1
|
Al Assaad M, Hadi K, Tu J, Levine MF, Patel M, Deshpande A, Manohar J, Sigouros M, Sboner A, Chapman-Davis E, Elemento O, Holcomb K, Boyraz B, Mosquera JM. Enhancing the detection of clinically relevant biomarkers in advanced uterine and tubo-ovarian carcinomas through genome-wide analysis. Pathol Res Pract 2024; 266:155773. [PMID: 39673888 DOI: 10.1016/j.prp.2024.155773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Advanced-stage tube-ovarian cancers (TOC) and uterine cancers (UC) significantly contribute to cancer mortality. While surgery achieves clinical remission in most cases, recurrence often necessitates systemic therapy. Recent molecular phenotype studies have advanced targeted therapies. We employed whole genome sequencing (WGS) to investigate biomarkers in gynecologic malignancies. DESIGN Ninety-one tumor samples (45 TOC, 46 UC) were analyzed for germline mutations, somatic driver mutations, rearrangements, genome-wide signatures, and molecular phenotypes. A WGS-based high-confidence classifier for homologous recombination deficiency (HRD) was applied. Genomic profiles were correlated with clinical outcomes. RESULTS The HRD phenotype was identified in serous carcinoma components, with 50 % of HRD cases showing BRCA1/2 wildtype (33 %) or variants of unknown significance (17 %). HRD correlated with better overall survival in tubo-ovarian serous carcinoma and was linked to responses to platinum therapy and PARP inhibitors. Endometrioid carcinomas showed no HRD phenotype despite BRCA1/2 variants. CDK12-type genomic instability (10 %) occurred in cases with CDK12 rearrangements, and CCNE1 gain (8 %) was observed in CCNE1-amplified cases, independent of copy number. In endometrioid carcinoma, mismatch repair (MMR) deficiency single base substitution signatures, particularly SBS44, contributed to high tumor mutation burden (TMB). Ultra-high TMB was found in two cases with pathogenic POLE and POLQ mutations, exhibiting multiple SBS signatures, including MMR deficiency. CONCLUSION Comprehensive genomic profiling of advanced-stage TOC and UC via WGS reveals key biomarkers and therapeutic targets, enhancing diagnostic accuracy and advancing personalized medicine in gynecological cancers.
Collapse
Affiliation(s)
- Majd Al Assaad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Jiangling Tu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eloise Chapman-Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Baris Boyraz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Valenza C, Nicolò E, Mongillo M, Trapani D, Katrini J, Boldrini L, Boscolo Bielo L, Castellano G, Guidi L, Pellizzari G, Villa J, Derio S, Lapresa M, Gigli F, Parma G, Omodeo Salè E, Derenzini E, Curigliano G, Colombo N. Germline BRCA pathogenic variants and hematologic adverse events in patients with ovarian carcinoma receiving PARP inhibitors: a retrospective cohort study. Oncologist 2024:oyae330. [PMID: 39607864 DOI: 10.1093/oncolo/oyae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Patients with a germline BRCA pathogenic variant (gBRCA-PV) and advanced high grade ovarian carcinoma (aHGOC) experience higher hematologic adverse events (HAEs) when receiving platinum salts and ionizing radiations, compared to non-carriers, due to a possible higher susceptibility of the hemopoietic stem cells to DNA targeting agents. However, the incidence of PARP inhibitor (PARPi)-related HAEs according to the gBRCA-PV status is currently unknown. PATIENTS AND METHODS We conducted a single-center retrospective cohort study to describe the occurrence of HAEs in patients with aHGOC receiving ≥8 weeks of maintenance PARPi in any line of therapy, comparing gBRCA-PVs carriers to non-carriers. HAEs were manually identified by searching the patients' electronic medical records and classified by CTCAE v5.0. The main endpoint was the incidence rate of any HAE (ie, anaemia, neutropenia, or thrombocytopenia) of grade 2 or more (G ≥ 2). RESULTS One hundred and sixty-six patients were included; 95 (57%) had a gBRCA-PV. In total, 162 incident cases of G ≥ 2 HAEs were reported over 255.3 person-years. The incidence rates of G ≥ 2 HAEs were 1003/1000 person-years in gBRCA-PV carriers and 993/1000 person-years in non-carriers. No difference in the incidence rate of G ≥ 2 HAEs emerged comparing gBRCA-PV carriers to non-carriers (crude-incidence rate ratio [IRR]: 1.01; 95% CI: 0.72, 1.43; P = .96), even after adjusting for the type of PARPi (Mantel-Haenszel IRR: 0.99; 95% CI: 0.67, 1.46). CONCLUSION Patients with aHGOC and a gBRCA-PV do not experience higher PARPi-related HAEs compared to non-gBRCA-PV carriers, unlike platinum salt-related HAEs.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marta Mongillo
- Division of Gynecologic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jalissa Katrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Grazia Castellano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gloria Pellizzari
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jacopo Villa
- Division of Pharmacy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Silvia Derio
- Division of Gynecologic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Mariateresa Lapresa
- Division of Gynecologic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Federica Gigli
- Division of Haematology Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Gabriella Parma
- Division of Gynecologic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Enrico Derenzini
- Division of Haematology Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicoletta Colombo
- Division of Gynecologic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
3
|
Patel V, Casimiro S, Abreu C, Barroso T, de Sousa RT, Torres S, Ribeiro LA, Nogueira-Costa G, Pais HL, Pinto C, Costa L, Costa L. DNA damage targeted therapy for advanced breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:678-698. [PMID: 38966174 PMCID: PMC11220312 DOI: 10.37349/etat.2024.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.
Collapse
Affiliation(s)
- Vanessa Patel
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Tiago Barroso
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Sofia Torres
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leonor Abreu Ribeiro
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Helena Luna Pais
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Conceição Pinto
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leila Costa
- Pharmacy Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
4
|
Wehn AK, Qiu P, Lunceford J, Yarunin A, Cristescu R, Liu L, Roessler K, Bilke S, Day JR, Timms KM, Weichert W, Marton MJ. Concordance between an FDA-approved companion diagnostic and an alternative assay kit for assessing homologous recombination deficiency in ovarian cancer. Gynecol Oncol 2024; 184:67-73. [PMID: 38290412 DOI: 10.1016/j.ygyno.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Authors evaluated the performance of a commercially available next-generation sequencing assay kit; this was based on genomic content from Illumina's TruSight™ Oncology 500 research assay that identifies BRCA variants and proprietary algorithms licensed from Myriad and, with additional genomic content, measures the homologous recombination deficiency (HRD) genomic instability score (GIS) in tumor tissue (TSO 500 HRD assay). METHODS Data from the TSO 500 HRD assay were compared with data from the Myriad MyChoice®CDx PLUS assay (Myriad assay). Prevalence rates for overall HRD status and BRCA mutations (a deleterious or suspected deleterious BRCA1 or BRCA2 mutation or both) and assay agreement rates for HRD GIS and BRCA analysis were assessed in ovarian tumor samples. Pearson correlations of the continuous HRD GIS and analytic sensitivity and specificity were evaluated. RESULTS The prevalence of overall HRD positivity was 51.2% (TSO 500 HRD assay) versus 49.2% (Myriad assay) and the prevalence of BRCA mutations was 27.6% (TSO 500 HRD assay) versus 25.5% (Myriad assay). After post-processing optimization, concordance of the HRD GIS was 0.980 in all samples and 0.976 in the non-BRCA mutation cohort; the area under the receiver operating characteristic curve was 0.995 and 0.992, respectively. CONCLUSIONS Comparison between the Illumina and Myriad assays showed that overall HRD status, the individual components of BRCA analysis, and HRD GIS detection results were highly concordant (>93%), suggesting the TSO 500 HRD assay will approach the analytical accuracy of the FDA-approved Myriad assay.
Collapse
Affiliation(s)
- Amy K Wehn
- MRL, Merck & Co., Inc., Rahway, NJ, USA.
| | - Ping Qiu
- MRL, Merck & Co., Inc., Rahway, NJ, USA.
| | - Jared Lunceford
- MRL, Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, USA.
| | - Alexander Yarunin
- Scientific Affairs for Global Oncology, AstraZeneca, Milton, Cambridge, United Kingdom.
| | | | - Li Liu
- Assay Development, Illumina, San Diego, CA, USA.
| | | | - Sven Bilke
- Bioinformatics, Illumina, San Diego, CA, USA.
| | - John R Day
- Assay Development, Illumina, San Diego, CA, USA.
| | | | - Wilko Weichert
- Institute of Pathology, Technical University Munich, München, Germany
| | | |
Collapse
|
5
|
Liu C, Fang J, Kang W, Yang Y, Yu C, Chen H, Zhang Y, Ouyang H. Identification of novel potential homologous repair deficiency-associated genes in pancreatic adenocarcinoma via WGCNA coexpression network analysis and machine learning. Cell Cycle 2023; 22:2392-2408. [PMID: 38124367 PMCID: PMC10802216 DOI: 10.1080/15384101.2023.2293594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Homologous repair deficiency (HRD) impedes double-strand break repair, which is a common driver of carcinogenesis. Positive HRD status can be used as theranostic markers of response to platinum- and PARP inhibitor-based chemotherapies. Here, we aimed to fully investigate the therapeutic and prognostic potential of HRD in pancreatic adenocarcinoma (PAAD) and identify effective biomarkers related to HRD using comprehensive bioinformatics analysis. The HRD score was defined as the unweighted sum of the LOH, TAI, and LST scores, and it was obtained based on the previous literature. To characterize PAAD immune infiltration subtypes, the "ConsensusClusterPlus" package in R was used to conduct unsupervised clustering. A WGCNA was conducted to elucidate the gene coexpression modules and hub genes in the HRD-related gene module of PAAD. The functional enrichment study was performed using Metascape. LASSO analysis was performed using the "glmnet" package in R, while the random forest algorithm was realized using the "randomForest" package in R. The prognostic variables were evaluated using univariate Cox analysis. The prognostic risk model was built using the LASSO approach. ROC curve and KM survival analyses were performed to assess the prognostic potential of the risk model. The half-maximal inhibitory concentration (IC50) of the PARP inhibitors was estimated using the "pRRophetic" package in R and the Genomics of Drug Sensitivity in Cancer database. The "rms" package in R was used to create the nomogram. A high HRD score indicated a poor prognosis and an advanced clinical process in PAAD patients. PAAD tumors with high HRD levels revealed significant T helper lymphocyte depletion, upregulated levels of cancer stem cells, and increased sensitivity to rucaparib, Olaparib, and veliparib. Using WGCNA, 11 coexpression modules were obtained. The red module and 122 hub genes were identified as the most correlated with HRD in PAAD. Functional enrichment analysis revealed that the 122 hub genes were mainly concentrated in cell cycle pathways. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were screened via LASSO analysis and a random forest algorithm, and they were validated using independent validation sets. No direct association between HRD and CKS1B, HJURP, or TPX2 has not been reported in the literature so far. Thus, these findings indicated that CKS1B, HJURP, and TPX2 have potential as diagnostic and prognostic biomarkers for PAAD. We constructed a novel HRD-related prognostic model that provides new insights into PAAD prognosis and immunotherapy. Based on bioinformatics analysis, we comprehensively explored the therapeutic and prognostic potential of HRD in PAAD. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were identified through the combination of WGCNA, LASSO analysis and a random forest algorithm. A novel HRD-related risk model that can predict clinical prognosis and immunotherapeutic response in PAAD patients was constructed.
Collapse
Affiliation(s)
- Chun Liu
- Department of General surgery, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Jingyun Fang
- Department of Nursing, The People’s Hospital of Chizhou, Chizhou, Anhui Province, China
| | - Weibiao Kang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Yang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Changjun Yu
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hao Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yongwei Zhang
- Department of general surgery, Anqing First People’s Hospital, Anqing, Anhui Province, China
| | - Huan Ouyang
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Sahajpal NS, Mondal AK, Vashisht A, Singh H, Pang AWC, Saul D, Nivin O, Hilton B, DuPont BR, Kota V, Savage NM, Hastie AR, Chaubey A, Kolhe R. Optical Genome Mapping: Integrating Structural Variations for Precise Homologous Recombination Deficiency Score Calculation. Genes (Basel) 2023; 14:1683. [PMID: 37761823 PMCID: PMC10530691 DOI: 10.3390/genes14091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.
Collapse
Affiliation(s)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Andy Wing Chun Pang
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Daniel Saul
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Omar Nivin
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Benjamin Hilton
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (N.S.S.); (B.H.); (B.R.D.)
| | - Barbara R. DuPont
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (N.S.S.); (B.H.); (B.R.D.)
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| | - Alex R. Hastie
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Alka Chaubey
- Bionano Genomics, San Diego, CA 92121, USA; (A.W.C.P.); (D.S.); (A.R.H.); (A.C.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.K.M.); (A.V.); (H.S.); (O.N.); (N.M.S.)
| |
Collapse
|
7
|
Shi Z, Chen B, Han X, Gu W, Liang S, Wu L. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types. Sci Rep 2023; 13:8899. [PMID: 37264024 DOI: 10.1038/s41598-023-35092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Homologous recombination deficiency (HRD) causes faulty double-strand break repair and is a prevalent cause of tumorigenesis. However, the incidence of HRD and its clinical significance in pan-cancer patients remain unknown. Using computational analysis of Single-nucleotide polymorphism array data from 10,619 cancer patients, we demonstrate that HRD frequently occurs across multiple cancer types. Analysis of the pan-cancer cohort revealed that HRD is not only a biomarker for ovarian cancer and triple-negative breast cancer, but also has clinical prognostic value in numerous cancer types, including adrenocortical cancer and thymoma. We discovered that homologous recombination-related genes have a high mutation or deletion frequency. Pathway analysis shows HRD is positively correlated with the DNA damage response and the immune-related signaling pathways. Single cell RNA sequencing of tumor-infiltrating lymphocytes reveals a significantly higher proportion of exhausted T cells in HRD patients, indicating pre-existing immunity. Finally, HRD could be utilized to predict pan-cancer patients' responses to Programmed cell death protein 1 immunotherapy. In summary, our work establishes a comprehensive map of HRD in pan-cancer. The findings have significant implications for expanding the scope of Poly ADP-ribose polymerase inhibitor therapy and, possibly, immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Shi
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Bolin Chen
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Xiao Han
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Weiyue Gu
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Shuzhi Liang
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Lin Wu
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
| |
Collapse
|
8
|
Feng C, Zhang Y, Wu F, Li J, Liu M, Lv W, Li C, Wang W, Tan Q, Xue X, Ma X, Zhang S. Relationship between homologous recombination deficiency and clinical features of breast cancer based on genomic scar score. Breast 2023; 69:392-400. [PMID: 37116400 PMCID: PMC10165146 DOI: 10.1016/j.breast.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) phenotype will sensitize tumors to poly (ADP-ribose) polymerases inhibitors and platinum. However, previous studies did not focus on the prevalence of HRD among Chinese breast cancer (BC) patients. METHODS One hundred and forty-seven BC patients were included in this study. Their HRD status was assessed by Genomic Scar Score (GSS), which was determined according to the length, site, and type of copy number. HRD was defined as positive when a harmful BRCA1/2 mutation was detected or GSS ≥50. RESULTS Our data revealed that 9.5% of the 147 patients tested positive for BRCA1/2 mutation, while approximately 34.7% were HRD-positive. For triple negative BC (TNBC), HRD positivity rate (60.5%) was higher than Luminal A (5.3%), Luminal B (HER2-) (28.8%), and Luminal B (HER2+) (31.6%) subgroups. HRD-positive tumors were more likely to be ER/PR-negative and exhibited higher Ki-67 expression. 50.0% of the HRD-positive patients achieved pathologic complete remission (pCR) after neoadjuvant therapy. HRD-positive patients tended to have a higher risk for cancer recurrence or metastasis compared to HRD-negative patients (29.4% vs. 13.5%). CONCLUSION We investigated the HRD status among Chinese BC patients using an HRD detection tool developed based on the Chinese population. The clinical characteristics, pathological profile, family history pattern, neoadjuvant efficacy, and disease progression events of HRD-positive and negative patients were described and compared. Thus, our data provided an evidence-based basis for applying the original HRD assay in Chinese BC.
Collapse
Affiliation(s)
- Cong Feng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Mengjie Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Wei Lv
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Qinghua Tan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xiaoyu Xue
- Amoy Diagnostics Co. Ltd., Xi'an, Shanxi, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| |
Collapse
|
9
|
Feng Z, Shao D, Cai Y, Bi R, Ju X, Chen D, Song C, Chen X, Li J, An N, Li Y, Zhou Q, Xiu Z, Zhu S, Wu X, Wen H. Homologous recombination deficiency status predicts response to platinum-based chemotherapy in Chinese patients with high-grade serous ovarian carcinoma. J Ovarian Res 2023; 16:53. [PMID: 36922847 PMCID: PMC10015784 DOI: 10.1186/s13048-023-01129-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Homologous Recombination Deficiency (HRD) is a predictive biomarker for ovarian cancer treated with PARP inhibitors or for breast cancer treated with first-line platinum-based chemotherapy. However, limited research is documented on platinum-based treatment prediction with HRD as a biomarker in ovarian cancer patients, especially in the Chinese population. METHODS We investigated the association between HRD status and the response of platinum-based chemotherapy in 240 Chinese HGSOC patients. RESULTS The Pt-sensitive patients showed higher HRD scores than Pt-resistant ones, but this was not significant(median: 42.6 vs. 31.6, p = 0.086). (Pt)-sensitive rate was higher in HRD + BRCAm tumors and in HRD + BRCAwt tumors (HRD + BRCAm: 97%, p = 0.004 and HRD + BRCAwt: 90%, p = 0.04) compared with 74% in the HRD-BRCAwt tumors. We also found Pt-sensitive patients tend to be enriched in patients with BRCA mutations or non-BRCA HRR pathway gene mutations (BRCA: 93.6% vs 75.4%, p < 0.001; non-BRCA HRR: 88.6% vs 75.4%, p = 0.062). Patients with HRD status positive had significantly improved PFS compared with those with HRD status negative (median PFS: 30.5 months vs. 16.8 months, Log-rank p = 0.001). Even for BRCAwt patients, positive HRD was also associated with better PFS than the HRD-negative group (median: 27.5 months vs 16.8 months, Log-rank p = 0.010). Further, we found patients with pathogenic mutations located in the DNA-binding domain (DBD) of BRCA1 had improved FPS, compared to those with mutations in other domains. (p = 0.03). CONCLUSIONS The HRD status can be identified as an independent significance in Chinese HGSOC patients treated with first-line platinum-based chemotherapy.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China
| | - Yuhang Cai
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Rui Bi
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongju Chen
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Chengcheng Song
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na An
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China
| | - Yunjin Li
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China
| | - Qing Zhou
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China
| | - Shida Zhu
- BGI Genomics, BGI-Shenzhen, BGI Genomics, Beishan Industrial Zone, Yantian District, ShenzhenShenzhen, 518083518083, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Rd, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Cooper RBV, Kim KB, Oliver DR, Armbrecht E, Behrents RG, Montaño AM. DLX6 and MSX1 from saliva samples as potential predictors of mandibular size: A cross-sectional study. Am J Orthod Dentofacial Orthop 2023; 163:368-377. [PMID: 36494218 DOI: 10.1016/j.ajodo.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Morphologic features of the mandible are influenced by the genes of each individual. Mandible size is important to orthodontists because the mandible is the mechanism by which the lower face influences facial esthetics and dental function. To date, no biological marker has been identified that indicates eventual mandible size. This study aimed to correlate the expression of DLX5, DLX6, EDN1, HAND2, PRRX1, and MSX1 to mandible size. METHODS Fifty-nine orthodontic patients aged >6 years who had available cephalometric radiographs were studied. Patients were classified on the basis of condylion-to-gnathion measurements. Messenger RNA was isolated from saliva and subjected to real-time quantitative polymerase chain reaction. RESULTS Threshold cycle values for subjects with small mandibles (>1 standard deviation [SD] from the mean) had the least expression of DLX6 and MSX1. Threshold cycle values for subjects with large mandibles (>1 SD) had less expression of DLX6 and MSX1 than subjects within 1 SD but more than those with small mandibles. CONCLUSIONS DLX6 and MSX1 are related to mandible development and size. This finding could be used to improve treatment planning for medical and dental professionals seeking to understand the impact of genetics on bone growth.
Collapse
Affiliation(s)
- Rachel Bryn V Cooper
- Formerly, Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo currently, Private practice, Houston, Tex.
| | - Ki Beom Kim
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Donald R Oliver
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Eric Armbrecht
- Center for Health Outcomes Research, Saint Louis University, St Louis, Mo
| | - Rolf G Behrents
- Department of Orthodontics, School of Medicine, Saint Louis University, St Louis, Mo
| | - Adriana M Montaño
- Departments of Pediatrics and Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St Louis, Mo.
| |
Collapse
|
11
|
Mathematical modeling of the early modeled CA-125 longitudinal kinetics (KELIM-PARP) as a pragmatic indicator of rucaparib efficacy in patients with recurrent ovarian carcinoma in ARIEL2 & STUDY 10. EBioMedicine 2023; 89:104477. [PMID: 36801617 PMCID: PMC9972491 DOI: 10.1016/j.ebiom.2023.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND PARP inhibitors (PARPi) have revolutionized the management of advanced ovarian carcinoma, and were investigated as forefront treatment in recurrent disease. The objective was to explore if mathematical modeling of the early longitudinal CA-125 kinetics could be used as a pragmatic indicator of the subsequent rucaparib efficacy, like it is for platinum-based chemotherapy. METHODS The datasets of ARIEL2 and Study 10 involving recurrent HGOC patients treated with rucaparib were retrospectively investigated. The same strategy as those successfully developed for platinum chemotherapy, based on CA-125 ELIMination rate constant K (KELIM™), was implemented. Individual values of rucaparib-adjusted KELIM (KELIM-PARP) were estimated based on the longitudinal CA-125 kinetics during the first 100 treatment days, and then scored as favorable (KELIM-PARP ≥1.0) or unfavorable (KELIM-PARP <1.0). The prognostic value of KELIM-PARP regarding treatment efficacy (radiological response, and progression-free survival (PFS)) was assessed using univariable/multivariable analyses, with respect to platinum-sensitivity and homologous recombination deficiency (HRD) status. FINDINGS The data from 476 patients were assessed. The CA-125 longitudinal kinetics during the first 100-treatment days could be accurately assessed using the KELIM-PARP model. In patients with platinum-sensitive diseases, BRCA mutational status KELIM-PARP score and were associated with subsequent complete/partial radiological responses (KELIM-PARP: odds-ratio = 2.81, 95% CI 1.86-4.52), and PFS (KELIM-PARP: hazard-ratio = 0.67, 95% CI 0.50-0.91). The patients with BRCA-wild type cancer and favorable KELIM-PARP experienced long PFS with rucaparib regardless of HRD. In platinum-resistant disease patients, KELIM-PARP was associated with subsequent radiological response (odds-ratio = 2.80, 95% CI 1.82-4.72). INTERPRETATION This proof-of-concept study confirms the early CA-125 longitudinal kinetics during rucaparib in recurrent HGOC patients are assessable by mathematical modeling, to generate individual a KELIM-PARP score associated with the subsequent efficacy. This pragmatic strategy might be useful for selecting the patients for PARPi-based combination regimens, when identifying efficacy biomarker is challenging. Further assessment of this hypothesis is warranted. FUNDING The present study was supported by Clovis Oncology with a grant to academic research association.
Collapse
|
12
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
13
|
Liu X, Jiang S, Wang H, Wu X, Yan W, Chen Y, Xu Y, Wang C, Yao W, Wang J, Yu L, Miao J, Chen H, Xia J, Huang M, Zhang X, Luo Z. Pegylated Liposomal Doxorubicin Combined with Ifosfamide for Treating Advanced or Metastatic Soft-tissue Sarcoma: A Prospective, Single-arm Phase II Study. Clin Cancer Res 2022; 28:5280-5289. [PMID: 36239473 DOI: 10.1158/1078-0432.ccr-22-1785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE This prospective single-arm phase II clinical trial aimed to evaluate the efficacy and safety of pegylated liposomal doxorubicin (PLD) combined with ifosfamide (IFO) as the first-line treatment for patients with advanced or metastatic soft-tissue sarcoma (STS). PATIENTS AND METHODS Patients received PLD (30 mg/m2; day 1) in combination with IFO (1.8 g/m2; days 1-5) every 21 days until disease progression, unacceptable toxicities, patient death, or for up to six cycles. The primary endpoint was progression-free survival (PFS; NCT03268772). RESULTS Overall, 69 patients with chemotherapy-naïve advanced or metastatic STS were enrolled between May 2015 and November 2019. At a median follow-up of 47.2 months, the median PFS and overall survival (OS) were found to be 7.3 [95% confidence interval (CI): 5.7-8.9] and 20.6 (95% CI: 16.3-25.0) months, respectively. The response and disease control rates were 26.1% and 81.2%, respectively. Adverse events were manageable, and no grade 3-4 cardiotoxicities were observed. There was no significant change in left ventricular ejection fraction values between baseline and after treatment (P = 0.669). Exploratory biomarker analysis suggested NF1 single-nucleotide variant was associated with poor OS (P < 0.0001) and PFS (P = 0.044). In addition, 2 patients with BRCA2 loss progressed in the initial 2 months and died within 10 months. Improved OS was observed in homologous recombination deficiency (HRD)-negative patients compared with their HRD-positive counterparts (P = 0.0056). CONCLUSIONS Combination therapy comprising PLD and IFO is an effective and well-tolerated first-line treatment for patients with advanced or metastatic STS.
Collapse
Affiliation(s)
- Xin Liu
- Department of Head & Neck Tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China
| | - Shiyu Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Xianghua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Wangjun Yan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai P.R. China
| | - Yong Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai P.R. China
| | - Yu Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai P.R. China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai P.R. China
| | - Weiqiang Yao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Jian Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Lin Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Jiashun Miao
- Research and Development Institute of Precision Medicine, 3DMed Inc, Shanghai, P.R. China
| | - Hao Chen
- Research and Development Institute of Precision Medicine, 3DMed Inc, Shanghai, P.R. China
| | - Jing Xia
- The Medical Department, 3DMed Inc, Shanghai, P.R. China
| | - Mengli Huang
- The Medical Department, 3DMed Inc, Shanghai, P.R. China
| | - Xiaowei Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zhiguo Luo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai P.R. China.,Department of gastrointestinal medical oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| |
Collapse
|
14
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
15
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
16
|
Gou R, Li X, Dong H, Hu Y, Liu O, Liu J, Lin B. RAD21 Confers Poor Prognosis and Affects Ovarian Cancer Sensitivity to Poly(ADP-Ribose)Polymerase Inhibitors Through DNA Damage Repair. Front Oncol 2022; 12:936550. [PMID: 35860572 PMCID: PMC9289200 DOI: 10.3389/fonc.2022.936550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Poly(ADP-ribose)polymerase (PARP) inhibitors are a class of molecular-targeted cancer drugs. Synthetic lethality is a phenomenon that renders homologous recombination repair defective cells more sensitive to PARP inhibitors. As a component of the cohesin complex, RAD21 regulates DNA damage repair. However, the biological roles of RAD21 in ovarian cancer and their underlying mechanisms remain unclear. Methods An immunohistochemical assay was used to validate the expression of RAD21 in ovarian cancer and its correlation with prognosis. The effects of RAD21 were evaluated through Cell Counting Kit-8 (CCK8), wound-healing, and invasion assays in vitro and the tumor growth in vivo. Furthermore, CCK8 assay and immunofluorescence assay were used to detect the effect of RAD21 on cell sensitivity to PARP inhibitors and their mechanism. The pathway changes were detected by Western blotting. Results RAD21 was markedly upregulated in ovarian cancer samples. High RAD21 expression was correlated with poor differentiation and poor prognosis in patients with ovarian cancer. Functionally, RAD21 overexpression promoted cancer cell proliferation, migration, and invasion. Moreover, RAD21 knockdown increased the sensitivity of ovarian cancer cells to three kinds of PARP inhibitors by affecting DNA damage repair. In vivo experiments indicated that RAD21 promoted tumor growth. Mechanistically, the overexpression of RAD21 led to increased phosphorylation levels of Akt and mTOR. Blocking the Akt/mTOR signaling pathway reversed RAD21 overexpression-induced cancer progression and drug resistance. Conclusions RAD21 can serve as a valuable prognostic marker for ovarian cancer and has the potential as a therapeutic target that can expand the utility of PARP inhibitors.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
- *Correspondence: Bei Lin,
| |
Collapse
|
17
|
Gou R, Zheng M, Hu Y, Gao L, Wang S, Liu O, Li X, Zhu L, Liu J, Lin B. Identification and clinical validation of NUSAP1 as a novel prognostic biomarker in ovarian cancer. BMC Cancer 2022; 22:690. [PMID: 35739489 PMCID: PMC9229913 DOI: 10.1186/s12885-022-09753-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. Methods Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan–Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. Results Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. Conclusions NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110004, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China.
| |
Collapse
|
18
|
Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precis Oncol 2022; 6:e2200085. [PMID: 35613413 PMCID: PMC9200383 DOI: 10.1200/po.22.00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency![]()
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J B Brown
- Life Science Informatics Research Unit, Department of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Huang CC, Tsai YF, Liu CY, Lien PJ, Lin YS, Chao TC, Feng CJ, Chen YJ, Lai JI, Phan NN, Hsu CY, Chiu JH, Tseng LM. Prevalence of Tumor Genomic Alterations in Homologous Recombination Repair Genes Among Taiwanese Breast Cancers. Ann Surg Oncol 2022; 29:3578-3590. [PMID: 35226219 DOI: 10.1245/s10434-022-11347-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Deleterious germline BRCA1/2 mutations are among the most highly pathogenic variants in hereditary breast and ovarian cancer syndrome. Recently, genes implicated in homologous recombination repair (HRR) pathways have been investigated extensively. Defective HRR genes may indicate potential clinical benefits from PARP (poly ADP ribose polymerase) inhibitors beyond BRCA1/2 mutations. METHODS We evaluated the prevalence of BRCA1/2 mutations as well as alterations in HRR genes with targeted sequencing. A total of 648 consecutive breast cancer samples were assayed, and HRR genes were evaluated for prevalence in breast cancer tissues. RESULTS Among 648 breast cancers, there were 17 truncating and 2 missense mutations in BRCA1 and 45 truncating and 1 missense mutation in BRCA2, impacting 3% and 5% of the study population (collectively altered in 6%) with cooccurrence of BRCA1/2 in 7 breast cancers. On the other hand, HRR genes were altered in 122 (19%) breast cancers, while TBB (Talazoparib Beyond BRCA) trial-interrogated genes (excluding BRCA1/2) were mutated in 107 (17%) patients. Beyond BRCA1/2, the most prevalent HRR mutant genes came from ARID1A (7%), PALB2 (7%), and PTEN (6%). Collectively, 164 (25%) of the 648 Taiwanese breast cancer samples harbored at least one mutation among HRR genes. CONCLUSIONS The prevalence of BRCA1/2 mutations was far below one tenth, while the prevalence of HRR mutations was much higher and approached one-fourth among Taiwanese breast cancers. Further opportunities to take advantage of defective HRR genes for breast cancer treatment should be sought for the realization of precision medicine.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Tsai
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Shu Lin
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Division of Chemotherapy, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Jen Chen
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nam Nhut Phan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yi Hsu
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Hwey Chiu
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. .,School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
20
|
GSA: an independent development algorithm for calling copy number and detecting homologous recombination deficiency (HRD) from target capture sequencing. BMC Bioinformatics 2021; 22:562. [PMID: 34814825 PMCID: PMC8609767 DOI: 10.1186/s12859-021-04487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The gain or loss of large chromosomal regions or even whole chromosomes is termed as genomic scarring and can be observed as copy number variations resulting from the failure of DNA damage repair. RESULTS In this study, a new algorithm called genomic scar analysis (GSA) has developed and validated to calculate homologous recombination deficiency (HRD) score. The two critical submodules were tree recursion (TR) segmentation and filtering, and the estimation and correction of the tumor purity and ploidy. Then, this study evaluated the rationality of segmentation and genotype identification by the GSA algorithm and compared with other two algorithms, PureCN and ASCAT, found that the segmentation result of GSA algorithm was more logical. In addition, the results indicated that the GSA algorithm had an excellent predictive effect on tumor purity and ploidy, if the tumor purity was more than 20%. Furtherly, this study evaluated the HRD scores and BRCA1/2 deficiency status of 195 clinical samples, and the results indicated that the accuracy was 0.98 (comparing with Affymetrix OncoScan™ assay) and the sensitivity was 95.2% (comparing with BRCA1/2 deficiency status), both were well-behaved. Finally, HRD scores and 16 genes mutations (TP53 and 15 HRR pathway genes) were analyzed in 17 cell lines, the results showed that there was higher frequency in HRR pathway genes in high HRD score samples. CONCLUSIONS This new algorithm, named as GSA, could effectively and accurately calculate the purity and ploidy of tumor samples through NGS data, and then reflect the degree of genomic instability and large-scale copy number variations of tumor samples.
Collapse
|
21
|
The role of the tumor primary chemosensitivity relative to the success of the medical-surgical management in patients with advanced ovarian carcinomas. Cancer Treat Rev 2021; 100:102294. [PMID: 34564042 DOI: 10.1016/j.ctrv.2021.102294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/25/2022]
Abstract
In patients with advanced ovarian carcinomas, the first-line treatment has historically relied on debulking surgery and platinum-based chemotherapy. If the major therapeutic/prognostic role of the surgery part is well understood, and integrated in disease-management algorithms, the impact of chemotherapy efficacy has been insufficiently addressed. This review describes the main indicators of the chemosensitivity reported in the literature (pathological response score & biomarkers; genomic alterations; DNA scars; imaging; and circulating tumor markers), and investigates the respective roles of the debulking surgery and tumor primary chemosensitivity relative to the success of the comprehensive medical-surgical treatment. The tumor primary chemosensitivity exhibits a major independent prognostic impact on the feasibility of complete interval debulking surgery after neoadjuvant chemotherapy, risk of subsequent platinum-resistant relapse, efficacy of subsequent maintenance therapies with bevacizumab or PARP inhibitors, progression-free survival, overall and long-term survival. While both the completeness of the surgery and the tumor primary chemosensitivity are undoubtedly major prognostic factors, the impact of the surgery may differ according to the primary chemosensitivity. This assumption raises a potential new concept: in patients with advanced ovarian carcinomas, the maximum tumor debulking should ideally be both biological (induced by systemic treatments) and physical (induced by surgery) for maximizing patient survival. Besides BRCA and HRD biomarkers, future trials and algorithms may integrate indicator(s) of the tumor primary chemosensitivity for guiding more subtly the surgical and medical management in first-line setting. Moreover, such a parameter would help in the development of novel approaches meant to reverse the resistance to chemotherapy and PARP inhibitors.
Collapse
|
22
|
Takamatsu S, Brown J, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency Biomarkers Across Cancer Types. JCO Precis Oncol 2021; 5:PO.21.00141. [PMID: 34423229 PMCID: PMC8373547 DOI: 10.1200/po.21.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Homologous recombination DNA repair deficiency (HRD) is associated with sensitivity to platinum and poly (ADP-ribose) polymerase inhibitors in certain cancer types, including breast, ovarian, pancreatic, and prostate. In these cancers, BRCA1/2 alterations and genomic scar signatures are useful indicators for assessing HRD. However, alterations in other homologous recombination repair (HRR)-related genes and their clinical significance in other cancer types have not been adequately and systematically investigated. METHODS We obtained data sets of all solid tumors in The Cancer Genome Atlas and Cancer Cell Line Encyclopedia, and comprehensively analyzed HRR pathway gene alterations, their loss-of-heterozygosity status, and per-sample genomic scar scores, that is, the HRD score and mutational signature 3 ratio, DNA methylation profiles, gene expression profiles, somatic TP53 mutations, sex, and clinical or in vitro response to chemical exposure. RESULTS Biallelic alterations in HRR genes other than BRCA1/2 were also associated with elevated genomic scar scores. The association between HRR-related gene alterations and genomic scar scores differed significantly by sex and the presence of somatic TP53 mutations. HRD tumors determined by a combination of indices also showed HRD features in gene expression analysis and exhibited significantly higher sensitivity to DNA-damaging agents than non-HRD cases in both clinical samples and cell lines. CONCLUSION This study provides evidence for the usefulness of HRD analysis in all cancer types, improves chemotherapy decision making and its efficacy in clinical settings, and represents a substantial advancement in precision oncology.A comprehensive pan-cancer analysis on the clinical significance of homologous recombination deficiency.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J.B. Brown
- Life Science Informatics Research Unit, Department of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Kaneyasu
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|