1
|
Bojja SL, Anand S, Minz RW, Medhi B. Metformin alleviates reactive gliosis and neurodegeneration, improving cognitive deficit in a rat model of temporal lobe epilepsy. Brain Res 2024; 1844:149138. [PMID: 39134259 DOI: 10.1016/j.brainres.2024.149138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Cognitive impairment is a prevalent co-morbidity associated with epilepsy. Emerging studies indicate that neuroinflammation could be a possible link between epilepsy and its comorbidities, including cognitive impairment. In this context, the roles of glial activation, proinflammatory mediators, and neuronal death have been well studied and correlated with epilepsy-associated cognitive impairment in animal studies. While recent reports have demonstrated the anti-epileptogenic and anti-convulsant actions of metformin, its effect on epilepsy associated cognitive deficit remains unknown. Therefore, the current study investigated the effect of metformin treatment on neuroinflammation, neurodegeneration, and cognitive deficits after inducing status epilepticus (SE) with lithium-pilocarpine in rats. Metformin treatment improved the hippocampal-dependent spatial and recognition memory in Morris water maze and Novel object recognition tasks, respectively. Further, metformin treatment attenuated microglial and astroglial activation, accompanied by reduced IL-1β, COX-2 and NF-ĸβ gene expression. Additionally, metformin conferred neuroprotection by inhibiting the neuronal death as assessed by Nissl staining and transmission electron microscopy. These findings suggest that metformin holds promise as a therapeutic intervention for cognitive impairment associated with epilepsy, possibly through its modulation of glial activation and neuronal survival. Further research is needed to elucidate the precise mechanisms and to assess the long-term effect of metformin in epilepsy-associated cognitive impairment.
Collapse
Affiliation(s)
- Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
2
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Li YX, Guo W, Chen RX, Lv XR, Li Y. The relationships between obesity and epilepsy: A systematic review with meta-analysis. PLoS One 2024; 19:e0306175. [PMID: 39121110 PMCID: PMC11315312 DOI: 10.1371/journal.pone.0306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/12/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVE There is ongoing debate regarding the association between epilepsy and obesity. Thus, the aim of this study was to examine the correlation between epilepsy and obesity. METHOD This study adhered to the PRISMA guidelines for systematic reviews and meta-analyses. On The Prospero website, this study has been successfully registered (CRD42023439530), searching electronic databases from the Cochr-ane Library, PubMed, Web of Sciences and Embase until February 10, 2024.The search keywords included "Epilepsy", "Obesity", "Case-Control Studies", "cohort studies", "Randomized Controlled Trial" and "Cross-Sectional Studies". The medical subject headings(MeSH) of PubMed was utilized to search for relevant subject words and free words, and a comprehensive search strategy was developed. Two reviewers conducted article screening, data extraction and bias risk assessment in strict accordance with the predefined criteria for including and excluding studies. The predefined inclusion criteria were as follows: 1) Inclusion of case-control, cohort, randomized controlled trial, and cross-sectional studies; 2) Segregation of subjects into epileptic patients and healthy controls; 3)Obesity as the outcome measure; 4) Availability of comprehensive data; 5) Publication in English. The exclusion criteria were as follows: 1) Exclusion of animal experiments, reviews, and other types of studies; 2) Absence of a healthy control group; 3) Incomplete data; 4) Unextractable or unconvertible data; 5) Low quality, indicated by an Agency for Healthcare Research and Quality(AHRQ) score of 5 or lower,or a Newcastle-Ottawa Scale (NOS) score less than 3. The subjects included in the study included adults and children, and the diagnostic criteria for obesity were used at different ages. In this study, obesity was defined as having a body mass index(BMI) of 25 kg/m2 or higher in adults and being above the 85th percentile of BMI for age in children. We used obesity as an outcome measure for meta-analysis using RevMan, version 5.3. RESULTS A meta-analysis was conducted on a total of 17 clinical studies, which involved 5329 patients with epilepsy and 480837 healthy controls. These studies were selected from a pool of 1497 articles obtained from four electronic databases mentioned earlier. Duplicate studies were removed based on the search strategies employed. No significant heterogeneity was observed in the outcome measure of obesity in epileptic patients compared with healthy controls(p = 0.01,I2 = 49%). Therefore, a fixed effects model was utilized in this study. The findings revealed a significant difference in obesity prevalence between patients with epilepsy and healthy controls(OR = 1.28, 95%CI: 1.20-1.38, p<0.01). CONCLUSION The results of this meta-analysis indicate that epilepsy patients are more prone to obesity than healthy people, so we need to pay attention to the problem of post-epilepsy obesity clinically. Currently, there is a scarcity of largescale prospective studies. Additional clinical investigations are warranted to delve deeper into whether obesity is a comorbidity of epilepsy and whether obesity can potentially trigger epilepsy.
Collapse
Affiliation(s)
- Yu-xuan Li
- Clinical Medical School, Dali University, Dali, China
| | - Wang Guo
- Clinical Medical School, Dali University, Dali, China
| | - Ruo-xia Chen
- Clinical Medical School, Dali University, Dali, China
| | - Xue-rui Lv
- Clinical Medical School, Dali University, Dali, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
4
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
5
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Anticonvulsant Effects of Royal Jelly in Kainic Acid-Induced Animal Model of Temporal Lobe Epilepsy Through Antioxidant Activity. Neurochem Res 2023; 48:2187-2195. [PMID: 36856963 DOI: 10.1007/s11064-023-03897-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of partial and drug-resistant epilepsy, characterized by recurrent seizures originating from temporal lobe structures like the hippocampus. Hippocampal sclerosis and oxidative stress are two important factors in the pathogenesis of TLE that exacerbate epileptic seizures in this form of epilepsy. Recently, royal jelly (RJ) shown to have neuroprotective and antioxidant activities in several neurodegenerative models. Therefore, the aim of the present study was to investigate the pretreatment effect of RJ on epileptic seizures, hippocampal neuronal loss, and oxidative stress in the rat model of kainic acid (KA)-induced TLE. To this aim, 40 male Wistar rats weighing 200-250 g were divided into 4 groups, including control, vehicle, KA, and RJ + KA. Rats received RJ (150 mg/kg/day) for 14 days before induction of TLE with KA. Epileptic behaviors were evaluated according to Racine's scale. Oxidative stress markers including, malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC) as well as neuronal loss in the CA1 region of the hippocampus (using Nissl staining) were evaluated in all groups. Our findings showed that RJ pretreatment significantly reduced the seizure score and increased the latency to the first seizure. RJ also reduced MDA and TOS while increasing TAC. In addition, RJ reversed neuronal damage in the hippocampal CA1 and CA3 areas. In conclusion, our results suggest that RJ has anticonvulsant and neuroprotective effects in KA induced TLE via its antioxidative properties.
Collapse
|
7
|
Alpha-Pinene Exerts Antiseizure Effects by Preventing Oxidative Stress and Apoptosis in the Hippocampus in a Rat Model of Temporal Lobe Epilepsy Induced by Kainate. Mol Neurobiol 2023; 60:3227-3238. [PMID: 36840843 DOI: 10.1007/s12035-023-03274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Oxidative stress and apoptosis following seizures play pivotal roles in the consequences of repeated seizures. Beneficial effects of alpha-pinene (APN) have been reported in some experimental models of neurodegenerative diseases. However, its neuroprotective efficacy in a rat model of temporal lobe epilepsy (TLE) induced by kainic acid (KA) has remained unexplored. We aimed to explore the possible antiseizure effects of APN pretreatment and underlying molecular mechanisms in a rat model of TLE induced by KA. TLE was induced in male Wistar rats by intracerebroventricular injection of KA. APN at a dose of 50 mg/kg/day was intraperitoneally injected for 2 weeks before induction of TLE. One day after the induction of TLE, behavioral expressions of seizure were recorded and scored using Racine's scale. Furthermore, the hippocampal levels of oxidative stress markers, B-cell lymphoma 2 (Bcl2), BCL2-associated X protein (BAX), and c-Jun N-terminal kinase (JNK) protein levels were also assessed. Histopathological assessment in the hippocampus was performed with Nissl staining 5 days following induction of TLE. The results revealed that APN pretreatment alleviated epileptic seizures, diminished oxidative stress indicators, blocked the mitochondrial apoptotic pathway via decreasing BAX and raising BCL2 protein levels in the hippocampus at least partly through inhibiting JNK activity, and decreased neuronal death in the CA3 and hilus regions. These findings reveal that APN pretreatment mitigates KA-induced seizures by blocking oxidative stress and neuronal damage factors. It can be concluded that APN has a potent potential to be considered an antiseizure medication, but it needs further investigation.
Collapse
|
8
|
Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed Pharmacother 2022; 156:113686. [DOI: 10.1016/j.biopha.2022.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
9
|
A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022; 101:253-261. [PMID: 36116284 DOI: 10.1016/j.seizure.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action. OBJECTIVE This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process. METHODS Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised. RESULTS This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment. CONCLUSION Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.
Collapse
|
10
|
Orrego MA, Verastegui MR, Vasquez CM, Garcia HH, Nash TE. Proliferative cells in racemose neurocysticercosis have an active MAPK signalling pathway and respond to metformin treatment. Int J Parasitol 2022; 52:377-383. [PMID: 35182540 PMCID: PMC9038666 DOI: 10.1016/j.ijpara.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Racemose neurocysticercosis is an aggressive infection caused by the aberrant expansion of the cyst form of Taenia solium within the subarachnoid spaces of the human brain and spinal cord, resulting in the displacement of the surrounding host tissue and chronic inflammation. We previously demonstrated that the continued growth of the racemose bladder wall is associated with the presence of mitotically active cells but the nature and control of these proliferative cells are not well understood. Here, we demonstrated by immunofluorescence that the racemose cyst has an active mitogen-activated protein kinases (MAPK) signalling pathway that is inhibited after treatment with metformin, which reduces racemose cell proliferation in vitro, and reduces parasite growth in the murine model of Taenia crassiceps cysticercosis. Our findings indicate the importance of insulin receptor-mediated activation of the MAPK signalling pathway in the proliferation and growth of the bladder wall of the racemose cyst and its susceptibility to metformin action. The antiproliferative action of metformin may provide a new therapeutic approach against racemose neurocysticercosis.
Collapse
Affiliation(s)
- Miguel A Orrego
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Avenida Honorio Delgado 430, Urb. Ingenieria, SMP. Lima 31, Perú.
| | - Manuela R Verastegui
- Infectious Diseases Research Laboratory, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Avenida Honorio Delgado 430, Urb. Ingenieria, SMP. Lima 31, Perú
| | - Carlos M Vasquez
- Department of Neurosurgery, Instituto Nacional de Ciencias Neurológicas. Jirón Ancash 1270, Barrios Altos. Lima 01, Perú
| | - Hector H Garcia
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Avenida Honorio Delgado 430, Urb. Ingenieria, SMP. Lima 31, Perú; Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas. Jirón Ancash 1270, Barrios Altos. Lima 01, Perú
| | - Theodore E Nash
- Laboratory of Immunopathology in Neurocysticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Avenida Honorio Delgado 430, Urb. Ingenieria, SMP. Lima 31, Perú
| | | |
Collapse
|
11
|
Zhao S, Liu F, Shi W, Wang J, Zhou Z, Zhang X. DL-3-n-butylphthalide promotes hippocampal neurogenesis and reduces mossy fiber sprouting in chronic temporal lobe epilepsy rats. BMC Neurol 2022; 22:3. [PMID: 34979964 PMCID: PMC8722179 DOI: 10.1186/s12883-021-02516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can alleviate cognitive impairment in ischemic stroke and Alzheimer’s disease by promoting neurogenesis. DL-NBP treatment can also improve cognitive function and reduce seizure incidence in chronic epileptic mice. However, the mechanisms of action of DL-NBP remain unclear. The aim of the present study was to examine the effects of DL-NBP on mossy fiber sprouting, hippocampal neurogenesis, spontaneous epileptic seizures, and cognitive functioning in the chronic phase of TLE. Methods Nissl staining was used to evaluate hippocampal injury, while immunofluorescent staining was used to analyze hippocampal neurogenesis. The duration of spontaneous seizures was measured by electroencephalography. The Morris water maze was used to evaluate cognitive function. Timm staining was used to assess mossy fiber sprouting. Results TLE animals showed reduced proliferation of newborn neurons, cognitive dysfunction, and spontaneous seizures. Treatment with DL-NBP after TLE increased the proliferation and survival of newborn neurons in the dentate gyrus, reversed the neural loss in the hippocampus, alleviated cognitive impairments, and decreased mossy fiber sprouting and long-term spontaneous seizure activity. Conclusions We provided pathophysiological and morphological evidence that DL-NBP might be a useful therapeutic for the treatment of TLE.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Fangxi Liu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Wei Shi
- Department of Neurology, Tacheng District People's Hospital, Tacheng, 834700, Xinjiang, China
| | - Jialu Wang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
12
|
Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021; 22:ijms22105351. [PMID: 34069559 PMCID: PMC8160983 DOI: 10.3390/ijms22105351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is a drug in the family of biguanide compounds that is widely used in the treatment of type 2 diabetes (T2D). Interestingly, the therapeutic potential of metformin expands its prescribed use as an anti-diabetic drug. In this sense, it has been described that metformin administration has beneficial effects on different neurological conditions. In this work, we review the beneficial effects of this drug as a neuroprotective agent in different neurological diseases, with a special focus on epileptic disorders and Lafora disease, a particular type of progressive myoclonus epilepsy. In addition, we review the different proposed mechanisms of action of metformin to understand its function at the neurological level.
Collapse
|