1
|
Zhang W, Wang X, Ma C, Liang B, Ma L, Wang Y, Lin Y, Han S. Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D. Respir Physiol Neurobiol 2024; 331:104346. [PMID: 39265817 DOI: 10.1016/j.resp.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening condition characterized by excessive pulmonary inflammation, yet its precise pathophysiology remains elusive. Pyroptosis, a programmed cell death mechanism controlled by gasdermin D (GSDMD), has been linked to the etiology of ALI. This study investigated the regulatory functions of the transcription factor E-twenty-six variant gene 5 (ETV5) and GSDMD in ALI. METHODS Lipopolysaccharide (LPS) was used to treat BEAS-2B cells (50 mmol/mL) and establish an LPS-induced mouse model of ALI (by intratracheal administration, 3 mg/kg). Protein-protein docking, immunofluorescence analysis, western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter gene assay were used to examine ETV5-mediated negative feedback regulation of GSDMD and its effects on pyroptosis and ALI. RESULTS Our results showed that the physiological function of ETV5 was reduced by its downregulated expression, which impeded its nuclear translocation in ALI mice. Increased pyroptosis and enhanced production of inflammatory cytokines were associated with LPS-induced ALI. ETV5 overexpression in LPS-treated BEAS-2B cells decreased the expression of total and membrane-bound GSDMD, negatively regulated GSDMD, and prevented pyroptosis. The expression of inflammatory cytokines was subsequently reduced due to this inhibition, which, in turn, reduced ALI. Molecular docking analysis and dual-luciferase reporter gene assay results indicated a direct interaction between ETV5 and GSDMD, which inhibited GSDMD production. CONCLUSION Our results indicate that ETV5 inhibits pyroptosis, decreases the expression of inflammatory cytokines, and negatively regulates GSDMD expression to ameliorate ALI symptoms.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Xinhua Wang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Chenhui Ma
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Bao Liang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Yuanjie Lin
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Shuguang Han
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China.
| |
Collapse
|
2
|
Bang Y, Hwang S, Kim YE, Sung DK, Yang M, Ahn SY, Sung SI, Joo KM, Chang YS. Therapeutic efficacy of thrombin-preconditioned mesenchymal stromal cell-derived extracellular vesicles on Escherichia coli-induced acute lung injury in mice. Respir Res 2024; 25:303. [PMID: 39112999 PMCID: PMC11308396 DOI: 10.1186/s12931-024-02908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS In vitro, IL-1β, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.
Collapse
Affiliation(s)
- Yuna Bang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Sein Hwang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yun Sil Chang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
3
|
Meng Q, Winston T, Ma J, Song Y, Wang C, Yang J, Ma Z, Cooney RN. INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR VESICLES ATTENUATE LPS-INDUCED LUNG INJURY AND ENDOTOXEMIA IN MICE. Shock 2024; 62:294-303. [PMID: 38813932 PMCID: PMC11466509 DOI: 10.1097/shk.0000000000002381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Introduction: We hypothesized extracellular vesicles (EVs) from preconditioned human-induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) attenuate LPS-induced acute lung injury (ALI) and endotoxemia. Methods: iMSCs were incubated with cell stimulation cocktail (CSC) and EVs were isolated. iMSC-EVs were characterized by size and EV markers. Biodistribution of intratracheal (IT), intravenous, and intraperitoneal injection of iMSC-EVs in mice was examined using IVIS. Uptake of iMSC-EVs in lung tissue, alveolar macrophages, and RAW264.7 cells was also assessed. C57BL/6 mice were treated with IT/IP iMSC-EVs or vehicle ± IT/IP LPS to induce ALI/acute respiratory distress syndrome and endotoxemia. Lung tissues, plasma, and bronchoalveolar lavage fluid (BALF) were harvested at 24 h. Lung histology, BALF neutrophil/macrophage, cytokine levels, and total protein concentration were measured to assess ALI and inflammation. Survival studies were performed using IP LPS in mice for 3 days. Results: iMSC-EV route of administration resulted in differential tissue distribution. iMSC-EVs were taken up by alveolar macrophages in mouse lung and cultured RAW264.7 cells. IT LPS-treated mice demonstrated marked histologic ALI, increased BALF neutrophils/macrophages and protein, and increased BALF and plasma TNF-α/IL-6 levels. These parameters were attenuated by 2 h before or 2 h after treatment with IT iMSC-EVs in ALI mice. Interestingly, the IT LPS-induced increase in IL-10 was augmented by iMSC-EVs. Mice treated with IP LPS showed increases in TNF-α and IL-6 that were downregulated by iMSC-EVs and LPS-induced mortality was ameliorated by iMSC-EVs. Administration of IT iMSC-EVs 2 h after LPS downregulated the increase in proinflammatory cytokines (TNF-α/IL-6) by LPS and further increased IL-10 levels. Conclusions: iMSC-EVs attenuate the inflammatory effects of LPS on cytokine levels in ALI and IP LPS in mice. LPS-induced mortality was improved with administration of iMSC-EVs.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Tackla Winston
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Julia Ma
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Yuanhui Song
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Chunyan Wang
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| | - Junhui Yang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, New York
| |
Collapse
|
4
|
Zhang J, Lin R, Li Y, Wang J, Ding H, Fang P, Huang Y, Shi J, Gao J, Zhang T. A large-scale production of mesenchymal stem cells and their exosomes for an efficient treatment against lung inflammation. Biotechnol J 2024; 19:e2300174. [PMID: 38403399 DOI: 10.1002/biot.202300174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Mesenchymal stem cells (MSCs) and their produced exosomes have demonstrated inherent capabilities of inflammation-guided targeting and inflammatory modulation, inspiring their potential applications as biologic agents for inflammatory treatments. However, the clinical applications of stem cell therapies are currently restricted by several challenges, and one of them is the mass production of stem cells to satisfy the therapeutic demands in the clinical bench. Herein, a production of human amnion-derived MSCs (hMSCs) at a scale of over 1 × 109 cells per batch was reported using a three-dimensional (3D) culture technology based on microcarriers coupled with a spinner bioreactor system. The present study revealed that this large-scale production technology improved the inflammation-guided migration and the inflammatory suppression of hMSCs, without altering their major properties as stem cells. Moreover, these large-scale produced hMSCs showed an efficient treatment against the lipopolysaccharide (LPS)-induced lung inflammation in mice models. Notably, exosomes collected from these large-scale produced hMSCs were observed to inherit the efficient inflammatory suppression capability of hMSCs. The present study showed that 3D culture technology using microcarriers coupled with a spinner bioreactor system can be a promising strategy for the large-scale expansion of hMSCs with improved anti-inflammation capability, as well as their secreted exosomes.
Collapse
Affiliation(s)
- Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiawen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Panfeng Fang
- Ningbo SinoCell Biotechnology Co., Ltd., Ningbo, China
| | - Yingzhi Huang
- Ningbo SinoCell Biotechnology Co., Ltd., Ningbo, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Cai F, Wang P, Chen W, Zhao R, Liu Y. The physiological phenomenon and regulation of macrophage polarization in diabetic wound. Mol Biol Rep 2023; 50:9469-9477. [PMID: 37688679 DOI: 10.1007/s11033-023-08782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Macrophages play a crucial role in regulating wound healing, as they undergo a transition from the proinflammatory M1 phenotype to the proliferative M2 phenotype, ultimately contributing to a favorable outcome. However, in hyperglycemic and hyper-reactive oxygen species environments, the polarization of macrophages becomes dysregulated, hindering the transition from the inflammatory to proliferative phase and consequently delaying the wound healing process. Consequently, regulating macrophage polarization is often regarded as a potential target for the treatment of diabetic wounds. The role of macrophages in wound healing and the changes in macrophages in diabetic conditions were discussed in this review. After that, we provide a discussion of recent therapeutic strategies for diabetic wounds that utilize macrophage polarization. Furthermore, this review also provides a comprehensive summary of the efficacious treatment strategies aimed at enhancing diabetic wound healing through the regulation of macrophage polarization. By encompassing a thorough understanding of the fundamental principles and their practical implementation, the advancement of treatment strategies for diabetic wounds can be further facilitated.
Collapse
Affiliation(s)
- Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Wang
- Department of Burns and skin surgery, The First Affiliated Hospital of Air Force Military Medical University, Shanxi, Xi'an, China
| | - Wenjiao Chen
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruomei Zhao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Cai B, Song W, Chen S, Sun J, Zhou R, Han Z, Wan J. Bone Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorated Lipopolysaccharide-Induced Lung Injury Via the miR-21-5p/PCSK6 Pathway. J Immunol Res 2023; 2023:3291137. [PMID: 37937296 PMCID: PMC10626970 DOI: 10.1155/2023/3291137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disease that currently lacks a cure. Although stem cell-derived small extracellular vesicles (sEVs) have shown promising effects in the treatment of ALI, their underlying mechanisms and responsible components have yet to be identified. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a gene involved in inflammation and a potential target of miR-21-5p, a microRNA enriched in stem cell-derived sEVs. The current study investigated the role of PCSK6 in lipopolysaccharide (LPS)-induced ALI and its interaction with miR-21-5p. Notably, our results showed that PCSK6 expression was positively correlated with LPS stimulation. Knockdown of PCSK6 ameliorated LPS-induced inhibition of proliferation and upregulation of permeability in human BEAS-2B cells, whereas PCSK6 overexpression displayed the opposite effects. BEAS-2B cells were able to actively internalize the cocultured bone mesenchymal stem cell (MSC)-derived sEVs (BMSC-sEVs), which alleviated the cell damage caused by LPS. Overexpressing PCSK6, however, eliminated the therapeutic effects of BMSC-sEV coculture. Mechanistically, BMSC-sEVs inhibited PCSK6 expression via the delivery of miR-21-5p, which is directly bound to the PCSK6 gene. Our work provides evidence for the role of PCSK6 in LPS-induced ALI and identified miR-21-5p as a component of BMSC-derived sEVs that suppressed PCSK6 expression and ameliorated LPS-induced cell damage. These results reveal a novel molecular mechanism for ALI pathogenesis and highlight the therapeutic potential of using sEVs released by stem cells to deliver miR-21-5p for ALI treatment.
Collapse
Affiliation(s)
- Bo Cai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Rui Zhou
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Zhen Han
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| |
Collapse
|
7
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Cai F, Chen W, Zhao R, Liu Y. The capacity of exosomes derived from adipose-derived stem cells to enhance wound healing in diabetes. Front Pharmacol 2023; 14:1063458. [PMID: 37808198 PMCID: PMC10551633 DOI: 10.3389/fphar.2023.1063458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The slow healing and nonhealing of diabetic wounds have long posed challenges for clinical practitioners. In the presence of elevated glucose levels, the body's regulatory mechanisms undergo alterations that impede normal wound healing processes, including cell proliferation, cytokine release, and growth factor activity. Consequently, the advancement of stem cell technology has sparked growing interest in utilizing stem cells and their derivatives as potential therapeutic agents to enhance diabetic wound healing. This paper aims to provide an academic review of the therapeutic effects of adipose-derived stem cell-EXOs (ADSC-EXOs) in diabetic wound healing. As a cell-free therapy, exosomes (EXOs) possess a multitude of proteins and growth factors that have been shown to be advantageous in promoting wound healing and mitigating the potential risks associated with stem cell therapy. By examining the current knowledge on ADSC-EXOs, this review seeks to offer insights and guidance for the potential application of EXOs in the treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Yi Liu
- Department of Burns and Plastic Surgery, and Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Fang J, Wei H, Wang H, Wang J, Liu H, Chen Y, Chen L, Lu L, Zhang Q, Pan R, Cui E, Luo X. Human placenta-derived mesenchymal stem cell administration protects against acute lung injury in a mouse model. J Cell Biochem 2023; 124:1249-1258. [PMID: 37450693 DOI: 10.1002/jcb.30445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
This study aims to investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) administration on tissue repair following acute lung injury (ALI). PMSCs were transplanted intravenously to a mouse model of lipopolysaccharide-induced ALI. The therapeutic effects were determined by evaluating several indicators, including pathology; the wet/dry ratio of the lungs; blood gas analysis; the total protein content, cell numbers, and the activity of myeloperoxidase (MPO) in bronchial alveolar lavage fluid (BALF); and the levels of anti-inflammatory and proinflammatory cytokines in serum and BALF. To investigate the underlying mechanism, PMSC-derived exosomes were used for ALI treatment. Administration of PMSCs improved the degree of lung injury, reduced inflammation, increased the expression levels of anti-inflammatory cytokines, and protected lung function. As expected, the effects of PMSC-derived exosomes in the ALI model were similar to those of PMSCs, both in terms of improved lung function and reduced inflammation. These findings suggest that PMSCs have ameliorating effects on ALI that are potentially mediated via their secreted exosomes.
Collapse
Affiliation(s)
- Junbiao Fang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hanwei Wei
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Hongfa Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Junkai Wang
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Huizi Liu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Yue Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Long Chen
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Ling Lu
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| | - Qiang Zhang
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiaopan Luo
- Department of Anesthesiology, Center for Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou medical College, Hangzhou, China
| |
Collapse
|
10
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Zhuang C, Kang M, Lee M. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. J Control Release 2023; 360:1-14. [PMID: 37330013 DOI: 10.1016/j.jconrel.2023.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS. ALI/ARDS is characterized by inflammatory injury and increased vascular permeability, resulting in lung edema and hypoxemia. Currently available treatments for ALI/ARDS are limited, but do include mechanical ventilation for gas exchange and treatments supportive of reduction of severe symptoms. Anti-inflammatory drugs such as corticosteroids have been suggested, but their clinical effects are controversial with possible side-effects. Therefore, novel treatment modalities have been developed for ALI/ARDS, including therapeutic nucleic acids. Two classes of therapeutic nucleic acids are in use. The first constitutes knock-in genes for encoding therapeutic proteins such as heme oxygenase-1 (HO-1) and adiponectin (APN) at the site of disease. The other is oligonucleotides such as small interfering RNAs and antisense oligonucleotides for knock-down expression of target genes. Carriers have been developed for efficient delivery for therapeutic nucleic acids into the lungs based on the characteristics of the nucleic acids, administration routes, and targeting cells. In this review, ALI/ARDS gene therapy is discussed mainly in terms of delivery systems. The pathophysiology of ALI/ARDS, therapeutic genes, and their delivery strategies are presented for development of ALI/ARDS gene therapy. The current progress suggests that selected and appropriate delivery systems of therapeutic nucleic acids into the lungs may be useful for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
12
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
13
|
Salazar-Puerta AI, Rincon-Benavides MA, Cuellar-Gaviria TZ, Aldana J, Martinez GV, Ortega-Pineda L, Das D, Dodd D, Spencer CA, Deng B, McComb DW, Englert JA, Ghadiali S, Zepeda-Orozco D, Wold LE, Gallego-Perez D, Higuita-Castro N. Engineered Extracellular Vesicles Derived from Dermal Fibroblasts Attenuate Inflammation in a Murine Model of Acute Lung Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210579. [PMID: 37119468 PMCID: PMC10573710 DOI: 10.1002/adma.202210579] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Indexed: 06/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) represents a significant burden to the healthcare system, with ≈200 000 cases diagnosed annually in the USA. ARDS patients suffer from severe refractory hypoxemia, alveolar-capillary barrier dysfunction, impaired surfactant function, and abnormal upregulation of inflammatory pathways that lead to intensive care unit admission, prolonged hospitalization, and increased disability-adjusted life years. Currently, there is no cure or FDA-approved therapy for ARDS. This work describes the implementation of engineered extracellular vesicle (eEV)-based nanocarriers for targeted nonviral delivery of anti-inflammatory payloads to the inflamed/injured lung. The results show the ability of surfactant protein A (SPA)-functionalized IL-4- and IL-10-loaded eEVs to promote intrapulmonary retention and reduce inflammation, both in vitro and in vivo. Significant attenuation is observed in tissue damage, proinflammatory cytokine secretion, macrophage activation, influx of protein-rich fluid, and neutrophil infiltration into the alveolar space as early as 6 h post-eEVs treatment. Additionally, metabolomics analyses show that eEV treatment causes significant changes in the metabolic profile of inflamed lungs, driving the secretion of key anti-inflammatory metabolites. Altogether, these results establish the potential of eEVs derived from dermal fibroblasts to reduce inflammation, tissue damage, and the prevalence/progression of injury during ARDS via nonviral delivery of anti-inflammatory genes/transcripts.
Collapse
Affiliation(s)
- Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - María A. Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
| | | | - Julian Aldana
- Biochemistry Program, The Ohio State University, Columbus, Ohio, United States
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Dodd
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Charles A. Spencer
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
14
|
Jiao R, Han Z, Ma J, Wu S, Wang Z, Zhou G, Liu X, Li J, Yan X, Meng A. Irisin attenuates fine particulate matter induced acute lung injury by regulating Nod2/NF-κB signaling pathway. Immunobiology 2023; 228:152358. [PMID: 37003140 DOI: 10.1016/j.imbio.2023.152358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Air pollution consisting of fine particulate matter (PM2.5) can induce or aggravate pulmonary inflammatory injury. Irisin has been shown to inhibit inflammation and help to protect against acute kidney, lung or brain injury. However, the role of irisin in lung inflammation after exposure to PM2.5 remains unclear. The aim of this study was to investigate the effect and molecular mechanism of irisin supplementation on in vitro and in vivo models of PM2.5-induced acute lung injury(ALI). C57BL/6 mice and alveolar macrophage cell line (MH-S) were treated with PM2.5. Histopathological examination and FNDC5/ irisin immunofluorescence staining was performed on lung tissue sections. MH-S cell viability was determined by CCK-8 assay. The levels of Nod2, NF-κB p65 and NLRP3 were detected by qRT-PCR and western blotting. The levels of cytokines (IL-1β, IL-18 and TNF-α) were detected by ELISA. PM2.5 exposure induced increased secretion of pro-inflammatory factors and activation of Nod2, NF-κB p65 and NLRP3 as well as endogenous levels of irisin. In vivo and in vitro inflammation was alleviated by irisin supplementation. Irisin significantly decreased IL-1β, IL-18, and TNF-α production at both mRNA and protein level. Expression levels of Nod2, NF-κB p65, and NLRP3 were all significantly affected by irisin. In vivo the degree of pulmonary injury and inflammatory infiltration was weakened after irisin administration. In vitro, irisin could inhibit the activation of the NLRP3 inflammasome for a sustained period of 24 h, and its inhibitory ability was gradually enhanced. In conclusion, our findings indicate that irisin can modulate the inflammatory injury of lung tissue caused by PM2.5 through the Nod2/NF-κB signaling pathway, suggesting that irisin can be a candidate for the therapeutic or preventive intervention in acute lung inflammation.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhuoxiao Han
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jiao Ma
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Siyu Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zheng Wang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Guangwei Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xinxiu Liu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xixin Yan
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Aihong Meng
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
15
|
Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a New Axis in the Genesis of Respiratory Diseases: Possible Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24021783. [PMID: 36675299 PMCID: PMC9861898 DOI: 10.3390/ijms24021783] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
It is well ascertained that airway inflammation has a key role in the genesis of numerous respiratory pathologies, including asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome. Pulmonary tissue inflammation and anti-inflammatory responses implicate an intricate relationship between local and infiltrating immune cells and structural pulmonary cells. Alarmins are endogenic proteins discharged after cell injury in the extracellular microenvironment. The purpose of our review is to highlight the alterations in respiratory diseases involving some alarmins, such as high mobility group box 1 (HMGB1) and interleukin (IL)-33, and their inter-relationships and relationships with genetic non-coding material, such as microRNAs. The role played by these alarmins in some pathophysiological processes confirms the existence of an axis composed of HMGB1 and IL-33. These alarmins have been implicated in ferroptosis, the onset of type 2 inflammation and airway alterations. Moreover, both factors can act on non-coding genetic material capable of modifying respiratory function. Finally, we present an outline of alarmins and RNA-based therapeutics that have been proposed to treat respiratory pathologies.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
16
|
Chen P, Yu Y, Su S, Du Z, Cai B, Sun X, Chattipakorn N, Samorodov AV, Pavlov VN, Tang Q, Cho WJ, Liang G. Design, synthesis, and bioactivity evaluation of novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Bioorg Med Chem Lett 2023; 80:129097. [PMID: 36462751 DOI: 10.1016/j.bmcl.2022.129097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Acute lung injury (ALI) is a devastating disease with a high mortality rate of 30%-40%. There is an unmet clinical need owing to limited treatment strategies and little clinical benefit. The pathology of ALI indicates that reducing the inflammatory response could be a highly desirable strategy to treat ALI. In this study, we designed and synthesized 36 novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives and evaluated their anti-inflammatory activities by measuring the release of cytokines in lipopolysaccharide (LPS)-challenged J774A.1 cells. Compounds 19, 20, and 39 potently reduced the release of IL-6 and TNF-α in J774A.1 cells. Additionally, 39 improved LPS-induced ALI in vivo and inhibited cytokine production in lung tissues. Furthermore, 39 reduced inflammatory infiltration and downregulated p-p65 levels in lung tissues. Thus, compound 39 could serve as a new lead structure for the development of anti-inflammatory drugs to treat ALI.
Collapse
Affiliation(s)
- Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
17
|
Ye Z, Wang P, Feng G, Wang Q, Liu C, Lu J, Chen J, Liu P. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Front Med (Lausanne) 2023; 9:1075465. [PMID: 36714100 PMCID: PMC9880059 DOI: 10.3389/fmed.2022.1075465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background Acute lung injury (ALI) is a life-threatening inflammatory disease without effective therapeutic regimen. Macrophage polarization plays a key role in the initiation and resolution of pulmonary inflammation. Therefore, modulating macrophage phenotype is a potentially effective way for acute lung injury. Cryptotanshinone (CTS) is a lipophilic bioactive compound extracted from the root of Salvia miltiorrhiza with a variety of pharmacological effects, especially the anti-inflammatory role. In this study, we investigated the therapeutic and immunomodulatory effects of CTS on ALI. Materials and methods The rat model of ALI was established by intratracheal instillation of LPS (5 mg/kg) to evaluate the lung protective effect of CTS in vivo and to explore the regulation of CTS on the phenotype of lung macrophage polarization. LPS (1 μg/mL) was used to stimulate RAW264.7 macrophages in vitro to further explore the effect of CTS on the polarization and metabolic reprogramming of RAW264.7 macrophages and to clarify the potential mechanism of CTS anti-ALI. Results CTS significantly improved lung function, reduced pulmonary edema, effectively inhibited pulmonary inflammatory infiltration, and alleviated ALI. Both in vivo and in vitro results revealed that CTS inhibited the differentiation of macrophage into the M1 phenotype and promoted polarization into M2 phenotype during ALI. Further in vitro studies indicated that CTS significantly suppressed LPS-induced metabolic transition from aerobic oxidation to glycolysis in macrophages. Mechanistically, CTS blocked LPS-induced metabolic transformation of macrophages by activating AMPK. Conclusion These findings demonstrated that CTS regulates macrophage metabolism by activating AMPK, and then induced M1-type macrophages to transform into M2-type macrophages, thereby alleviating the inflammatory response of ALI, suggesting that CTS might be a potential anti-ALI agent.
Collapse
Affiliation(s)
- Zesen Ye
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Panxia Wang
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Guodong Feng
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quan Wang
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jing Lu,
| | - Jianwen Chen
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,Jianwen Chen,
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China,*Correspondence: Peiqing Liu,
| |
Collapse
|
18
|
Li B, Wang Z, Yuan J, Liang D, Cheng Y, Wang Z. Knockdown of SHP2 attenuated LPS-induced ferroptosis via downregulating ACSL4 expression in acute lung injury. Allergol Immunopathol (Madr) 2023; 51:143-152. [PMID: 37169572 DOI: 10.15586/aei.v51i3.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a complex disease with a high mortality. Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a protein tyrosine phosphatase that participates in pathogenesis of multiple diseases. Nevertheless, the role of SHP2 in ALI remains unknown. METHODS The in vivo and in vitro lipopolysaccharide (LPS)-induced ALI models were successfully established. The histopathological changes were evaluated by hematoxylin and eosin staining. The vascular permeability of lungs was assessed by Evans blue assay. The expression of ACSL4 and SHP2 was detected by western blot and qRT-PCR assay. The lactate dehydrogenase (LDH) activity, malondialdehyde (MDA), iron, and glutathione (GSH) levels were measured by commercial kits. RESULTS The SHP2 was upregulated in LPS-induced ALI mice and LPS-stimulated MLE-12 cells. In loss-of function experiment, the knockdown of SHP2 attenuated LPS-induced lung injury, microvessels damage, pulmonary edema, and increase of lung vascular permeability in vivo. Mechanically, shSHP2-rescued LPS induced increase in LDH activity, MDA, and iron levels, and decrease in GSH levels, as well as the accumulation of reactive oxygen species in vivo and in vitro, leading to an alleviation of LPS-induced ferroptosis. Notably, shSHP2 reduced the expression of Acyl-CoA synthetase long-chain 4 (ACSL4). In the rescued experiments, overexpression of ACSL4 abolished the shSHP2-induced reduction of LDH activity, MDA, and iron levels, and increase in GSH levels, thereby aggravating the LPS-induced ferroptosis. CONCLUSION These findings concluded that the knockdown of SHP2 attenuated LPS-induced ferroptosis via downregulation of ACSL4 expression in ALI, providing a novel sight for ALI treatment.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Diseases, Linfen People's Hospital, Linfen, Shanxi, China
| | - Zhan Wang
- Research Division, National Health Commission of the People's Government of Linfen City, Linfen, Shanxi, China
| | - Jiayang Yuan
- Department of Infectious Diseases, Linfen People's Hospital, Linfen, Shanxi, China
| | - Dachuan Liang
- Department of Infectious Diseases, Linfen People's Hospital, Linfen, Shanxi, China
| | - Yanrong Cheng
- Intensive Care Unit, Linfen People's Hospital, Linfen, Shanxi, China
| | - Zheng Wang
- Intensive Care Unit, Linfen People's Hospital, Linfen, Shanxi, China;
| |
Collapse
|
19
|
Xu L, Zhu Y, Li C, Wang Q, Ma L, Wang J, Zhang S. Small extracellular vesicles derived from Nrf2-overexpressing human amniotic mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting NLRP3. Biol Direct 2022; 17:35. [PMID: 36447296 PMCID: PMC9706911 DOI: 10.1186/s13062-022-00351-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a major cause of respiratory failure in critically ill patients that results in significant morbidity and mortality. Recent studies indicate that cell-based therapies may be beneficial in the treatment of ALI. We recently demonstrated that Nrf2-overexpressing human amniotic mesenchymal stem cells (hAMSCs) reduce lung injury, fibrosis and inflammation in lipopolysaccharide (LPS)-challenged mice. Here we tested whether small extracellular vesicles (sEVs) derived from Nrf2-overexpressing hAMSCs (Nrf2-sEVs) could protect against ALI. sEVs were isolated from hAMSCs that overexpressed (Nrf2-sEVs) or silenced (siNrf2-sEVs) Nrf2. We examined the effects of sEVs treatment on lung inflammation in a mouse model of ALI, where LPS was administered intratracheally to mice, and lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed 24 h later. METHODS Histological analysis, immunofluorescence microscopy, western blotting, RT-PCR and ELISA were used to measure the inflammatory response in the lungs and BALF. RESULTS We found that sEVs from hAMSCs are protective in ALI and that Nrf2 overexpression promotes protection against lung disease. Nrf2-sEVs significantly reduced lung injury in LPS-challenged mice, which was associated with decreased apoptosis, reduced infiltration of neutrophils and macrophages, and inhibition of pro-inflammatory cytokine expression. We further show that Nrf2-sEVs act by inhibiting the activation of the NLRP3 inflammasome and promoting the polarization of M2 macrophages. CONCLUSION Our data show that overexpression of Nrf2 protects against LPS-induced lung injury, and indicate that a novel therapeutic strategy using Nrf2-sEVs may be beneficial against ALI.
Collapse
Affiliation(s)
- Lijuan Xu
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Yunlou Zhu
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Congye Li
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Qixing Wang
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Lijie Ma
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Junjie Wang
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| | - Shouqin Zhang
- grid.24516.340000000123704535Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 7th Floor, Building 1, No. 301 Middle Yanchang Road, Jing’an District, Shanghai, 200072 China
| |
Collapse
|
20
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, Hu TY, Wan MH. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9:61. [PMID: 36316787 PMCID: PMC9623953 DOI: 10.1186/s40779-022-00417-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Christopher J Lyon
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Hospital (Airport) of Sichuan University, Chengdu, 610299, China.
| |
Collapse
|
21
|
Analysis of the Relevant Vital Signs and Infection of Sepsis Patients and to Explore the Influencing Factors of Acute Lung Injury/Acute Respiratory Distress Syndrome. CONTRAST MEDIA & MOLECULAR IMAGING 2022. [DOI: 10.1155/2022/7718248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to analyze the relevant vital signs and infection of sepsis patients, the influencing factors of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are explored. A total of 142 sepsis patients admitted to our hospital from January 2019 to January 2022 are divided into an ALI/ARDS group and a non-ALI/ARDS group according to the incidence of ALI/ARDS. Logistic analysis showed that pulmonary/abdominal infection, fungal origin of infection, Acinetobacter baumannii, low oxygenation index, high blood lactic acid value, APACHE II score, SOFA score, and LIPS score are the risk factors for sepsis-induced ALI/ARDS. The results indicate that pulmonary/abdominal infection, fungal origin of infection, Acinetobacter baumannii, low oxygenation index, high blood lactic acid, APACHE II score, SOFA score, and LIPS score are the risk factors for sepsis induced ALI/ARDS.
Collapse
|
22
|
Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS. Front Immunol 2022; 13:971189. [PMID: 36016948 PMCID: PMC9396740 DOI: 10.3389/fimmu.2022.971189] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality. Currently, the primary treatment for ALI/ARDS is mainly symptomatic therapy such as mechanical ventilation and fluid management. Due to the lack of effective treatment strategies, most ALI/ARDS patients face a poor prognosis. The discovery of exosomes has created a promising prospect for the treatment of ALI/ARDS. Exosomes can exert anti-inflammatory effects, inhibit apoptosis, and promote cell regeneration. The microRNA contained in exosomes can participate in intercellular communication and play an immunomodulatory role in ALI/ARDS disease models. This review discusses the possible mechanisms of exosomes in ALI/ARDS to facilitate the development of innovative treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
23
|
Azaryan E, Karbasi S, Zarban A, Naseri M. Cell-free therapy based on stem cell-derived exosomes: A promising approach for wound healing. Wound Repair Regen 2022; 30:585-594. [PMID: 35927607 DOI: 10.1111/wrr.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
There are several successive and overlapping phases in wound healing as a complex process. By the disruption of each of thesephases, chronic non-healing wounds are resultant. Despite the present soothing surgeries, standard wound dressings, and topical gels, the wound is often not completelyclosed. Today, stem cells have attracted a huge deal of attention therapeutically and pharmaceutically considering their unique features. However, they have some restrictions. Moreover, it is hoped to eliminate the limitations of cellular therapies based on their derivatives known as exosomes. Exosomes are extracellular vesicles secreted from cells. They have a diameter of almost 30-150 nm and miRNAs, mRNAs, and proteins that are possibly different from the source cell are included in exosomal contents. Such nanovesicles have a key role in the intercellular communication of pathological and physiological procedures. Exosome-based therapy is a new significant method for wound healing. By exosomes effects, wound management may be improved and a new therapeutic model may be highlighted for cell-free therapies with reduced side effects for the wound repair. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
24
|
Mesenchymal Stem Cells Attenuate Acute Lung Injury in Mice Partly by Suppressing Alveolar Macrophage Activation in a PGE2-Dependent Manner. Inflammation 2022; 45:2000-2015. [PMID: 35699823 DOI: 10.1007/s10753-022-01670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Mesenchymal stem cells (MSCs) have been demonstrated to attenuate acute lung injury (ALI). We also found that they can suppress the activation of alveolar macrophages (AMs), which can partly account for their therapeutic effects. MSCs do not inherently own immunosuppressive effects, when co-cultured with inflammatory immune cells, MSCs can be activated by inflammatory cytokines and meanwhile exert immunosuppressive effects. In order to further research, RNA sequencing (RNA-seq) of MSCs cultured before and after co-culturing with activated macrophages was performed. The data suggested a total of 5268 differentially expressed genes (DEGs) along the process. We used the data of 2754 upregulated DEGs to develop a signaling network of genes and the transcription factors targeting them in order to predict the altered functions of MSCs after exposure to inflammatory stimuli. This constructed network revealed some critical target genes and potential roles of MSCs under inflammatory conditions. According to the network, Ptgs2 was assumed to be an important gene participating in the immunosuppressive effects of MSCs. We also identified significant increases in the expression of COX2 protein and the secretion of PGE2 from MSCs. The use of the COX2 inhibitor NS-398 restrained the secretion of PGE2 and reversed the suppression of macrophage activation by MSCs in vitro. In addition, a selective antagonist of PGE2 binding receptor (EP4 receptor), GW627368X, also reversed the inhibitory effects of MSCs on AMs and the protective effects in ALI mouse. In summary, the therapeutic effects of MSCs on ALI partly occur through suppressing AM activation via PGE2 binding to EP4 receptor.
Collapse
|
25
|
Alveolar macrophage-derived exosomal tRF-22-8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury. Int Immunopharmacol 2022; 107:108690. [PMID: 35299002 DOI: 10.1016/j.intimp.2022.108690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alveolar macrophages (AMs) play a demonstrative role in acute lung injury (ALI). Exosomes act as signaling molecules to regulate cell-to-cell communication by releasing RNAs. Transfer RNA-derived fragments (tRFs) possess potential functions in multiple diseases through ferroptosis. The present study aims to reveal the role of AM-derived exosomal tRFs in ALI and to identify the relationship to ferroptosis. METHODS ALI mice model was established by lipopolysaccharide (LPS) induction. RNA sequencing was performed to identify the tRFs profile in bronchoalveolar lavage fluid (BALF) exosomes of ALI mice. After interfering with the expression of candidate tRFs in AMs or alveolar epithelial cells (MLE-12), the effect of oxidative stress and expression of ferroptosis-related proteins were detected. RESULTS Exosomes isolated from BALF of ALI mice were dominated by a macrophage immunophenotype. RNA-sequencing identified 4 up- and 10 down-regulated differentially expressed tRFs (DEtRFs), among which tRF-22-8BWS7K092 expression was significantly increased in LPS-induced macrophage-derived exosomes (LPS-exo). Hippo signaling pathway was the most significantly enriched KEGG pathways for DEtRFs. LPS-exo inhibited cell viability and the expression of GPX4 and FTH1, and enhanced oxidative stress in MLE-12 cells. Ferroptosis inhibitor reversed the inhibition of LPS-exo on cell viability and tRF-22-8BWS7K092 inhibitor rescued above effect of LPS-exo on MLE-12 cells. Besides, tRF-22-8BWS7K092 could activate Hippo signaling pathway by binding Wnt5B, inducing ferroptosis in MLE-12 cells. CONCLUSION BALF exosomes of ALI mice were mainly derived from AMs. AM-derived exosomal tRF-22-8BWS7K092 activates the Hippo signaling pathway to induce ferroptosis, thus contributing to the pathogenesis of ALI.
Collapse
|
26
|
Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J Cell Physiol 2022; 237:2078-2094. [PMID: 35137416 DOI: 10.1002/jcp.30699] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) impacts more than one-third of the population and is linked with other metabolic diseases. The term encompasses a wide spectrum of diseases, from modest steatosis to nonalcoholic steatohepatitis, fibrosis and, ultimately, cirrhosis with the potential for development of hepatocellular carcinoma. Currently, available methods for diagnosing NAFLD are invasive or lack accuracy, and monitoring to determine response to therapeutic interventions is challenging. Exosomes are nano-scaled extracellular vesicles that are secreted by a variety of cells. They convey proteins, mRNA, miRNA, and other bioactive molecules between cells and are involved in an extensive range of biological processes, particularly cell-cell communication. Several reports suggest that exosomes mediate miRNAs and, thus, they have potential clinical utility for diagnosis, prognosis, and therapeutics in liver diseases. In view of the vital role of exosomal microRNA in disease, we here synthesized current knowledge about the biogenesis of exosomal miRNA and exosome-mediated microRNA transfer. We then discuss the potential of exosomal miRNA in diagnosis and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
28
|
Li X, Chu Q, Wang H. MicroRNA-16 regulates lipopolysaccharide-induced inflammatory factor expression by targeting TLR4 in normal human bronchial epithelial cells. Exp Ther Med 2021; 22:982. [PMID: 34345264 PMCID: PMC8311244 DOI: 10.3892/etm.2021.10414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by inflammation and is associated with high mortality rates. Emerging evidence has suggested that microRNAs (miRNAs or miRs) serve a significant function in ALI. However, the fundamental mechanism underlying ALI remain to be fully elucidated. Although miR-16 has been reported to be involved in the occurrence and development of a number of diseases its association with ALI has not been previously investigated. Therefore, the present study aimed to explore the role of miR-16 in the lipopolysaccharide (LPS)-induced ALI model. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were measured by ELISA in the blood samples of rats with ALI and in the normal human bronchial epithelial (NHBE) cell line. The role of miR-16 in inflammation was evaluated using gene overexpression and silencing experiments in NHBE cells by reverse transcription-quantitative PCR. In addition, the expression levels of inflammatory factors TNF-α, IL-1β and IL-6 were also determined using ELISA. The potential interaction between miR-16 and TLR4 was assessed using bioinformatics analysis by the TargetScan database and then verified in 293T cells using luciferase reporter assay. The expression of miR-16 was notably decreased in the lung tissues of rats with LPS-induced ALI compared with the PBS treated-group. Additionally, the levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 were reduced following transfection of NHBE cells with miR-16 mimics compared with those in the miR-negative control group. Western blot analysis revealed that miR-16 overexpression could downregulate TLR4 expression in NHBE cells compared with that in the miR-NC group. Luciferase reporter assay confirmed that TLR4 may be directly targeted by miR-16. The effect of miR-16 on TLR4 was rescued in NHBE cells following treatment with LPS. Overall, these aforementioned findings suggest that miR-16 may serve a protective role against LPS-mediated inflammatory responses in NHBE cells by regulating TLR4, where this mechanism may be considered to be a novel approach for treating ALI in the future.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
29
|
Zhou Y, Zhao B, Zhang XL, Lu YJ, Lu ST, Cheng J, Fu Y, Lin L, Zhang NY, Li PX, Zhang J, Zhang J. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther 2021; 12:257. [PMID: 33933157 PMCID: PMC8088044 DOI: 10.1186/s13287-021-02287-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cutaneous wound healing and regeneration have become a recognized health challenge in the world, which causes severe damage to the mental and physical health of patients. Human adipose-derived mesenchymal stem cells (hADSC) play an essential role in wound healing via their paracrine function. Exosomes secreted by hADSC may contribute to this progress. In this study, we investigated the potential clinical application roles of hADSC and hADSC-derived exosomes (hADSC-Exo) in cutaneous wound healing. Methods hADSC-Exo was isolated from human hADSC by ultracentrifugation. Mice were subjected to a full-thickness skin biopsy experiment and treated with either control vehicle or hADSC or hADSC-Exo by smearing administration (sm) or subcutaneous administration (sc) or intravenous administration (iv). The efficacy of hADSC and hADSC-Exo on wound healing was evaluated by measuring wound closure rates, histological analysis. Results Combined application of local hADSC-Exo smearing and hADSC/hADSC-Exo intravenous administration offered the additional benefit of promoting wound healing, accelerating re-epithelialization, reducing scar widths, and enhancing angiogenesis and collagen synthesis. Either topical application of hADSC-Exo or systemic administration with hADSC/hADSC-Exo appeared more effective in stimulating cell proliferation, inhibiting cell apoptosis and inflammation, and promoting skin elasticity and barrier integrity, with increased genes expression of PCNA, VEGF, collagen III, Filaggrin, Loricrin, and AQP3, with decreased genes expression of TNF-alpha. Conclusion Our findings suggest that the combined administration of hADSC/hADSC-Exo can facilitate cutaneous wound healing and reduce scar formation. These data provide the first evidence for the feasibility of smearing of hADSC-Exo as a cell-free therapy in treating cutaneous wounds, and the potential clinical value of combined administration of hADSC/hADSC-Exo. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02287-9.
Collapse
Affiliation(s)
- Yang Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bo Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Xin-Liao Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yi-Jun Lu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shou-Tao Lu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jian Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Lin Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ning-Yan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Pei-Xin Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, Shanghai, 200065, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China. .,Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, China.
| | - Jun Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China. .,Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
30
|
Millar JE, Suen JY, McAuley DF. Reply to Zhang and Hei: Mesenchymal Stem Cell-derived Exosomes: Are They Another Therapeutic Method for Extracorporeal Membrane Oxygenation-supported Acute Respiratory Distress Syndrome? Am J Respir Crit Care Med 2020; 202:1603-1604. [PMID: 32903045 PMCID: PMC7706150 DOI: 10.1164/rccm.202007-2995le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jonathan E. Millar
- University of Edinburgh, Edinburgh, United Kingdom
- University of Queensland, Brisbane, Queensland, Australiaand
| | - Jacky Y. Suen
- University of Queensland, Brisbane, Queensland, Australiaand
| | | | - on behalf of all the authors
- University of Edinburgh, Edinburgh, United Kingdom
- University of Queensland, Brisbane, Queensland, Australiaand
- Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|