1
|
Wang YP, Zhang RQ, Li N, Wang QS, Yu K, Fan M, Zhang XW, Feng LX, Liu X. The involvement and possible targeting of cardiolipins degradation and disturbed linoleic acid metabolism in cardiac atrophy under cancer cachexia. Eur J Pharmacol 2024; 985:177108. [PMID: 39515561 DOI: 10.1016/j.ejphar.2024.177108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cardiac atrophy is one of the critical characteristics of cancer cachexia though its mechanisms had not been fully clarified. In the present study, to study the mechanisms of cardiac atrophy in cancer cachexia and search for possible drug targets, cancer cachexia mice bearing C26 colon tumor cells and cultured H9c2 cardiomyocytes induced with simulated cancer cachexia injuries were used as in vivo and in vitro model, respectively. Results of both spatial metabolomics and LC-MS non-targeted metabolomics analysis of heart tissues suggested the disturbance of glycerophospholipid and fatty acid metabolism in the cancer cachexia hearts. Results of lipidomic analysis confirmed that the fatty acid composition of glycerophospholipids changed and the levels of linoleic acid (LA)-rich cardiolipins (CLs) significantly decreased. GC-MS analysis of fatty acids profile confirmed that the level of LA significantly increased and the ratio value of ω-6/ω-3 polyunsaturated fatty acids (PUFA) also increased in the cancer cachexia hearts. In H9c2 cardiomyocytes induced by simulated cancer cachexia injuries, degradation of CLs were also observed. Furthermore, SS-31, a tetrapeptide targeting CLs, could protect the H9c2 cardiomyocytes under simulated cancer cachexia injury by ameliorating the degradation of CLs, inhibiting apoptosis and attenuating the decrease in cell size. Collectively, these results have provided new insights into the cardiac atrophy in cancer cachexia, in which degradation of glycerophospholipids such as CLs and increase in LA and AA-related oxylipins might be important contributing factors and possible therapy targets.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Qin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nan Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiong-Sen Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Li-Xing Feng
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, China.
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Mancini A, Orlandella FM, Vitucci D, Luciano N, Alfieri A, Orrù S, Salvatore G, Buono P. Exercise's impact on lung cancer molecular mechanisms: a current overview. Front Oncol 2024; 14:1479454. [PMID: 39555455 PMCID: PMC11563951 DOI: 10.3389/fonc.2024.1479454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Lung cancer is the major cause of cancer-related deaths worldwide with an estimated 1.8 million deaths and 2.4 million new cases in 2022. Poor cardiorespiratory fitness, dyspnea and fatigue are the common features in lung cancer patients, partially limiting the exercise prescription. Exercise improves cardiorespiratory and muscular fitness and reduces the risk of some types of cancer, including lung cancer. Recently, the American Society of Clinical Oncology has encouraged preoperative exercise for lung cancer patients. Nonetheless, only limited data, mostly obtained from mouse models of lung cancer, are available on the molecular effects of exercise in lung cancer. Thus, the present minireview aims to shed light on the molecular mechanisms induced by different type of exercise in lung cancer. In particular, the role of the exercise in tumor microenvironment remodeling, angiogenesis, gene expression, apoptosis and intermediate metabolism will be examined.
Collapse
Affiliation(s)
- Annamaria Mancini
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Francesca Maria Orlandella
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Daniela Vitucci
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Neila Luciano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Andreina Alfieri
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Stefania Orrù
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Giuliana Salvatore
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| | - Pasqualina Buono
- Department of Medical, Human Movement and Well-being Sciences, University Parthenope, Naples, Italy
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
| |
Collapse
|
3
|
Silva J, Azevedo T, Ginja M, Oliveira PA, Duarte JA, Faustino-Rocha AI. Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination. J Imaging 2024; 10:219. [PMID: 39330439 PMCID: PMC11433567 DOI: 10.3390/jimaging10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac function in these animals. However, there is insufficient standardization of echocardiographic measurements for smaller animals. This article aims to address this gap by providing a guide and practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography has become a highly sophisticated imaging modality, offering high temporal and spatial resolution imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of small animals. Moreover, it allows the assessment of cardiac complications associated with aging, cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic interventions in preclinical models, providing important information for translational research. Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the need for continued standardization to advance research and improve clinical outcomes to facilitate early disease detection and the translation of findings into clinical practice.
Collapse
Affiliation(s)
- Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mário Ginja
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Alberto Duarte
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory (1H-TOXRUN), University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.S.); (T.A.); (M.G.); (P.A.O.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center (CHRC), University of Évora, 7004-516 Évora, Portugal
| |
Collapse
|
4
|
Wu L, Li ZZ, Yang H, Cao LZ, Wang XY, Wang DL, Chatterjee E, Li YF, Huang G. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. Basic Res Cardiol 2024:10.1007/s00395-024-01076-8. [PMID: 39158697 DOI: 10.1007/s00395-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
Collapse
Affiliation(s)
- Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Basic Medical Science, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Zhi-Zheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Ying Wang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong-Liang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
5
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
6
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
7
|
Qin B, He Z, Xie L, Feng S, Ye J, Gui J, Sun X, Sang M. The augmentation of cytotoxic immune cell functionality through physical exertion bolsters the potency of chemotherapy in models of mammary carcinoma. Cancer Med 2024; 13:e6951. [PMID: 38234174 PMCID: PMC10905332 DOI: 10.1002/cam4.6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mammary carcinoma, a pervasive and potentially lethal affliction, is conjectured to be profoundly influenced by physical exercise, both in prophylaxis and therapeutic contexts. This study endeavors to explore the repercussions of exercise training on the progression of mammary carcinoma, particularly the mechanisms by which the amalgamation of an exercise regimen and doxorubicin induces tumor cell apoptosis. METHODS Female BALB/c mice were categorized into four distinct groups: A sedentary group (SED), an exercise group (Ex), a doxorubicin group (Dox, 5 mg/kg), and a combined treatment group (Dox + Ex). The exercise training lasted for 21 days and included aerobic rotarod exercise and resistance training. The impact of exercise training on tumor growth, immune cell proportions, inflammatory factor levels, and cell apoptosis pathway was assessed. RESULTS Exercise training significantly curtailed tumor growth in a mouse model of breast cancer. Both the Ex and Dox groups exhibited significant reductions in tumor volume and weight (p < 0.01) in comparison to the SED group, while the Dox + Ex group had a significantly lower tumor volume and weight than the Dox group (p < 0.01). Exercise training also significantly increased the proportion of NK and T cells in various parts of the body and tumor tissue, while decreasing tumor blood vessels density. Exercise training also increased IL-6 and IL-15 levels in the blood and altered the expression of apoptosis-related proteins in tumor tissue, with the combined treatment group showing even more significant changes. CONCLUSIONS Physical training improves the effectiveness of doxorubicin in treating breast cancer by activating cytotoxic immune cells, releasing tumor suppressor factors, and initiating mt-apoptosis, all while mitigating the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Bingqing Qin
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Zhongshi He
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Lixia Xie
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Shenglan Feng
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Junjie Ye
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Jianjun Gui
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Xiaodong Sun
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| | - Ming Sang
- Research Center for Translational Medicine, Department of Oncology, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
| |
Collapse
|
8
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
9
|
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023; 12:17706-17717. [PMID: 37654192 PMCID: PMC10524052 DOI: 10.1002/cam4.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
SIGNIFICANCE Two of the leading causes of death worldwide are cancer and cardiovascular diseases. Most cancer patients suffer from a metabolic wasting syndrome known as cancer-induced cardiac cachexia, resulting in death in up to 30% of cancer patients. Main symptoms of this disease are severe cardiac muscle wasting, cardiac remodeling, and cardiac dysfunction. Metabolic alterations, increased inflammation, and imbalance of protein homeostasis contribute to the progression of this multifactorial syndrome, ultimately resulting in heart failure and death. Cancer-induced cardiac cachexia is associated with decreased quality of life, increased fatiguability, and decreased tolerance to therapeutic interventions. RECENT ADVANCES While molecular mechanisms of this disease are not fully understood, researchers have identified different stages of progression of this disease, as well as potential biomarkers to detect and monitor the development. Preclinical and clinical studies have shown positive results when implementing certain pharmacological and non-pharmacological therapy interventions. CRITICAL ISSUES There are still no clear diagnostic criteria for cancer-mediated cardiac cachexia and the condition remains untreated, leaving cancer patients with irreversible effects of this syndrome. While traditional cardiovascular therapy interventions, such as beta-blockers, have shown some positive results in preclinical and clinical research studies, recent preclinical studies have shown more successful results with certain non-traditional treatment options that have not been further evaluated yet. There is still no clinical standard of care or approved FDA drug to aid in the prevention or treatment of cancer-induced cardiac cachexia. This review aims to revisit the still not fully understood pathophysiological mechanisms of cancer-induced cardiac cachexia and explore recent studies using novel treatment strategies. FUTURE DIRECTIONS While research has progressed, further investigations might provide novel diagnostic techniques, potential biomarkers to monitor the progression of the disease, as well as viable pharmacological and non-pharmacological treatment options to increase quality of life and reduce cancer-induced cardiac cachexia-related mortality.
Collapse
Affiliation(s)
- Louisa Tichy
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Traci L. Parry
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
10
|
Poetsch MS, Palus S, Van Linthout S, von Haehling S, Doehner W, Coats AJS, Anker SD, Springer J. The small molecule ACM-001 improves cardiac function in a rat model of severe cancer cachexia. Eur J Heart Fail 2023; 25:673-686. [PMID: 36999379 DOI: 10.1002/ejhf.2840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
AIMS Cachexia, a common manifestation of malignant cancer, is not only associated with weight loss, but also with severe cardiac atrophy and impaired cardiac function. Here, we investigated the effects of ACM-001 (0.3 or 3 mg/kg/day) in comparison to carvedilol (3 or 30 mg/kg/day), metropolol (50 or 100 mg/kg/day), nebivolol (1 or 10 mg/kg/day) and tertatolol (0.5 or 5 mg/kg/day) on cardiac mass and function in a rat cancer cachexia model. METHODS AND RESULTS Young male Wistar Han rats were inoculated i.p. with 108 Yoshida hepatoma AH-130 cells and treated once daily with verum or placebo by gavage. Cardiac function (echocardiography), body weight and body composition (nuclear magnetic resonance scans) were assessed. The hearts of animals were euthanized on day 11 (placebo and 3 mg/kg/day ACM-001) were used for signalling studies. Beta-blockers had no effect on tumour burden. ACM-001 reduced body weight loss (placebo: -34 ± 2.4 g vs. 3 mg/kg/day ACM-001: -14.8 ± 8.4 g, p = 0.033). Lean mass wasting was attenuated (placebo: -16.5 ± 2.34 g vs. 3 mg/kg/day ACM-001: -2.4 ± 6.7 g, p = 0.037), while fat loss was similar (p = 0.4) on day 11. Placebo animals lost left ventricular mass (-101 ± 14 mg), which was prevented only by 3 mg/kg/day ACM-001 (7 ± 25 mg, p < 0.01 vs. placebo). ACM-001 improved the ejection fraction (EF) (ΔEF: placebo: -24.3 ± 2.6 vs. 3 mg/kg/day ACM-001: 0.1 ± 2.9, p < 0.001). Cardiac output was 50% lower in the placebo group (-41 ± 4 ml/min) compared to baseline, while 3 mg/kg/day ACM-001 preserved cardiac output (-5 ± 8 ml/min, p < 0.01). The molecular mechanisms involved inhibition of protein degradation and activation of protein synthesis pathways. CONCLUSION This study shows that 3 mg/kg/day ACM-001 restores the anabolic/catabolic balance in cardiac muscle leading to improved function. Moreover, not all beta-blockers have similar effects.
Collapse
Affiliation(s)
- Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Goettingen (UMG), Goettingen, Germany
| | - Wolfram Doehner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
12
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
13
|
Review of Mechanisms and Treatment of Cancer-Induced Cardiac Cachexia. Cells 2022; 11:cells11061040. [PMID: 35326491 PMCID: PMC8947347 DOI: 10.3390/cells11061040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a multifactorial, paraneoplastic syndrome that impacts roughly half of all cancer patients. It can negatively impact patient quality of life and prognosis by causing physical impairment, reducing chemotherapy tolerance, and precluding them as surgical candidates. While there is substantial research on cancer-induced skeletal muscle cachexia, there are comparatively fewer studies and therapies regarding cardiac cachexia in the setting of malignancy. A literature review was performed using the PubMed database to identify original articles pertaining to cancer-induced cardiac cachexia, including its mechanisms and potential therapeutic modalities. Seventy studies were identified by two independent reviewers based on inclusion and exclusion criteria. While there are multiple studies addressing the pathophysiology of cardiac-induced cancer cachexia, there are no studies evaluating therapeutic options in the clinical setting. Many treatment modalities including nutrition, heart failure medication, cancer drugs, exercise, and gene therapy have been explored in in vitro and mice models with varying degrees of success. While these may be beneficial in cancer patients, further prospective studies specifically focusing on the assessment and treatment of the cardiac component of cachexia are needed.
Collapse
|
14
|
Saha S, Singh PK, Roy P, Kakar SS. Cardiac Cachexia: Unaddressed Aspect in Cancer Patients. Cells 2022; 11:cells11060990. [PMID: 35326441 PMCID: PMC8947289 DOI: 10.3390/cells11060990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived cachectic factors such as proinflammatory cytokines and neuromodulators not only affect skeletal muscle but also affect other organs, including the heart, in the form of cardiac muscle atrophy, fibrosis, and eventual cardiac dysfunction, resulting in poor quality of life and reduced survival. This article reviews the holistic approaches of existing diagnostic, pathophysiological, and multimodal therapeutic interventions targeting the molecular mechanisms that are responsible for cancer-induced cardiac cachexia. The major drivers of cardiac muscle wasting in cancer patients are autophagy activation by the cytokine-NFkB, TGF β-SMAD3, and angiotensin II-SOCE-STIM-Ca2+ pathways. A lack of diagnostic markers and standard treatment protocols hinder the early diagnosis of cardiac dysfunction and the initiation of preventive measures. However, some novel therapeutic strategies, including the use of Withaferin A, have shown promising results in experimental models, but Withaferin A’s effectiveness in human remains to be verified. The combined efforts of cardiologists and oncologists would help to identify cost effective and feasible solutions to restore cardiac function and to increase the survival potential of cancer patients.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Praveen Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (S.S.); (P.K.S.)
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India;
| | - Sham S. Kakar
- Department of Physiology and Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-0812
| |
Collapse
|
15
|
Bordignon C, dos Santos BS, Rosa DD. Impact of Cancer Cachexia on Cardiac and Skeletal Muscle: Role of Exercise Training. Cancers (Basel) 2022; 14:cancers14020342. [PMID: 35053505 PMCID: PMC8773522 DOI: 10.3390/cancers14020342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cachexia is a syndrome that can be present in many patients diagnosed with cancer, especially in those with metastatic or very advanced tumors. The patient may present with weight loss, loss of muscle mass, and even cardiac dysfunction as a result of it. The aim of this review is to understand how cachexia manifests and whether physical exercise has any role in trying to prevent or reverse this syndrome in cancer patients. Abstract Cachexia is a multifactorial syndrome that presents with, among other characteristics, progressive loss of muscle mass and anti-cardiac remodeling effect that may lead to heart failure. This condition affects about 80% of patients with advanced cancer and contributes to worsening patients’ tolerance to anticancer treatments and to their premature death. Its pathogenesis involves an imbalance in metabolic homeostasis, with increased catabolism and inflammatory cytokines levels, leading to proteolysis and lipolysis, with insufficient food intake. A multimodal approach is indicated for patients with cachexia, with the aim of reducing the speed of muscle wasting and improving their quality of life, which may include nutritional, physical, pharmacologic, and psychological support. This review aims to outline the mechanisms of muscle loss, as well as to evaluate the current clinical evidence of the use of physical exercise in patients with cachexia.
Collapse
Affiliation(s)
- Cláudia Bordignon
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
| | - Bethânia S. dos Santos
- Department of Clinical Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20560-121, Brazil;
- Rede D’Or São Luiz, Rio de Janeiro 22271-110, Brazil
| | - Daniela D. Rosa
- Oncology Center, Hospital Moinhos de Vento, Porto Alegre 90560-030, Brazil;
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-070, Brazil
- Brazilian Breast Cancer Study Group (GBECAM), Porto Alegre 90619-900, Brazil
- Correspondence:
| |
Collapse
|
16
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|