activity, but its effect on colon cancer cells remains unclear. The present study is intended to determine the underlying mechanism of simvastatin in treatment of colon cancer. METHODS The viability and pyroptosis rate of cells treated and untreated with simvastatin were analysed by CCK-8 and flow cytometry assays, respectively. We used DCFH-DA and flow cytometry to detect reactive oxygen species (ROS) production. Levels of pyroptosis markers were detected by western blotting analysis or immunofluorescence staining. Besides, the anticancer properties of simvastatin on colon cancer were further demonstrated using a cell line based xenograft tumor model. RESULTS Simvastatin treatment in HCT116 and SW620 induced pyroptosis and suppressed cell proliferation, with changes in the expression level of NLPR3, ASC, cleaved-caspase-1, mature IL-1β, IL-18 and GSDMD-N. Moreover, inhibition of caspase-1 and ROS attenuated the effects of simvastatin on cancer cell viability. In addition, it was identified that simvastatin has an anti-tumor effect by down-regulating ROS production and inducing downstream caspase-1 dependent pyroptosis in the subcutaneous transplantation tumors of HCT116 cells in BALB/c nude mice. CONCLUSIONS Our in vitro and in vivo results indicated that simvastatin induced pyroptosis through ROS/caspase-1/GSDMD pathway, thereby serving as a potential agent for colon cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Wei Xie
- Translational medicine centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, P. R. China
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Mingjing Peng
- Central laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Ying Liu
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, P. R. China
| | - Bocheng Zhang
- Translational medicine centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, P. R. China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, P. R. China
| | - Liang Yi
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, P. R. China
| | - Ying Long
- Translational medicine centre, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, P. R. China.
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, P. R. China.
| |
Collapse
|
9
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
10
|
Deng Z, Lu L, Li B, Shi X, Jin H, Hu W. The roles of inflammasomes in cancer. Front Immunol 2023; 14:1195572. [PMID: 37497237 PMCID: PMC10366604 DOI: 10.3389/fimmu.2023.1195572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Inflammation is a key characteristic of all stages of tumor development, including tumor initiation, progression, malignant transformation, invasion, and metastasis. Inflammasomes are an important component of the inflammatory response and an indispensable part of the innate immune system. Inflammasomes regulate the nature of infiltrating immune cells by signaling the secretion of different cytokines and chemokines, thus regulating the anti-tumor immunity of the body. Inflammasome expression patterns vary across different tumor types and stages, playing different roles during tumor progression. The complex diversity of the inflammasomes is determined by both internal and external factors relating to tumor establishment and progression. Therefore, elucidating the specific effects of different inflammasomes in anti-tumor immunity is critical for promoting the discovery of inflammasome-targeting drugs. This review focuses on the structure, activation pathway, and identification methods of the NLRP3, NLRC4, NLRP1 and AIM2 inflammasomes. Herein, we also explore the role of inflammasomes in different cancers and their complex regulatory mechanisms, and discuss current and future directions for targeting inflammasomes in cancer therapy. A detailed knowledge of inflammasome function and regulation may lead to novel therapies that target the activation of inflammasomes as well as the discovery of new drug targets.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghui Li
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weidong Hu
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Gu Q, Zou J, Zhou Y, Deng Q. Mechanism of inflammasomes in cancer and targeted therapies. Front Oncol 2023; 13:1133013. [PMID: 37020871 PMCID: PMC10067570 DOI: 10.3389/fonc.2023.1133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Inflammasomes, composed of the nucleotide-binding oligomerization domain(NOD)-like receptors (NLRs), are immune-functional protein multimers that are closely linked to the host defense mechanism. When NLRs sense pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), they assemble into inflammasomes. Inflammasomes can activate various inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, and produce a large number of proinflammatory cytokines, which are closely associated with multiple cancers. They can also accelerate the occurrence and development of cancer by providing suitable tumor microenvironments, promoting tumor cell proliferation, and inhibiting tumor cell apoptosis. Therefore, the exploitation of novel targeted drugs against various inflammasomes and proinflammatory cytokines is a new idea for the treatment of cancer. In recent years, more than 50 natural extracts and synthetic small molecule targeted drugs have been reported to be in the research stage or have been applied to the clinic. Herein, we will overview the mechanisms of inflammasomes in common cancers and discuss the therapeutic prospects of natural extracts and synthetic targeted agents.
Collapse
Affiliation(s)
- Qingdan Gu
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated 5 Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
- *Correspondence: Qiuchan Deng,
| |
Collapse
|
12
|
Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:621-631. [PMID: 36542122 DOI: 10.1007/s00210-022-02365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Endometriosis (EMS) is a gynecological disease that leads to pathological conditions, which are connected to the initiation of pro-inflammatory cytokine production. Inflammation plays a vital role in the pathogenesis of EMS. The activation and formation of cytoplasmic inflammasome complexes is considered an important step of inflammation and a key regulator of pyroptosis, a form of cell death. NLR family pyrin domain containing 3 (NLRP3) inflammasome complex modulates innate immune activity and inflammation. The NLRP3 inflammasome activates cysteine protease caspase-1, which produces active pro-inflammatory interleukins (ILs), including IL-1β and IL-18. The aim of this review article was to discuss the involvement of NLRP3 inflammasome assembly and its activation in the pathophysiology of EMS and target related pathways in designing appropriate therapeutic approaches. Dysregulation of sex hormone signaling pathways was associated with over-activation of the NLPR3 inflammasome. In this study, we demonstrated the involvement of NLRP3 inflammasome signaling pathways in the pathophysiology of EMS. The manuscript also discusses the beneficial effects of targeted therapy through synthetic inhibitors of NLRP3 signaling pathways to control EMS lesions.
Collapse
Affiliation(s)
- Elnaz Irandoost
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaparak Najibi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Talebbeigi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saina Nassiri
- Department of Gynecology and Obstetrics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Mirtallo Ezzone NP, Anaya-Eugenio GD, Addo EM, Ren Y, Kinghorn AD, Carcache de Blanco EJ. Effects of Corchorusoside C on NF-κB and PARP-1 Molecular Targets and Toxicity Profile in Zebrafish. Int J Mol Sci 2022; 23:ijms232314546. [PMID: 36498874 PMCID: PMC9739208 DOI: 10.3390/ijms232314546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
The present study aims to continue the study of corchorusoside C (1), a cardenolide isolated from Streptocaulon juventas, as a potential anticancer agent. A mechanistic study was pursued in a zebrafish model and in DU-145 prostate cancer cells to investigate the selectivity of 1 towards NF-κB and PARP-1 pathway elements. Compound 1 was found to inhibit the expression of IKKα and NF-κB p65 in TNF-α induced zebrafish and inhibit the expression of NIK in vitro. The protein expression levels of XRCC-1 were increased and p53 decreased in DU-145 cells. XIAP protein expression was initially decreased after treatment with 1, followed by an increase in expression at doses higher than the IC50 value. The activity of caspase-1 and the protein expression levels of IL-18 were both decreased following treatment of 1. The binding interactions for 1 to NIK, XRCC-1, p53, XIAP, and caspase-1 proteins were explored in molecular docking studies. Additionally, the toxicity profile of 1 in zebrafish was favorable in comparison to its analog digoxin and other anticancer drugs at the same MTD in zebrafish. Overall, 1 targets the noncanconical NF-κB pathway in vivo and in vitro, and is well tolerated in zebrafish supporting its potential in the treatment of prostate cancer.
Collapse
|
14
|
Augustine T, John P, Friedman T, Jiffry J, Guzik H, Mannan R, Gupta R, Delano C, Mariadason JM, Zang X, Maitra R, Goel S. Potentiating effect of reovirus on immune checkpoint inhibition in microsatellite stable colorectal cancer. Front Oncol 2022; 12:1018767. [PMID: 36387154 PMCID: PMC9642964 DOI: 10.3389/fonc.2022.1018767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 09/27/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are microsatellite stable (MSS) and resistant to immunotherapy. The current study explores the possibility of using oncolytic reovirus to sensitize MSS CRC to immune checkpoint inhibition. While reovirus reduced metabolic activity among KRAS Mut cells, microarray/computational analysis revealed microsatellite status-oriented activation of immune-response pathways. Reovirus plus anti-PD-1 treatment increased cell death among MSS cells ex vivo. Reduced tumorigenicity and proliferative index, and increased apoptosis were evident among CT26 [MSS, KRAS Mut], but not in MC38 [microsatellite unstable/MSI, KRAS Wt] syngeneic mouse models under combinatorial treatment. PD-L1-PD-1 signaling axis were differentially altered among CT26/MC38 models. Combinatorial treatment activated the innate immune system, pattern recognition receptors, and antigen presentation markers. Furthermore, we observed the reduction of immunosuppressive macrophages and expansion of effector T cell subsets, as well as reduction in T cell exhaustion. The current investigation sheds light on the immunological mechanisms of the reovirus-anti-PD-1 combination to reduce the growth of MSS CRC.
Collapse
Affiliation(s)
- Titto Augustine
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tyler Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Jeeshan Jiffry
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rifat Mannan
- Department of Pathology, City of Hope, Duarte, CA, United States
| | - Riya Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Computer Science, Columbia University, New York, NY, United States
| | - Catherine Delano
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John M. Mariadason
- Gastrointestinal Cancers Program and Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Xingxing Zang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Radhashree Maitra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Sanjay Goel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
15
|
Qiu P, Guo Q, Pan K, Chen J, Lin J. A pyroptosis-associated gene risk model for predicting the prognosis of triple-negative breast cancer. Front Oncol 2022; 12:890242. [PMID: 36276158 PMCID: PMC9582146 DOI: 10.3389/fonc.2022.890242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Pyroptosis is a novel identified form of inflammatory cell death that is important in the development and progression of various diseases, including malignancies. However, the relationship between pyroptosis and triple-negative breast cancer (TNBC) is still unclear. Therefore, we started to investigate the potential prognostic value of pyroptosis-associated genes in TNBC. METHODS Thirty-three genes associated with pyroptosis were extracted from previous publications, 30 of which were identified in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. On the basis of the 30 pyroptosis-related genes, patients with TNBC were divided into three subtypes through unsupervised cluster analysis. The prognostic value of each pyroptosis-associated gene was assessed, and six genes were selected by univariate and LASSO Cox regression analysis to establish a multigene signature. According to the median value of risk score, patients with TNBC in the training and validation cohorts were separated to high- and low-risk sets. The enrichment analysis was conducted on the differentially expressed genes (DEGs) of the two risk sets using R clusterProfiler package. Moreover, the ESTIMATE score and immune cell infiltration were calculated by the ESTIMATE and CIBERSORT methods. After that, the correlation among pyroptosis-associated risk score and the expression of immune checkpoint-associated genes as well as anti-cancer drugs sensitivities were further analyzed. RESULTS In the training and validation cohorts, patients with TNBC in the high-risk set were found in a lower survival rate than those in the low-risk set. Combined with the clinical characteristics, the pyroptosis-related risk score was identified as an independent risk factor for the prognosis of patients with TNBC. The enrichment analysis indicated that the DEGs between the two risk groups were mainly enriched by immune responses and activities. In addition, patients with TNBC in the low-risk set were found to have a higher value of ESTIMATE score and a higher rate of immune cell infiltration. Finally, the expression levels of five genes [programmed cell death protein 1 (PD-1); cytotoxic t-lymphocyte antigen-4 (CTLA4); lymphocyte activation gene 3 (LAG3); T cell immunoreceptor with Ig and ITIM domains (TIGIT)] associated with immune checkpoint inhibitors were identified to be higher in the low-risk sets. The sensitivities of some anti-cancer drugs commonly used in breast cancer were found closely related to the pyroptosis-associated risk model. CONCLUSION The pyproptosis-associated risk model plays a vital role in the tumor immunity of TNBC and can be applied to be a prognostic predictor of patients with TNBC. Our discovery will provide novel insight for TNBC immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Jianqing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
16
|
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol 2022; 15:118. [PMID: 36031601 PMCID: PMC9420297 DOI: 10.1186/s13045-022-01335-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1, programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 provide deep and durable treatment responses which have revolutionized oncology. However, despite over 40% of cancer patients being eligible to receive immunotherapy, only 12% of patients gain benefit. A key to understanding what differentiates treatment response from non-response is better defining the role of the innate immune system in anti-tumor immunity and immune tolerance. Teleologically, myeloid cells, including macrophages, dendritic cells, monocytes, and neutrophils, initiate a response to invading pathogens and tissue repair after pathogen clearance is successfully accomplished. However, in the tumor microenvironment (TME), these innate cells are hijacked by the tumor cells and are imprinted to furthering tumor propagation and dissemination. Major advancements have been made in the field, especially related to the heterogeneity of myeloid cells and their function in the TME at the single cell level, a topic that has been highlighted by several recent international meetings including the 2021 China Cancer Immunotherapy workshop in Beijing. Here, we provide an up-to-date summary of the mechanisms by which major myeloid cells in the TME facilitate immunosuppression, enable tumor growth, foster tumor plasticity, and confer therapeutic resistance. We discuss ongoing strategies targeting the myeloid compartment in the preclinical and clinical settings which include: (1) altering myeloid cell composition within the TME; (2) functional blockade of immune-suppressive myeloid cells; (3) reprogramming myeloid cells to acquire pro-inflammatory properties; (4) modulating myeloid cells via cytokines; (5) myeloid cell therapies; and (6) emerging targets such as Siglec-15, TREM2, MARCO, LILRB2, and CLEVER-1. There is a significant promise that myeloid cell-based immunotherapy will help advance immuno-oncology in years to come.
Collapse
Affiliation(s)
- Yi Wang
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Margaret E Gatti-Mays
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA.
| | - Zihai Li
- Division of Medical Oncology, Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Structural mechanisms of inflammasome regulation revealed by cryo-EM studies. Curr Opin Struct Biol 2022; 75:102390. [DOI: 10.1016/j.sbi.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
|
18
|
Huang Y, Li R, Yang Y. Role of Pyroptosis in Gynecological Oncology and Its Therapeutic Regulation. Biomolecules 2022; 12:biom12070924. [PMID: 35883480 PMCID: PMC9313147 DOI: 10.3390/biom12070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advances in molecular biotechnology, many new cell death methods have been discovered. Pyroptosis is a programmed cell death process that differs from apoptosis and autophagy in cell morphology and function. Compared with apoptosis and autophagy, pyroptosis is primarily mediated by intracellular inflammasome and gasdermin D of the gasdermin protein family and involves the release of numerous inflammatory factors. Pyroptosis has been found to be involved in the occurrence and development of infectious diseases and other diseases involving the nervous system and the cardiovascular system. Recent studies have also reported the occurrence of pyroptosis in tumor cells. Accordingly, exploring its effect on tumors has become one of the research hotspots. Herein, recent research progress on pyroptosis is reviewed, especially its role in the development of gynecological tumors. As the pathogenesis of gynecological tumor is better understood, new targets have been introduced for the prevention and clinical treatment of gynecological tumors.
Collapse
Affiliation(s)
- Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Yuan Yang
- The Reproductive Medicine Center, The 1st Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
19
|
You J, Li H, Wei Y, Fan P, Zhao Y, Yi C, Guo Q, Yang X. Novel Pyroptosis-Related Gene Signatures Identified as the Prognostic Biomarkers for Bladder Carcinoma. Front Oncol 2022; 12:881860. [PMID: 35847844 PMCID: PMC9280833 DOI: 10.3389/fonc.2022.881860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundBladder carcinoma (BLCA) is a common malignant tumor with high morbidity and mortality in the urinary system. Pyroptosis is a pattern of programmed cell death that is closely associated with progression of tumors. Therefore, it is significant to probe the expression of pyroptosis-related genes (PRGs) in BLCA.MethodsThe differentially expressed genes in normal and BLCA tissues were first obtained from the Cancer Genome Atlas (TCGA) database analysis, as well as PRGs from the National Center for Biotechnology Information (NCBI) database, intersecting to obtain differentially expressed pyroptosis-related genes (DEPRGs) in BLCA. With the construction of a prognostic model of pyroptosis by regression analysis, we derived and validated key genes, which were ascertained as a separate prognostic marker by individual prognostic and clinical relevance analysis. In addition, we gained six immune cells from the Tumor Immune Evaluation Resource (TIMER) website and analyzed the relationship between pyroptosis prognostic genes and immune infiltration.ResultOur results revealed that 31 DEPRGs were available by comparing normal and BLCA tissues with |log2 (fold change, FC)| > 0.5 and FDR <0.05. Four key genes (CRTAC1, GSDMB, AIM2, and FOXO3) derived from the pyroptosis prognostic model were experimentally validated for consistent expression in BLCA patients. Following risk scoring, the low-risk group of BLCA patients had noticeably higher overall survival (OS) than the high-risk group (p < 0.001). Risk score was still an independent prognostic factor (HR = 1.728, 95% CI =1.289–2.315, p < 0.001). In addition, we found remarkable correlations among the expression of pyroptosis-related prognostic genes and the immune infiltration of CD4+ T cells, CD8+ T cells, B cells, dendritic cells, macrophages, and neutrophils.ConclusionGenes (CRTAC1, GSDMB, AIM2, and FOXO3) associated with pyroptosis are potential BLCA prognostic biomarkers that act as an essential part in the predictive prognosis of survival and immunotherapy of BLCA.
Collapse
Affiliation(s)
- Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Fan
- Department of Respiratory and Critical Care Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yaqin Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Cheng Yi, ; Qing Guo, ; Xi Yang,
| | - Qing Guo
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
- *Correspondence: Cheng Yi, ; Qing Guo, ; Xi Yang,
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Cheng Yi, ; Qing Guo, ; Xi Yang,
| |
Collapse
|
20
|
Paeonol exerts neuroprotective and anticonvulsant effects in intrahippocampal kainate model of temporal lobe epilepsy. J Chem Neuroanat 2022; 124:102121. [PMID: 35718291 DOI: 10.1016/j.jchemneu.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023]
Abstract
Temporal lobe epilepsy (TLE) is presented the most common form of focal epilepsy with involvement of oxidative stress and neuroinflammation as important factors in its development. About one third of epileptic patients are intractable to currently available medications. Paeonol isolated from some herbs with traditional and medicinal uses has shown anti-oxidative and anti-inflammatory effects in different models of neurological disorders. In this research, we tried to evaluate the possible protective effect of paeonol in intrahippocampal kainate murine model of TLE. To induce TLE, kainate was microinjected into CA3 area of the hippocampus and paeonol was administered at two doses of 30 or 50mg/kg. The results of this study showed that paeonol at the higher dose significantly reduces incidence of status epilepticus, hippocampal aberrant mossy fiber sprouting and also preserves neuronal density. Beneficial protective effect of paeonol was in parallel with partial reversal of some hippocampal oxidative stress markers (reactive oxygen species and malondialdehyde), caspase 1, glial fibrillary acidic protein, heme oxygenase 1, DNA fragmentation, and inflammation-associated factors (nuclear factor-kappa B, toll-like receptor 4, and tumor necrosis factor α). Our obtained data indicated anticonvulsant and neuroprotective effects of paeonol which is somewhat attributed to its anti-oxidative and anti-inflammation properties besides its attenuation of apoptosis, pyroptosis, and astrocyte activity.
Collapse
|
21
|
Peng L, Zhu N, Wang D, Zhou Y, Liu Y. Comprehensive Analysis of Prognostic Value and Immune Infiltration of NLRC4 and CASP1 in Colorectal Cancer. Int J Gen Med 2022; 15:5425-5440. [PMID: 35692355 PMCID: PMC9174061 DOI: 10.2147/ijgm.s353380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Nod-like receptor C4 (NLRC4) is a member of the Nod-like receptor (NLR) family, and its expression mediates the activation of caspase-1 (CASP1). Abnormal expression of NLRC4 and CASP1 is associated with multiple tumors. However, the expression differences, prognostic value and immune correlation of NLRC4 and CASP1 in colorectal cancer (CRC) remain to be determined. Methods In this study, TCGA, CCLE, HPA, PrognoScan, STRING and GeneMANIA databases were used to analyze differences in expression, prognostic value, genetic alterations and immune cell infiltration of NLRC4 and CASP1 in CRC patients. Then, we further validated the expression of NLRC4 and CASP1 in CRC using immunohistochemistry (IHC). Results NLRC4 and CASP1 were expressed low in CRC tissues and CRC cell lines. The expression of NLRC4 was significantly related to the patient’s gender and lymph node metastasis. NLRC4 and CASP1 down-regulated expression was observably correlated with poor survival and diverse immune cells infiltration in CRC patients. NLRC4 and CASP1 have a gene mutation alteration. NLRC4 and CASP1 had a significant positive correlation in CRC. Conclusion This study will provide new ideas for the prognosis and treatment in CRC. NLRC4 and CASP1 are expected to be novel biomarkers and potential immunotherapy targets in CRC patients.
Collapse
Affiliation(s)
- Li Peng
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Ni Zhu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Dan Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Yanhong Zhou
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
- Correspondence: Yanhong Zhou; Yifei Liu, Email ;
| | - Yifei Liu
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| |
Collapse
|
22
|
Mezzasoma L, Bellezza I, Romani R, Talesa VN. Extracellular Vesicles and the Inflammasome: An Intricate Network Sustaining Chemoresistance. Front Oncol 2022; 12:888135. [PMID: 35530309 PMCID: PMC9072732 DOI: 10.3389/fonc.2022.888135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1β (IL-1β) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1β production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1β production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.
Collapse
|
23
|
Gu C, Zhang H, Li Q, Zhao S, Gao Y. MiR-192 attenuates high glucose-induced pyroptosis in retinal pigment epithelial cells via inflammasome modulation. Bioengineered 2022; 13:10362-10372. [PMID: 35441575 PMCID: PMC9161832 DOI: 10.1080/21655979.2022.2044734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic retinopathy is one of the most characteristic complications of diabetes mellitus, and pyroptosis plays acrucial role in the onset and development of diabetic retinopathy. Although microRNA-192 (miR-192) has been demonstrated to be involved in diabetic retinopathy progression, to the best of our knowledge, its potential and mechanism in cell pyroptosis in diabetic retinopathy have not been studied. The present study demonstrated that high glucose (HG) contributes to the pyroptosis of retinal pigment epithelial (RPE) cells in a dose-dependent manner. The results revealed that miR-192 was weakly expressed in HG-induced RPE cells. Furthermore, overexpression of miR-192 abrogated the role of HG in RPE cell pyroptosis. Based on the bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay, FTO α-ketoglutarate-dependent dioxygenase (FTO) was demonstrated to be a direct target of miR-192. Additionally, upregulation of FTO abolished the effects of miR-192 on RPE cells treated with HG. Nucleotide-binding domain leucine-rich repeat family protein 3 (NLRP3) inflammasome activation is vital for cell pyroptosis, and FTO functions as a pivotal modulator in the N6-methyladenosine modifications of various genes. Mechanistically, FTO enhanced NLRP3 expression by facilitating demethylation of NLRP3. In conclusion, the present results demonstrate that miR-192 represses RPE cell pyroptosis triggered by HG via regulation of the FTO/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Cao Gu
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongjun Zhang
- Department of Ophthalmology, Minhang Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing Li
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shaofei Zhao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Gao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
24
|
Liu Q, Zhao C, Zhou J, Zhang H, Zhang Y, Wang S, Pu Y, Yin L. Reactive oxygen species-mediated activation of NLRP3 inflammasome associated with pyroptosis in Het-1A cells induced by the co-exposure of nitrosamines. J Appl Toxicol 2022; 42:1651-1661. [PMID: 35437791 DOI: 10.1002/jat.4332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022]
Abstract
Nitrosamines were a class of important environmental carcinogens associated with digestive tract neoplasms. As the early toxic effect of nitrosamines, inflammatory response participated in the malignant transformation of cells and promoted the occurrence and development of tumors. However, the role of NLRP3 inflammasome in the nitrosamines-induced inflammatory response was unclear. In this study, the human esophageal epithelial cells (Het-1A) were used to explore potential mechanisms of the activation of NLRP3 inflammasome under co-exposure to nine nitrosamines commonly found in drinking water at the doses of 0, 4, 20, 100, 500, and 2500 ng/mL. The results showed that nitrosamines stimulated activation of the NLRP3 inflammasome and induced cellular oxidative damage in a dose-dependent manner. Pretreatment of reactive oxygen species scavenger N-acetyl-L-cysteine (NAC), particularly mitochondrial reactive oxygen species (mtROS) scavengers Mito-TEMPO, effectively inhibited the activation of NLRP3 inflammasome, suggesting that nitrosamines could mediate the activation of NLRP3 inflammasome via mtROS. Furthermore, we found that nitrosamines co-exposure also promoted cell pyroptosis through the NLRP3/caspase-1/GSDMD pathway, which was demonstrated by adding the caspase-1 inhibitor Z-YVAD-FMK and constructing NLRP3 downregulated Het-1A cell line. This study revealed the underlying mechanism of the activation of NLRP3 inflammasome initiated by nitrosamines co-exposure and provided new perspectives on the toxic effects of nitrosamines.
Collapse
Affiliation(s)
- Qiwei Liu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Chao Zhao
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Jingjing Zhou
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Hu Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Ying Zhang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Lu L, Zhang P, Cao X, Guan M. Prognosis and Characterization of Immune Microenvironment in Head and Neck Squamous Cell Carcinoma through a Pyroptosis-Related Signature. JOURNAL OF ONCOLOGY 2022; 2022:1539659. [PMID: 35432539 PMCID: PMC9007648 DOI: 10.1155/2022/1539659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
Pyroptosis, as a novel identified programmed cell death, is closely correlated with tumor immunity and shows potential roles in cancer treatment. Discerning a pyroptosis-related gene signature and its correlations with tumor immune microenvironment is critical in head and neck squamous cell carcinoma (HNSCC). Transcriptome data and corresponding clinical data were downloaded from TCGA and GEO databases. Tumor mutation burden (TMB) data were obtained from TCGA database. Firstly, univariate and least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct a six pyroptosis-related gene signature. Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and principal component analysis (PCA) results verified that the risk model has good performance in predicting the survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the pyroptosis-related gene signature was immune related. Finally, the immune landscape and immunotherapy sensitivity prediction capabilities of the risk model were further explored. There were close correlations between the overall survival (OS) and various immune cells and immune functions. Single-sample gene set enrichment analysis (ssGSEA) showed that high risk group had decreased expression of various immune cells and lower activities of immune functions. Meanwhile, tumor mutation burden (TMB) data combining risk score could well predict the OS of HNSCC patients. However, tumor immune dysfunction and exclusion (TIDE) analysis revealed that there was no significant difference in the sensitivity to immunotherapies between high and low risk groups. Finally, a nomogram based on risk score and clinicopathological parameters was constructed. And, the risk model demonstrated better sensitivity and specificity than TIDE scores and T-cell-inflamed signature (TIS). In conclusion, although the risk model could not well predict the immune escape and response to immunotherapies, the signature established by pyroptosis-related genes, with better sensitivity and specificity than TIDE scores and TIS signature, could be used for predicting prognosis and immune status of HNSCC patients.
Collapse
Affiliation(s)
- Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Peiling Zhang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xiaofei Cao
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| |
Collapse
|
26
|
Jin X, Zhou R, Huang Y. Role of inflammasomes in HIV-1 infection and treatment. Trends Mol Med 2022; 28:421-434. [PMID: 35341684 DOI: 10.1016/j.molmed.2022.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Although combined antiretroviral therapy (cART) is effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication, it does not eradicate the virus because small amounts of latent HIV-1 provirus persist in quiescent memory CD4+ T cells. Therefore, strategies for eradicating latent HIV-1 are urgently needed. Recently, several studies have reported that the inflammatory response and lymphocyte death induced by HIV-1 depend on inflammasomes and pyroptosis, suggesting that inflammasomes and pyroptosis have a vital role in HIV-1 infection and contribute to the eradication of latent HIV-1. In this review, we summarize current knowledge of the role of inflammasomes, including NLR family pyrin domain-containing protein 3 (NLRP3), caspase recruitment domain-containing protein 8 (CARD8), interferon-inducible protein 16 (IFI16), NLRP1, NLR family CARD domain-containing 4 (NLRC4), and absent in melanoma 2 (AIM2), in HIV-1 infection and discuss promising therapeutic strategies for HIV-1-associated diseases by targeting inflammasomes.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| |
Collapse
|
27
|
Wang CW, Lee YC, Chang CC, Lin YJ, Liou YA, Hsu PC, Chang CC, Sai AKO, Wang CH, Chao TK. A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers (Basel) 2022; 14:cancers14071651. [PMID: 35406422 PMCID: PMC8996991 DOI: 10.3390/cancers14071651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is a common malignant gynecological disease. Molecular target therapy, i.e., antiangiogenesis with bevacizumab, was found to be effective in some patients of epithelial ovarian cancer (EOC). Although careful patient selection is essential, there are currently no biomarkers available for routine therapeutic usage. To the authors’ best knowledge, this is the first automated precision oncology framework to effectively identify and select EOC and peritoneal serous papillary carcinoma (PSPC) patients with positive therapeutic effect. From March 2013 to January 2021, we have a database, containing four kinds of immunohistochemical tissue samples, including AIM2, c3, C5 and NLRP3, from patients diagnosed with EOC and PSPC and treated with bevacizumab in a hospital-based retrospective study. We developed a hybrid deep learning framework and weakly supervised deep learning models for each potential biomarker, and the experimental results show that the proposed model in combination with AIM2 achieves high accuracy 0.92, recall 0.97, F-measure 0.93 and AUC 0.97 for the first experiment (66% training and 34%testing) and high accuracy 0.86 ± 0.07, precision 0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05 for the second experiment using five-fold cross validation, respectively. Both Kaplan-Meier PFS analysis and Cox proportional hazards model analysis further confirmed that the proposed AIM2-DL model is able to distinguish patients gaining positive therapeutic effects with low cancer recurrence from patients with disease progression after treatment (p < 0.005).
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (C.-W.W.); (Y.-A.L.); (C.-C.C.); (A.-K.-O.S.)
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
| | - Yu-Ching Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
| | - Cheng-Chang Chang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-C.C.); (P.-C.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Jia Lin
- Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan;
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-An Liou
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (C.-W.W.); (Y.-A.L.); (C.-C.C.); (A.-K.-O.S.)
| | - Po-Chao Hsu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-C.C.); (P.-C.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chun-Chieh Chang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (C.-W.W.); (Y.-A.L.); (C.-C.C.); (A.-K.-O.S.)
| | - Aung-Kyaw-Oo Sai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; (C.-W.W.); (Y.-A.L.); (C.-C.C.); (A.-K.-O.S.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan;
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
28
|
Yang X, Weng X, Yang Y, Jiang Z. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet 2022; 12:792106. [PMID: 35360412 PMCID: PMC8963933 DOI: 10.3389/fgene.2021.792106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related death in women worldwide. Pyroptosis and long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in the tumorigenesis and development of BC. However, the clinical significance of pyroptosis-related lncRNAs in BC remains unclear. Methods: Using the mRNA and lncRNA profiles of BC obtained from TCGA dataset, a risk model based on the pyroptosis-related lncRNAs for prognosis was constructed using univariate and multivariate Cox regression model, and least absolute shrinkage and selection operator. Patients were divided into high- and low-risk groups based on the risk model, and the prognosis value and immune response in different risk groups were analyzed. Furthermore, functional enrichment annotation, therapeutic signature, and tumor mutation burden were performed to evaluate the risk model we established. Moreover, the expression level and clinical significance of the selected pyroptosis-related lncRNAs were further validated in BC samples. Results: 3,364 pyroptosis-related lncRNAs were identified using Pearson’s correlation analysis. The risk model we constructed comprised 10 pyroptosis-related lncRNAs, which was identified as an independent predictor of overall survival (OS) in BC. The nomogram we constructed based on the clinicopathologic features and risk model yielded favorable performance for prognosis prediction in BC. In terms of immune response and mutation status, patients in the low-risk group had a higher expression of immune checkpoint markers and exhibited higher fractions of activated immune cells, while the high-risk group had a highly percentage of TMB. Further analyses in our cohort BC samples found that RP11-459E5.1 was significantly upregulated, while RP11-1070N10.3 and RP11-817J15.3 were downregulated and significantly associated with worse OS. Conclusion: The risk model based on the pyroptosis-related lncRNAs we established may be a promising tool for predicting the prognosis and personalized therapeutic response in BC patients.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yajie Yang
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - ZhiNong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: ZhiNong Jiang,
| |
Collapse
|
29
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
30
|
Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis 2022; 27:222-232. [PMID: 35088163 DOI: 10.1007/s10495-022-01710-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/02/2022]
Abstract
Hypobaric hypoxia initiates multiple impairment to the retina and is the major cause contributing to retinal function deficits such as high altitude retinopathy. However, the underlying molecular mechanism has not been clearly defined so far and remains to be clarified. In the present study, we have undertaken an approach to mimic 5000 m altitude with a low-pressure oxygen cabin and evaluated if pyroptosis is involved in the mechanisms by which hypobaric hypoxia triggers retinal impairment. We also used Radix Astragali seu Hedysari Compound (RAHC) to determine whether RAHC is capable of exerting protective effects on the hypobaric hypoxia-induced retinal dysfunction. We found that hypobaric hypoxia stress activated inflammasome complex through increasing NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) protein levels. The protein expression of gasdermin-D, a master executor of pyroptosis, and NADPH oxidase 4, which is regarded as a main generator of reactive oxygen species (ROS), also elevated upon hypobaric hypoxia exposure. In addition, hypobaric hypoxia induced a significant increase in pro-inflammatory cytokines expression including interleukin-1β and interleukin-18 in the rat retina. Our results indicate that hypobaric hypoxia initiates pyroptosis in the rat retina. RAHC attenuates hypobaric hypoxia-triggered retinal pyroptosis via inhibiting NLRP3 inflammasome activation and release of pro-inflammatory cytokines. The involvement of pyroptosis pathway in the retina in response to hypobaric hypoxia supports a novel insight to clarify the pathogenesis of hypobaric hypoxia-induced retinal impairment and provides a feasibility of inflammasome modulation for preserving retinal function.
Collapse
|
31
|
Lo Giudice C, Yang J, Poncin MA, Adumeau L, Delguste M, Koehler M, Evers K, Dumitru AC, Dawson KA, Alsteens D. Nanophysical Mapping of Inflammasome Activation by Nanoparticles via Specific Cell Surface Recognition Events. ACS NANO 2022; 16:306-316. [PMID: 34957816 DOI: 10.1021/acsnano.1c06301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity.
Collapse
Affiliation(s)
- Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Max Planck Institute for Medical Research, Heidelberg D-69120, Germany
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Mégane A Poncin
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Koen Evers
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510261, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
32
|
Niu Z, Xu Y, Li Y, Chen Y, Han Y. Construction and validation of a novel pyroptosis-related signature to predict prognosis in patients with cutaneous melanoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:688-706. [PMID: 34903008 DOI: 10.3934/mbe.2022031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Skin cutaneous melanoma (SKCM) is one of the most malignant skin cancers and remains a health concern worldwide. Pyroptosis is a newly recognized form of programmed cell death and plays a vital role in cancer progression. We aim to construct a prognostic model for SKCM patients based on pyroptosis-related genes (PRGs). SKCM patients from The Cancer Genome Atlas (TCGA) were divided into training and validation cohorts. We used GSE65904 downloaded from GEO database as an external validation cohort. We performed Cox regression and the least absolute shrinkage and selection operator (LASSO) regression to identify prognostic genes and built a risk score. Patients were divided into high- and low-risk groups based on the risk score. Differently expressed genes (DEGs), immune cell infiltration and immune-related pathways activation were compared between the two groups. We established a model containing 4 PRGs, i.e., GSDMA, GSDMC, AIM2 and NOD2. The overall survival (OS) time was significantly different between the 2 groups. The risk score was an independent predictor for prognosis in both the uni- and multi-variable Cox regressions. Gene ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) analyses showed that DEGs were enriched in immune-related pathways. Most types of immune cells were highly expressed in the low risk group. All immune pathways were significantly up-regulated in the low-risk group. In addition, low-risk patients had a better response to immune checkpoint inhibitors. Our novel pyroptosis-related gene signature could predict the prognosis of SKCM patients and their response to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
33
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
34
|
Li M, Liu H, Shao H, Zhang P, Gao M, Huang L, Shang P, Zhang Q, Wang W, Feng F. Glyburide attenuates B(a)p and LPS-induced inflammation-related lung tumorigenesis in mice. ENVIRONMENTAL TOXICOLOGY 2021; 36:1713-1722. [PMID: 34037304 DOI: 10.1002/tox.23293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Glyburide (Gly) could inhibit NLRP3 inflammasome, as well as could be treated with Type 2 diabetes as a common medication. Despite more and more studies show that Gly could influence cancer risk and tumor growth, it remains unclear about the effect of Gly in lung tumorigenesis. To evaluate whether Gly inhibited lung tumorigenesis and explore the possible mechanisms, a benzo(a)pyrene [B(a)p] plus lipopolysaccharide (LPS)-induced non-diabetes mice model was established with B(a)p for 4 weeks and once a week (1 mg/mouse), then instilled with LPS for 15 weeks and once every 3 weeks (2.5 μg/mouse) intratracheally. Subsequently, Gly was administered by gavage (10 μl/g body weight) 1 week before B(a)p were given to the mice until the animal model finished (when Gly was first given named Week 0). At the end of the experiment called Week 34, we analyzed the incidence, number and histopathology of lung tumors, and detected the expression of NLRP3, IL-1β, and Cleaved-IL-1β protein. We found that vehicles and tricaprylin+Gly could not cause lung carcinogenesis in the whole process. While the incidence and mean tumor count of mice in B(a)P/LPS+Gly group were decreased compared with B(a)p/LPS group. Moreover, Gly could alleviate inflammatory changes and reduce pathological tumor nest numbers compared with mice administrated with B(a)p/LPS in histopathological examination. The B(a)p/LPS increased the expression of NLRP3, IL-1β, and Cleaved-IL-1β protein significantly than Vehicle, whereas decreased in B(a)P/LPS+Gly (0.96 mg/kg) group compared with B(a)p/LPS group. Results suggested glyburide might inhibit NLRP3 inflammasome to attenuate inflammation-related lung tumorigenesis caused by intratracheal instillation of B(a)p/LPS in non-diabetes mice.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Shao
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Min Gao
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Li Huang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational Medicine, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
36
|
Ju X, Yang Z, Zhang H, Wang Q. Role of pyroptosis in cancer cells and clinical applications. Biochimie 2021; 185:78-86. [PMID: 33746064 DOI: 10.1016/j.biochi.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy drugs usually inhibit tumor cell growth through the apoptosis pathway. However, tumor cells become resistant to chemotherapy drugs by evading apoptosis. It is necessary to find new ways to inhibit tumor growth through other types of death. Pyroptosis is a recently identified inflammatory cell death that plays an important role in a variety of diseases, including cancer. In this review, we will systematically review recent progress in the pyroptosis signaling pathway, the role of inflammasomes in cancer in the context of pyroptosis, the role of gasdermin proteins in cancer and the role of pyroptosis in tumor immunity. We will also discuss the application of the pyroptosis pathway in clinical studies. Finally, we hope to provide new strategies for pyroptosis in the clinic.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
37
|
Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci Rep 2021; 40:221974. [PMID: 31998952 PMCID: PMC7029155 DOI: 10.1042/bsr20193253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a severe complication caused by intravascular applied radial contrast media (CM). Pyroptosis is a lytic type of cell death inherently associated with inflammation response and the secretion of pro-inflammatory cytokines following caspase-1 activation. The aim of the present study was to investigate the protective effects of acetylbritannilactone (ABL) on iopromide (IOP)-induced acute renal failure and reveal the underlying mechanism. In vivo and in vitro, IOP treatment caused renal damage and elevated the caspase-1 (+) propidium iodide (PI) (+) cell count, interleukin (IL)-1β and IL-18 levels, lactate dehydrogenase (LDH) release, and the relative expression of nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD), suggesting that IOP induces AKI via the activation of pyroptosis. Furthermore, the pretreatment of ABL partly mitigated the CI-AKI, development of pyroptosis, and subsequent kidney inflammation. These data revealed that ABL partially prevents renal dysfunction and reduces pyroptosis in CI-AKI, which may provide a therapeutic target for the treatment of CM-induced AKI.
Collapse
|
38
|
Shen E, Han Y, Cai C, Liu P, Chen Y, Gao L, Huang Q, Shen H, Zeng S, He M. Low expression of NLRP1 is associated with a poor prognosis and immune infiltration in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:7570-7588. [PMID: 33658393 PMCID: PMC7993699 DOI: 10.18632/aging.202620] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
NLRP1 (NLR family, pyrin domain containing 1), the first NLR protein, described to form an inflammasome, plays critical roles in innate immunity and inflammation. However, NLRP1 has not been reported to be linked to LUAD (lung adenocarcinoma) risk, prognosis, immunotherapy or any other treatments. This research aimed to explore the prognostic value and mechanism of NLRP1 in LUAD. We performed bioinformatics analysis on LUAD data downloaded from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus), and jointly analyzed with online databases such as TCGAportal, LinkedOmics, TIMER, ESTIMATE and TISIDB. NLRP1 expression of LUAD tissue was considerably lower than that in normal lung tissue. Decreased NLRP1 expression of LUAD was associated with relatively high pathological, T and N stages. Kaplan-Meier survival analysis indicated that patients with low NLRP1 expression had a worse prognosis than those with high expression. Multivariate Cox analysis further showed that NLRP1 expression level was an independent prognostic factor of LUAD. Moreover, the level of NLRP1 expression was positively linked to the degree of infiltration of various TIICs (tumor-infiltrating immune cells). Our findings confirmed that reduced expression of NLRP1 was significantly related to poor prognosis and low degree of immune cell infiltration in LUAD patients.
Collapse
Affiliation(s)
- Edward Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Life Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Le Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qiaoqiao Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Min He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
39
|
Surabhi S, Cuypers F, Hammerschmidt S, Siemens N. The Role of NLRP3 Inflammasome in Pneumococcal Infections. Front Immunol 2020; 11:614801. [PMID: 33424869 PMCID: PMC7793845 DOI: 10.3389/fimmu.2020.614801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020; 5:270. [PMID: 33214545 PMCID: PMC7677403 DOI: 10.1038/s41392-020-00347-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy especially immune checkpoint inhibition has achieved unprecedented successes in cancer treatment. However, there are many patients who failed to benefit from these therapies, highlighting the need for new combinations to increase the clinical efficacy of immune checkpoint inhibitors. In this review, we summarized the latest discoveries on the combination of nucleic acid-sensing immunity and immune checkpoint inhibitors in cancer immunotherapy. Given the critical role of nuclear acid-mediated immunity in maintaining the activation of T cell function, it seems that harnessing the nuclear acid-mediated immunity opens up new strategies to enhance the effect of immune checkpoint inhibitors for tumor control.
Collapse
Affiliation(s)
- Miaoqin Chen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yiling Li
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ting Ting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
41
|
Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Res Bull 2020; 165:146-160. [PMID: 33065175 DOI: 10.1016/j.brainresbull.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Stroke is one of the leading causes of death worldwide with limited therapies. After ischemic stroke occurs, a robust sterile inflammatory response happens and lasts for days and determines neurological prognosis. Pyroptosis is an inflammatory programmed cell death characterized by cleavage of pore-forming proteins gasdermins as a result of activating caspases and inflammasomes. It has morphological characteristics of rapid plasma-membrane rupture and release of proinflammatory intracellular contents as well as cytokines. Recent researches implicate pyroptosis involvement in the pathogenesis of ischemic stroke and inhibition of pyroptosis attenuates ischemic brain injury. In this review, we discussed molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in different kinds of the central nervous system cells, as well as potential inhibitors for intervention of pyroptosis. Based on the review, we hypothesize the feasibility of therapeutic strategies targeting pyroptosis in the context of ischemic stroke.
Collapse
Affiliation(s)
- Anqi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
42
|
Balahura LR, Selaru A, Dinescu S, Costache M. Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. J Immunol Res 2020; 2020:2549763. [PMID: 33015196 PMCID: PMC7520695 DOI: 10.1155/2020/2549763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, it has been well established that tumorigenesis is affected by chronic inflammation. During this event, proinflammatory cytokines are produced by numerous types of cells, such as fibroblasts, endothelial cells, macrophages, and tumor cells, and are able to promote the initiation, progression, and metastasis of different types of cancer. When persistent inflammation occurs, activation of inflammasome complexes is initiated, leading to its assembly and further activation of caspase, production of proinflammatory cytokines, and pyroptosis induction. The function of this multiprotein complex is not only to reassure inflammation and to promote cell death, through caspase activity, but also has been identified to have significant contributions during tumorigenesis and cancer development. So far, many efforts have been made in order to extend the knowledge of inflammasome implications and how its components could be targeted as therapeutic agents. Additionally, microRNAs (miRNAs), evolutionary conserved noncoding molecules, have emerged as pivotal players during numerous biological events by regulating gene and protein expression. Therefore, dysregulations of miRNA expressions have been correlated with inflammation during tumor development. In this review, we aim to highlight the dual role of inflammasomes and proinflammatory cytokines during carcinogenesis paired with the distinguished effects of miRNAs upon inflammation cascades during tumor growth and progression.
Collapse
Affiliation(s)
- Liliana R Balahura
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Aida Selaru
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
43
|
Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M, Schaefer L. Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 2020; 62:31-47. [PMID: 31412297 DOI: 10.1016/j.semcancer.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The tumor matrix together with inflammation and autophagy are crucial regulators of cancer development. Embedded in the tumor stroma are numerous proteoglycans which, in their soluble form, act as danger-associated molecular patterns (DAMPs). By interacting with innate immune receptors, the Toll-like receptors (TLRs), DAMPs autonomously trigger aseptic inflammation and can regulate autophagy. Biglycan, a known danger proteoglycan, can regulate the cross-talk between inflammation and autophagy by evoking a switch between pro-inflammatory CD14 and pro-autophagic CD44 co-receptors for TLRs. Thus, these novel mechanistic insights provide some explanation for the plethora of reports indicating that the same matrix-derived DAMP acts either as a promoter or suppressor of tumor growth. In this review we will summarize and critically discuss the role of the matrix-derived DAMPs biglycan, hyaluronan, and versican in regulating the TLR-, CD14- and CD44-signaling dialogue between inflammation and autophagy with particular emphasis on cancer development.
Collapse
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Roxana Damiescu
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Iva Kutija
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Aizawa E, Karasawa T, Watanabe S, Komada T, Kimura H, Kamata R, Ito H, Hishida E, Yamada N, Kasahara T, Mori Y, Takahashi M. GSDME-Dependent Incomplete Pyroptosis Permits Selective IL-1α Release under Caspase-1 Inhibition. iScience 2020; 23:101070. [PMID: 32361594 PMCID: PMC7200307 DOI: 10.1016/j.isci.2020.101070] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Pyroptosis is a form of regulated cell death that is characterized by gasdermin processing and increased membrane permeability. Caspase-1 and caspase-11 have been considered to be essential for gasdermin D processing associated with inflammasome activation. In the present study, we found that NLRP3 inflammasome activation induces delayed necrotic cell death via ASC in caspase-1/11-deficient macrophages. Furthermore, ASC-mediated caspase-8 activation and subsequent gasdermin E processing are necessary for caspase-1-independent necrotic cell death. We define this necrotic cell death as incomplete pyroptosis because IL-1β release, a key feature of pyroptosis, is absent, whereas IL-1α release is induced. Notably, unprocessed pro-IL-1β forms a molecular complex to be retained inside pyroptotic cells. Moreover, incomplete pyroptosis accompanied by IL-1α release is observed under the pharmacological inhibition of caspase-1 with VX765. These findings suggest that caspase-1 inhibition during NLRP3 inflammasome activation modulates forms of cell death and permits the release of IL-1α from dying cells. NLRP3 inflammasome induces necrotic cell death in the absence of caspase-1/11 ASC initiates GSDME-dependent pyroptosis via caspase-8 IL-1α, but not IL-1β, is released during Casp1/11-independent pyroptosis Pharmacological inhibition of caspase-1 permits IL-1α release during pyroptosis
Collapse
Affiliation(s)
- Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan; Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Homare Ito
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Erika Hishida
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
45
|
Cambui RAG, do Espírito Santo GF, Fernandes FP, Leal VNC, Galera BB, Fávaro EGP, Rizzo LA, Elias RM, Pontillo A. Double-edged sword of inflammasome genetics in colorectal cancer prognosis. Clin Immunol 2020; 213:108373. [PMID: 32135277 DOI: 10.1016/j.clim.2020.108373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a colorectal cancer (CRC) hallmark. Inflammasome-dependent cytokines IL-1ß and IL-18 can play a beneficial or detrimental role in tumorigenesis depending on cancer type. Variants in inflammasome genes were associated with tumor development and/or outcome, and have been proposed as potential biomarkers for population screening. In this study, 215 CRC patients followed-up for 10 years were examined for 9 polymorphisms in selected inflammasome genes. Multivariate association analysis and survival analysis were performed to evaluate the association between the polymorphisms and CRC prognosis. Variants associated with lower levels of IL-18 (rs1834481, rs5744256), or with increased activation of inflammasome receptors NLRP1 (rs12150220) and NLRP3 (rs35829419) resulted detrimental to CRC prognosis and may be used as prognostic markers.
Collapse
Affiliation(s)
- Raylane Adrielle Gonçalves Cambui
- Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Fernanda Pereira Fernandes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Rosa Maria Elias
- Centro Universitário de Várzea Grande, Várzea Grande, MT, Brazil
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol Rep 2020; 72:833-845. [PMID: 32124392 DOI: 10.1007/s43440-020-00078-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). This study was carried out to explore the neuroprotective effect of Chikusetsu saponin IVa (ChIV) against sevoflurane-induced neuroinflammation and cognitive impairment. METHODS The neuroprotective activity of ChIV against sevoflurane-induced cognitive dysfunction in aged rats was evaluated by Morris water maze, NOR test and Y-maze test, respectively. The expression of NLRP3, ASC and caspase-1, pro-inflammatory cytokines and apoptotic-related protein were detected in the hippocampus and primary neurons using western blot. TUNEL assay and immunohistochemistry staining were applied to assess the apoptotic cell and number of NLRP3-positive cells in the hippocampus. The oxiSelectIn Vitro ROS/RNS assay kit was used to detect the ROS level. The CCK-8 assay was applied to measure the viability of primary neurons. Flow cytometry was carried out to determine cell apoptosis. RESULTS Pretreatment with ChIV significantly alleviated neurological dysfunction in aged rat exposure to sevoflurane. Mechanistically, ChIV treatment significantly alleviated sevoflurane-induced apoptotic cell and neuroinflammation. Of note, the neuroprotective effect of ChIV against sevoflurane-induced neurotoxicity through blocking NLRP3/caspase-1 pathway. In consistent with in vivo studies, ChIV was also able to repress sevoflurane-induced apoptosis and neuroinflammation in primary neurons. Furthermore, pretreatment with NLRP3/caspase-1 pathway inhibitor (MCC950) significantly augmented the neuroprotective effect of ChIV. CONCLUSION Our finding confirmed that ChIV provides a neuroprotective effect against sevoflurane-induced neuroinflammation and cognitive impairment by blocking the NLRP3/caspase-1 pathway, which may be an effective strategy for the clinical treatment of elderly patients with POCD induced by anesthesia.
Collapse
|
47
|
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front Pharmacol 2020; 11:42. [PMID: 32116717 PMCID: PMC7018666 DOI: 10.3389/fphar.2020.00042] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying “cell-in-cell” cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | | | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
48
|
Xi X, Yang Y, Ma J, Chen Q, Zeng Y, Li J, Chen L, Li Y. MiR-130a alleviated high-glucose induced retinal pigment epithelium (RPE) death by modulating TNF-α/SOD1/ROS cascade mediated pyroptosis. Biomed Pharmacother 2020; 125:109924. [PMID: 32018221 DOI: 10.1016/j.biopha.2020.109924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
High-glucose induced retinal pigment epithelium (RPE) death by triggering oxidative stress, however, the underlying mechanisms are still not fully delineated. In this study, the RPE cell line ARPE-19 were treated with different concentrations of glucose, the results showed that high-glucose (50 mM) inhibited cell proliferation, promoted cell apoptosis and reactive oxygen species (ROS) production in a time-dependent manner. Notably, we found that high-glucose (50 mM) increased the expression levels of Caspase-1, Gasdermin D, NLRP3, IL-1β and IL-18 in ARPE-19 cells, which indicated that high-glucose triggered pyroptotic cell death. Further results validated that both ROS scavenger N-acetyl cysteine (NAC) and pyroptosis inhibitor necrosulfonamide (NSA) reversed the effects of high-glucose (50 mM) on ARPE-19 cell proliferation, apoptosis and pyroptosis. In addition, high-glucose (50 mM) significantly decreased the levels of miR-130a and superoxide dismutase (SOD) 1, and promoted tumor necrosis factor (TNF)-α expressions in ARPE-19 cells. Interestingly, upregulation of miR-130a increased SOD1 levels in a TNF-α dependent manner. Furthermore, overexpression of miR-130a abrogated the effects of high-glucose (50 mM) on the above cell functions, which were all reversed by either upregulating TNF-α or knocking down SOD1 in ARPE-19 cells. Taken together, upregulation of miR-130a alleviated the cytotoxic effects of high-glucose (50 mM) on ARPE-19 cells by regulating TNF-α/SOD1/ROS axis mediated pyroptotic cell death.
Collapse
Affiliation(s)
- Xiaoting Xi
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| | - Yanni Yang
- Ophthalmology Department, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, Yunnan, China.
| | - Jia Ma
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| | - Qianbo Chen
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| | - Yong Zeng
- Psychiatry Department, People's Hospital of Yuxi City, Nieer Road 21, Yuxi, Yunnan, China.
| | - Junxian Li
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| | - Lin Chen
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| | - Yan Li
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, Xichang Road 295, Kunming, Yunnan, China.
| |
Collapse
|
49
|
Xie J, Zhuan B, Wang H, Wang Y, Wang X, Yuan Q, Yang Z. Huaier extract suppresses non-small cell lung cancer progression through activating NLRP3-dependent pyroptosis. Anat Rec (Hoboken) 2019; 304:291-301. [PMID: 31692261 DOI: 10.1002/ar.24307] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Recent studies have reported the anticancer activity of huaier extract in various human malignancies. However, little is known about the effect of huaier extract in non-small cell lung cancer (NSCLC) and its underlying mechanism. The current study aimed to investigate whether huaier extract affects the progression of NSCLC. mRNA and proteins expression of pyroptotic-related genes (NLRP3, caspase-1, IL-1β, and IL-18) in NSCLC tissues and cells were, respectively, detected by qRT-PCR and western blot. The effects of huaier extract on NSCLC cell viability and cytotoxicity were evaluated by CCK-8 assay, colony formation assay, and LDH detection kit. Besides, we established a xenograft model to assess the antitumor effect of huaier extract on tumor growth in vivo. Our results showed that the expression of pyroptotic-related genes was downregulated in NSCLC tissues and cell lines. Huaier extract pretreatment inhibited cell viability and the percentage of colony formation of H520 and H358 cells, and upregulated the expression of pyroptotic-related genes. Mechanistically, huaier extract exhibited antitumor effect in NSCLC via inducing NLRP3-dependent pyroptosis in vitro and in vivo. In conclusion, our finding confirmed that huaier extract played an antitumor role in NSCLC progression through promoting pyroptotic cell death, which provided a new potential strategy for NSCLC clinical treatment.
Collapse
Affiliation(s)
- Jun Xie
- Department of Thoracic Surgery, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Bing Zhuan
- Department of Respiratory Medicine, The First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Haixia Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, China
| | - Xi Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Qun Yuan
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhao Yang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| |
Collapse
|
50
|
Tunset HM, Feuerherm AJ, Selvik LKM, Johansen B, Moestue SA. Cytosolic Phospholipase A2 Alpha Regulates TLR Signaling and Migration in Metastatic 4T1 Cells. Int J Mol Sci 2019; 20:ijms20194800. [PMID: 31569627 PMCID: PMC6801560 DOI: 10.3390/ijms20194800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022] Open
Abstract
Metastatic disease is the leading cause of death in breast cancer patients. Disrupting the cancer cell’s ability to migrate may be a strategy for hindering metastasis. Cytosolic phospholipase A2 α (cPLA2α), along with downstream proinflammatory and promigratory metabolites, has been implicated in several aspects of tumorigenesis, as well as metastasis, in various types of cancer. In this study, we aim to characterize the response to reduced cPLA2α activity in metastatic versus non-metastatic cells. We employ an isogenic murine cell line pair displaying metastatic (4T1) and non-metastatic (67NR) phenotype to investigate the role of cPLA2α on migration. Furthermore, we elucidate the effect of reduced cPLA2α activity on global gene expression in the metastatic cell line. Enzyme inhibition is achieved by using a competitive pharmacological inhibitor, cPLA2α inhibitor X (CIX). Our data show that 4T1 expresses significantly higher cPLA2α levels as compared to 67NR, and the two cell lines show different sensitivity to the CIX treatment with regards to metabolism and proliferation. Inhibition of cPLA2α at nontoxic concentrations attenuates migration of highly metastatic 4T1 cells, but not non-metastatic 67NR cells. Gene expression analysis indicates that processes such as interferon type I (IFN-I) signaling and cell cycle regulation are key processes regulated by cPLA2a in metastatic 4T1 cells, supporting the findings from the biological assays. This study demonstrates that two isogenic cancer cell lines with different metastatic potential respond differently to reduced cPLA2α activity. In conclusion, we argue that cPLA2α is a potential therapeutic target in cancer and that enzyme inhibition may inhibit metastasis through an anti-migratory mechanism, possibly involving Toll-like receptor signaling and type I interferons.
Collapse
Affiliation(s)
- Hanna Maja Tunset
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
| | - Astrid Jullumstrø Feuerherm
- Center for Oral Health Services and Research (TkMidt), 7030 Trondheim, Norway.
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Linn-Karina Myrland Selvik
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, 7491 Trondheim, Norway.
| | - Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, 7491 Trondheim, Norway.
- Department of Health Sciences, Nord University, P.O. Box 1490, 8049 Bodø, Norway.
| |
Collapse
|