1
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
2
|
Tu X, Zhang H, Ren H. LINC01232 targeting miR-1250-3p/MSH2 axis attenuates mesangial cell proliferation and fibrosis in diabetic nephropathy. Mol Cell Biochem 2024; 479:2093-2103. [PMID: 37642881 DOI: 10.1007/s11010-023-04828-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The significance of long non-coding RNA (ncRNAs) in the initiation and progression of diabetic nephropathy (DN) has attracted much interest. The purpose of this work was to ascertain the role of LINC01232 in cell models and animal models of DN. C57BL/6 J mice were administered with streptozotocin (STZ) to develop animal models of DN, and mouse glomerular mesangial cells (MCs) were exposed to high glucose (HG) to establish cell models of DN. Expression levels of LINC01232, miR-1250-3p and MSH2 were identified by quantitative real-time PCR (qPCR) or western blotting. Fibrosis-related proteins were quantified by western blotting. MC proliferative capacity was checked by EdU assay. DN progression and fibrosis level in animal models were assessed by hematoxylin and eosin (HE) and Masson staining. The potential binding sites between miR-1250-3p and LINC01232 or MSH2 were examined by dual-luciferase reporter assay. LINC01232 expression was heightened in kidney tissues of DN patients. Its overexpression in HG-treated MCs alleviated MC proliferation and fibrosis. Overexpression of LINC01232 alleviated the pathological state of glomerular hypertrophy, MC hyperplasia, basement membrane thickening, and fibrosis in the DN models. LINC01232 bound to miR-1250-3p and competed for miR-1250-3p binding sites with MSH2. LINC01232 overexpression decoyed miR-1250-3p to increase MSH2 expression, and MSH2 depletion restored LINC01232 overexpression-inhibited MC proliferation and fibrosis. LINC01232 alleviated the mesangial cell proliferation and fibrosis in the progression of DN by targeting miR-1250-3p/MSH2 pathway.
Collapse
Affiliation(s)
- Xian Tu
- Nephrology Department, Wuhan Asia General Hospital, Wuhan, 430050, Hubei, China
| | - Hualei Zhang
- Health Check Center, Wuhan Asia General Hospital, No. 300 Taizihu North Road, Economic and Technological Development Zone, Wuhan, 430050, Hubei, China
| | - Hongyan Ren
- Health Check Center, Wuhan Asia General Hospital, No. 300 Taizihu North Road, Economic and Technological Development Zone, Wuhan, 430050, Hubei, China.
| |
Collapse
|
3
|
Hu Z, Cano I, Lei F, Liu J, Ramos RB, Gordon H, Paschalis EI, Saint-Geniez M, Ng YSE, D'Amore PA. Deletion of the endothelial glycocalyx component endomucin leads to impaired glomerular structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603749. [PMID: 39071302 PMCID: PMC11275787 DOI: 10.1101/2024.07.16.603749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Endomucin (EMCN), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of vascular endothelial growth factor (VEGF) activity through modulating VEGF receptor 2 (VEGFR2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model. Methods Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was employed to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, while urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, albumin, and α-smooth muscle actin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a non-invasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA-seq. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis of up- and down-regulated genes. Protein levels of EMCN, albumin, and podocin were quantified by Western blot. Results EMCN -/- mice were viable with no gross anatomical defects in kidneys. The EMCN -/- mice exhibited increased infiltration of CD45 + cells, with an increased proportion of Ly6G high Ly6C high myeloid cells and higher VCAM-1 expression. EMCN -/- mice displayed albuminuria with increased albumin in the Bowman's space compared to the EMCN +/+ littermates. Glomeruli in EMCN -/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA-seq of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK/ERK pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm. Conclusion Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
Collapse
|
4
|
Kuang Y, Yang J, Sun M, Rui T, Yang Z, Shi M. Depression of LncRNA DANCR alleviates tubular injury in diabetic nephropathy by regulating KLF5 through sponge miR-214-5p. BMC Nephrol 2024; 25:130. [PMID: 38609873 PMCID: PMC11010359 DOI: 10.1186/s12882-024-03562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) manifests a critical aspect in the form of renal tubular injury. The current research aimed to determine the function and mechanism of long non-coding ribonucleic acid (LncRNA) differentiation antagonising non-protein coding RNA (DANCR), with a focus on its impact on renal tubular injury. METHODS Quantitative reverse transcription polymerase chain reaction was employed to analyze the RNA levels of DANCR in the serum of patients with DN or human proximal tubular epithelial cells (human kidney 2 [HK2]). The diagnostic significance of DANCR was assessed using a receiver operating characteristic curve. A DN model was established by inducing HK-2 cells with high glucose (HG). Cell proliferation, apoptosis, and the levels of inflammatory factors, reactive oxygen species (ROS), and malondialdehyde (MDA) were detected using the Cell Counting Kit - 8, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between microRNA (miR)-214-5p and DANCR or Krüppel-like factor 5 (KLF5) was investigated using RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS Elevated levels of DANCR were observed in the serum of patients with DN and HG-inducted HK-2 cells (P < 0.05). DANCR levels effectively identified patients with DN from patients with type 2 diabetes mellitus. Silencing of DANCR protected against HG-induced tubular injury by restoring cell proliferation, inhibiting apoptosis, and reducing the secretion of inflammatory factors and oxidative stress production (P < 0.05). DANCR functions as a sponge for miR-214-5p, and the mitigation of DANCR silencing on HG-induced renal tubular injury was partially attenuated with reduced miR-214-5p (P < 0.05). Additionally, KLF5 was identified as the target of miR-214-5p. CONCLUSION DANCR was identified as diagnostic potential for DN and the alleviation of renal tubular injury via the miR-214-5p/KLF5 axis, following DANCR silencing, introduces a novel perspective and approach to mitigating DN.
Collapse
Affiliation(s)
- Yongling Kuang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China.
| | - Juan Yang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Meimei Sun
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Tingting Rui
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Zhenhua Yang
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| | - Meihua Shi
- Department of Nephrology, Gongli Hospital of Shanghai Pudong New Area, No. 219 Miaopu Road, Pudong New Area, 200135, Shanghai, China
| |
Collapse
|
5
|
Shelke V, Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease. Arch Physiol Biochem 2024; 130:230-241. [PMID: 34986074 DOI: 10.1080/13813455.2021.2023580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023]
Abstract
Diabetes is one of the major cause of chronic kidney disease (CKD), including "diabetic nephropathy," and is an increasingly prevalent accelerator of the progression of non-diabetic forms of CKD. The long non-coding RNAs (lncRNAs) have come into the limelight in the past few years as one of the emerging weapons against CKD in diabetes. Available data over the past few years demonstrate the interaction of lncRNAs with miRNAs and epigenetic machinery. Interestingly, the evolving data suggest that lncRNAs play a vital role in diabetes-associated CKD by regulation of epigenetic enzymes such as DNA methyltransferase, histone deacetylases, and histone methyltransferases. LncRNAs are also engaged in the regulation of several miRNAs in diabetic nephropathy. Hence this review will elaborate on the association between lncRNAs and their interaction with epigenetic regulators involved in different aspects and thus the progression of CKD in diabetes.
Collapse
Affiliation(s)
- Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, India
| |
Collapse
|
6
|
Yang N, Zhang Y, Ren P, Zhao L, Zheng D, Fu L, Jin J. LncRNA AA465934 Improves Podocyte Injury by Promoting Tristetraprolin-Mediated HMGB1 DownRegulation in Diabetic Nephropathy. Mol Cell Biol 2024; 44:87-102. [PMID: 38520226 PMCID: PMC10986766 DOI: 10.1080/10985549.2024.2325527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024] Open
Abstract
Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.
Collapse
Affiliation(s)
- Nan Yang
- Postgraduate Training Base of Jinzhou Medical University (Zhejiang Provincial People’s Hospital), Jinzhou, Liaoning, China
| | - Yue Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Peiyao Ren
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Zhao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lanjun Fu
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sun J, Zhang X, Wang S, Chen D, Shu J, Chong N, Wang Q, Xu Y. Dapagliflozin improves podocytes injury in diabetic nephropathy via regulating cholesterol balance through KLF5 targeting the ABCA1 signalling pathway. Diabetol Metab Syndr 2024; 16:38. [PMID: 38326870 PMCID: PMC10851504 DOI: 10.1186/s13098-024-01271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.
Collapse
Affiliation(s)
- Jingshu Sun
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xinyu Zhang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Simeng Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Dandan Chen
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianqiang Shu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Nannan Chong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinglian Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Ying Xu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Zheng Y, Zhang Z, Zheng D, Yi P, Wang S. METTL14 promotes the development of diabetic kidney disease by regulating m 6A modification of TUG1. Acta Diabetol 2023; 60:1567-1580. [PMID: 37428236 DOI: 10.1007/s00592-023-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common diabetic complications. Endoplasmic reticulum stress (ERS) is an important step for renal tubular epithelial cell apoptosis during DKD progression. Herein, the role and regulatory mechanism of METTL14 in ERS during DKD progression were investigated. METHODS DKD animal and cell models were established by streptozotocin (STZ) and high glucose (HG), respectively. HE and Masson staining were performed to analyze renal lesions in DKD mouse. Cell viability and proliferation were determined by MTT and EdU staining, respectively. HK2 cell apoptosis was analyzed by flow cytometry. TUG1 m6A level was determined by Me-RIP. The interaction between TUG1, LIN28B and MAPK1 was analyzed by RIP and RNA pull-down assays. RESULTS HG stimulation promoted apoptosis and increased ERS marker proteins (GRP78, CHOP and caspase12) expression in HK2 cells, while these changes were reversed by METTL14 knockdown. METTL14 inhibited TUG1 stability and expression level in an m6A-dependent manner. As expected, TUG1 knockdown abrogated METTL14 knockdown's inhibition on HG-induced HK2 cell apoptosis and ERS. In addition, TUG1 inactivated MAPK1/ERK signaling by binding with LIN28B. And TUG1 overexpression's repression on HG-induced HK2 cell apoptosis and ERS was abrogated by MAPK1 signaling activation. Meanwhile, METTL14 knockdown or TUG1 overexpression protected against STZ-induced renal lesions and renal fibrosis in DKD mouse. CONCLUSION METTL14 promoted renal tubular epithelial cell apoptosis and ERS by activating MAPK/ERK pathway through m6A modification of TUG1, thereby accelerating DKD progression.
Collapse
Affiliation(s)
- Yingying Zheng
- Health Management Center, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China
| | - Zhengjun Zhang
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, People's Republic of China
| | - Dejie Zheng
- Health Management Center, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China
| | - Pengfei Yi
- Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong Province, People's Republic of China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Weifang People's Hospital, Weifang Medical University, Kuiwen District, No. 151, Guangwen Street, Weifang, 261041, Shandong Province, People's Republic of China.
- Department of Scientific Research Management, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, Shandong Province, People's Republic of China.
| |
Collapse
|
10
|
Tao S, Tan X, Chai W, Peng X, Zheng W, Fu R, Deng M. Knockdown of KLF5 ameliorates renal fibrosis in MRL/lpr mice via inhibition of MX1 transcription. Immun Inflamm Dis 2023; 11:e937. [PMID: 37506140 PMCID: PMC10373570 DOI: 10.1002/iid3.937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE This study aims to elucidate the role of Kruppel-like factor (KLF5) and myxovirus resistance 1 (MX1) in the progression of renal fibrosis in lupus nephritis (LN). METHODS First, the expression of KLF5 and MX1 was assessed in the peripheral blood of LN patients and healthy participants. Next, the pathological changes in renal tissues were evaluated and compared in BALB/c and MRL/lpr mice, by detecting the expression of fibrosis marker proteins (transforming growth factor-β [TGF-β] and CTGF) and α-SMA, the content of urine protein, and the levels of serum creatinine, blood urea nitrogen, and serum double-stranded DNA antibody. In TGF-β1-induced HK-2 cells, the messenger RNA levels of KLF5 and MX1 were tested by qRT-PCR, and the protein expression of α-SMA, type I collagen (Col I), fibronectin (FN), and matrix metalloproteinase 9 (MMP9) was measured by western blot analysis. Moreover, the relationship between KLF5 and MX1 was predicted and verified. RESULTS In renal tissues of MRL/lpr mice and the peripheral blood of LN patients, KLF5 and MX1 were highly expressed. Pearson analysis revealed that KLF5 was positively correlated with MX1. Furthermore, KLF5 bound to MX1 promoter and promoted its transcription level. MRL/lpr mice showed substantial renal injury, accompanied by increased expression of α-SMA, TGF-β, CTGF, Col I, FN, and MMP9. Injection of sh-KLF5 or sh-MX1 alone in MRL/lpr mice reduced renal fibrosis in LN, while simultaneous injection of sh-KLF5 and ad-MX1 exacerbated renal injury and fibrosis. Furthermore, we obtained the same results in TGF-β1-induced HK-2 cells. CONCLUSION Knockdown of KLF5 alleviated renal fibrosis in LN through repressing the transcription of MX1.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Tan
- Department of Hematology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xiaojie Peng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weimin Zheng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rui Fu
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meihui Deng
- Department of Nephrology, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Dieter C, Lemos NE, Girardi E, Ramos DT, Corrêa NRDF, Canani LH, Bauer AC, Assmann TS, Crispim D. The lncRNA MALAT1 is upregulated in urine of type 1 diabetes mellitus patients with diabetic kidney disease. Genet Mol Biol 2023; 46:e20220291. [PMID: 37272835 DOI: 10.1590/1678-4685-gmb-2022-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with >200 nucleotides that are unable to encode proteins and are involved in gene expression regulation. LncRNAs have a key role in many physiological and pathological processes and, consequently, they have been associated with several human diseases, including diabetes chronic complications, such as diabetes kidney disease (DKD). In this context, some studies have identified the dysregulation of the lncRNAs MALAT1 and TUG1 in patients with DKD; nevertheless, available data are still contradictory. Thus, the objective of this study was to compare MALAT1 and TUG1 expressions in urine of patients with type 1 diabetes mellitus (T1DM) categorized according to DKD presence. This study comprised 18 T1DM patients with DKD (cases) and 9 long-duration T1DM patients without DKD (controls). MALAT1 and TUG1 were analyzed using qPCR. Bioinformatics analyses were done to identify both lncRNA target genes and the signaling pathways under their regulation. The lncRNA MALAT1 was upregulated in urine of T1DM patients with DKD vs. T1DM controls (P = 0.007). The expression of lncRNA TUG1 did not differ between groups (P = 0.815). Bioinformatics analysis showed these two lncRNAs take part in metabolism-related pathways. The present study shows that the lncRNA MALAT1 is upregulated in T1DM patients presenting DKD.
Collapse
Affiliation(s)
- Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Eliandra Girardi
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
| | - Denise Taurino Ramos
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
| | | | - Luís Henrique Canani
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Nefrologia, Porto Alegre, RS, Brazil
| | - Taís Silveira Assmann
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Serviço de Endocrinologia e Metabologia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Liu Y, Zhang M, Zhong H, Xie N, Wang Y, Ding S, Su X. LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4. Acta Diabetol 2023; 60:563-577. [PMID: 36658449 DOI: 10.1007/s00592-022-02021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
AIMS LncRNA SNHG16 and Toll-like receptor-4 (TLR4) participate in diabetes nephropathy. This study investigated whether SNHG16 regulates diabetic renal injury (DRI) via TLR4 and its related mechanism. METHODS Diabetic mice and high glucose (HG)-induced HRMCs were used to examine the expressions of SNHG16 and TLR4. The SNHG16 expression, cytokines, reactive oxygen species, MDA, SOD, GSH, and fibrosis-related proteins were evaluated in HG-induced HRMCs transfected with sh-NC or sh-SHNG16. RNA immunoprecipitation and RNA pull-down determined the interaction between SNHG16 and EIF4A3 or TLR4 and EIF4A3. We used HG-treated HRMCs or diabetic mice to investigate the roles of TLR4 or SNHG16 in renal injuries. RESULTS Both SNHG16 and TLR4 were upregulated in diabetic conditions. HG increased serum Scr and BUN, led to significant fibrosis, increased inflammation- and renal fibrosis-related proteins in mice, and increased ROS, MDA, and decreased SOD and GSH in HRMCs. SNHG16 silencing diminished HG-upregulated SNHG16, decreased HG-increased cytokines secretion, ROS, MDA, and fibrosis but increased SOD and GSH. RIP and RNA pull-down confirmed that SNHG16 recruits EIF4A3 to stabilize TLR4 mRNA. TLR4 knockdown alleviated HG-induced renal injuries by suppressing RAS and NF-κB-mediated activation of NLRP3 inflammasomes. SNHG16 knockdown alleviated HG-induced renal injuries in HG-induced HRMCs or diabetic mice. Interestingly, TLR4 overexpression reversed the effects of SNHG16 knockdown. Mechanistically, SNHG16 knockdown alleviated HG-induced renal injuries by suppressing TLR4. CONCLUSION SNHG16 accelerated HG-induced renal injuries via recruiting EIF4A3 to enhance the stabilization of TLR4 mRNA. The SNGHG16/ELF4A3/TLR4 axis might be a novel target for treating DRI.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Mengbi Zhang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Haowen Zhong
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Na Xie
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Yamei Wang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Su Ding
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Xiaoyan Su
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China.
| |
Collapse
|
13
|
Sun Q, Liu X, Wang M, Fan J, Zeng H. Long noncoding RNA FGD5-AS1 alleviates childhood IgA nephropathy by targeting PTEN-mediated JNK/c-Jun signaling pathway via miR-196b-5p. Exp Cell Res 2023; 424:113481. [PMID: 36641136 DOI: 10.1016/j.yexcr.2023.113481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
This paper studied lncRNA FGD5 antisense RNA 1 (FGD5-AS1)-associated mechanisms in immunoglobulin A nephropathy (IgAN). FGD5-AS1, miR-196b-5p, and PTEN in the serum of children with IgAN were assessed. MES-13 cells were stimulated by p-IgA1 to construct an in vitro model of IgAN. After plasmid intervention, cell proliferation, cell cycle, apoptosis, and inflammatory response were correspondingly evaluated. An IgAN mouse model was established to define FGD5-AS1/miR-196b-5p/PTEN axis-mediated alternations of 24-h proteinuria, blood urea nitrogen, serum creatinine, glomerular IgA deposition, renal fibrosis, and glycogen content in renal tissue. The changes in JNK/c-Jun pathway activation in the cell model were also tested. Our results discovered that FGD5-AS1 and PTEN were down-regulated and miR-196b-5p was up-regulated in children with IgAN. Overexpression of FGD5-AS1 or silencing of miR-196b-5p impeded the proliferation and inflammatory response and induced apoptosis of p-IgA1-stimulated MES-13 cells, and improved pathological conditions in IgAN mice. Inhibition of PTEN rescued the therapeutic effects of overexpression of FGD5-AS1 or inhibition of miR-196b-5p on IgAN. FGD5-AS1/miR-196b-5p/PTEN axis inhibited the activation of the JNK/c-Jun pathway. Taken together, FGD5-AS1 attenuates IgAN by targeting PTEN-mediated JNK/c-Jun signaling via miR-196b-5p. Therefore, FGD5-AS1 may be a new therapeutic target for IgAN.
Collapse
Affiliation(s)
- Qiang Sun
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| | - Xue Liu
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Mingxu Wang
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jianfeng Fan
- Blood Purification Center, Beijing Key Laboratory of Pediatric Chronic Kidney Diseases and Blood Purification, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Haisheng Zeng
- Department of Pediatrics, Dong Guan Children's Hospital, DongGuan City, Guangdong Province, 523325, China
| |
Collapse
|
14
|
Placental Mesenchymal Stem Cells Alleviate Podocyte Injury in Diabetic Kidney Disease by Modulating Mitophagy via the SIRT1-PGC-1alpha-TFAM Pathway. Int J Mol Sci 2023; 24:ijms24054696. [PMID: 36902127 PMCID: PMC10003373 DOI: 10.3390/ijms24054696] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) has become a new strategy for treating diabetic kidney disease (DKD). However, the role of placenta derived mesenchymal stem cells (P-MSCs) in DKD remains unclear. This study aims to investigate the therapeutic application and molecular mechanism of P-MSCs on DKD from the perspective of podocyte injury and PINK1/Parkin-mediated mitophagy at the animal, cellular, and molecular levels. Western blotting, reverse transcription polymerase chain reaction, immunofluorescence, and immunohistochemistry were used to detect the expression of podocyte injury-related markers and mitophagy-related markers, SIRT1, PGC-1α, and TFAM. Knockdown, overexpression, and rescue experiments were performed to verify the underlying mechanism of P-MSCs in DKD. Mitochondrial function was detected by flow cytometry. The structure of autophagosomes and mitochondria were observed by electron microscopy. Furthermore, we constructed a streptozotocin-induced DKD rat model and injected P-MSCs into DKD rats. Results showed that as compared with the control group, exposing podocytes to high-glucose conditions aggravated podocyte injury, represented by a decreased expression of Podocin along with increased expression of Desmin, and inhibited PINK1/Parkin-mediated mitophagy, manifested as a decreased expression of Beclin1, the LC3II/LC3I ratio, Parkin, and PINK1 associated with an increased expression of P62. Importantly, these indicators were reversed by P-MSCs. In addition, P-MSCs protected the structure and function of autophagosomes and mitochondria. P-MSCs increased mitochondrial membrane potential and ATP content and decreased the accumulation of reactive oxygen species. Mechanistically, P-MSCs alleviated podocyte injury and mitophagy inhibition by enhancing the expression of the SIRT1-PGC-1α-TFAM pathway. Finally, we injected P-MSCs into streptozotocin-induced DKD rats. The results revealed that the application of P-MSCs largely reversed the markers related to podocyte injury and mitophagy and significantly increased the expression of SIRT1, PGC-1α, and TFAM compared with the DKD group. In conclusion, P-MSCs ameliorated podocyte injury and PINK1/Parkin-mediated mitophagy inhibition in DKD by activating the SIRT1-PGC-1α-TFAM pathway.
Collapse
|
15
|
Li X, Ma TK, Wang M, Zhang XD, Liu TY, Liu Y, Huang ZH, Zhu YH, Zhang S, Yin L, Xu YY, Ding H, Liu C, Shi H, Fan QL. YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front Pharmacol 2023; 14:1069348. [PMID: 36874012 PMCID: PMC9974832 DOI: 10.3389/fphar.2023.1069348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objectives: Dimeric pyruvate kinase (PK) M2 (PKM2) plays an important role in promoting the accumulation of hypoxia-inducible factor (HIF)-1α, mediating aberrant glycolysis and inducing fibrosis in diabetic kidney disease (DKD). The aim of this work was to dissect a novel regulatory mechanism of Yin and Yang 1 (YY1) on lncRNA-ARAP1-AS2/ARAP1 to regulate EGFR/PKM2/HIF-1α pathway and glycolysis in DKD. Materials and methods: We used adeno-associated virus (AAV)-ARAP1 shRNA to knocked down ARAP1 in diabetic mice and overexpressed or knocked down YY1, ARAP1-AS2 and ARAP1 expression in human glomerular mesangial cells. Gene levels were assessed by Western blotting, RT-qPCR, immunofluorescence staining and immunohistochemistry. Molecular interactions were determined by RNA pull-down, co-immunoprecipitation, ubiquitination assay and dual-luciferase reporter analysis. Results: YY1, ARAP1-AS2, ARAP1, HIF-1α, glycolysis and fibrosis genes expressions were upregulated and ARAP1 knockdown could inhibit dimeric PKM2 expression and partly restore tetrameric PKM2 formation, while downregulate HIF-1α accumulation and aberrant glycolysis and fibrosis in in-vivo and in-vitro DKD models. ARAP1 knockdown attenuates renal injury and renal dysfunction in diabetic mice. ARAP1 maintains EGFR overactivation in-vivo and in-vitro DKD models. Mechanistically, YY1 transcriptionally upregulates ARAP1-AS2 and indirectly regulates ARAP1 and subsequently promotes EGFR activation, HIF-1α accumulation and aberrant glycolysis and fibrosis. Conclusion: Our results first highlight the role of the novel regulatory mechanism of YY1 on ARAP1-AS2 and ARAP1 in promoting aberrant glycolysis and fibrosis by EGFR/PKM2/HIF-1α pathway in DKD and provide potential therapeutic strategies for DKD treatments.
Collapse
Affiliation(s)
- Xin Li
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Xiao-Dan Zhang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Tian-Yan Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yong-Hong Zhu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Cong Liu
- Department of General Surgery, First Hospital of Harbin Medical University, Harbin, China
| | - Hang Shi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3357281. [PMID: 36760471 PMCID: PMC9904933 DOI: 10.1155/2023/3357281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Background QiHuangYiShen granules (QHYS), a traditional Chinese herbal medicine formula, have been used in clinical practice for treating diabetic kidney disease for several years by our team. The efficacy of reducing proteinuria and delaying the decline of renal function of QHYS has been proved by our previous studies. However, the exact mechanism by which QHYS exerts its renoprotection remains largely unknown. Emerging evidence suggests that lncRNA MALAT1 is abnormally expressed in diabetic nephropathy (DN) and can attenuate renal fibrosis by modulating podocyte epithelial-mesenchymal transition (EMT). Objective In the present study, we aimed to explore whether QHYS could modulate lncRNA MALAT1 expression and attenuate the podocyte EMT as well as the potential mechanism related to the Wnt/β-catenin signal pathway. Methods SD rats were fed with the high-fat-high-sucrose diet for 8 weeks and thereafter administered with 30 mg/kg streptozotocin intraperitoneally to replicate the DN model. Quality control of QHYS was performed using high-performance liquid chromatography. QHYS were orally administered at 1.25, 2.5, and 5 g/kg doses, respectively, to the DN model rats for 12 weeks. Body weight, glycated haemoglobin, blood urea nitrogen, serum creatinine, 24-h proteinuria, and kidney index were measured. The morphologic pathology of the kidney was evaluated by Hematoxylin-eosin and Masson's trichrome staining. The expression level of lncRNA MALAT1 was determined by quantitative real-time polymerase chain reaction. In addition, the expression levels of podocyte EMT protein markers and Wnt/β-catenin pathway proteins in renal tissues were evaluated by Western blotting and immunohistochemistry. Results The results showed that QHYS significantly reduced 24-h proteinuria, blood urea nitrogen, kidney index, and ameliorated glomerular hypertrophy and collagen fiber deposition in the kidney of DN rats. Importantly, QHYS significantly downregulated the expression level of lncRNA MALAT1, upregulated the expression of nephrin, the podocyte marker protein, downregulated the expression of desmin and FSP-1, and mesenchymal cell markers. Furthermore, QHYS significantly downregulated the expression levels of Wnt1, β-catenin, and active β-catenin. Conclusion Conclusively, our study revealed that QHYS significantly reduced proteinuria, alleviated renal fibrosis, and attenuated the podocyte EMT in DN rats, which may be associated with the downregulation of lncRNA MALAT1 expression and inhibition of the Wnt/β-catenin pathway.
Collapse
|
17
|
Liu C, Liu L, Huang Y, Shi R, Wu Y, Hakimah Binti Ismail I. Contribution of IL-33/ILC2-mediated Th2 cytokines during the progression of minimal change disease. Int Immunopharmacol 2023; 114:109493. [PMID: 36527879 DOI: 10.1016/j.intimp.2022.109493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Minimal change disease (MCD) is a common type of nephrotic syndrome with high recurrence rate. This study aims to explore the impacts of interleukin (IL)-33 in MCD and to discuss its potential mechanism. In adriamycin (ADM) and puromycin aminonucleoside (PAN)-induced MCD rat model, IL-33 was used for treatment. H&E staining was applied for detecting histological changes. Critical proteins were examined by western blot. Corresponding commercial kits tested oxidative stress- and inflammation-related factors. Cell apoptosis was measured by TUNEL assay. ADM-induced podocyte injury model was establish to mimic MCD in vitro. Cell proliferation and apoptosis were detected by CCK-8 and TUNEL assays. Finally, podocyte was stimulated by innate lymphoid type-2 cells-secreted Th2 cytokines (ILC2s: IL-13 and IL-5 respectively), with or without incubation with M1 macrophage medium to further explore the immune-regulation of ILC2s behind the inflammatory environment of MCD. It was found that PAN-induced kidney jury, inflammation, oxidative stress and apoptosis were severer than ADM, and IL-33 treatment significantly alleviated the above injuries in PAN and ADM-induced MCD rat model. Moreover, IL-33 reversed the reduced viability and increased oxidative stress and apoptosis in ADM-induced podocyte injury model. Further, the capacities of IL-13 alone in inducing M1/M2 macrophage polarization, apoptosis, inflammation, kidney injury and reducing cell viability are stronger than IL-5. However, IL-13 reversed reduced cell viability and stimulated apoptosis, inflammation, kidney injury mediated by co-incubation with M1-conditioned medium. Collectively, IL-33 might protect against immunologic injury in MCD via mediating ILC2s-secreted IL-13.
Collapse
Affiliation(s)
- Cui Liu
- Department of Pediatrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Li Liu
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanping Huang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruiming Shi
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Intan Hakimah Binti Ismail
- Department of Pediatrics, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Li B, Zhao X, Xie W, Hong Z, Zhang Y. Integrative analyses of biomarkers and pathways for diabetic nephropathy. Front Genet 2023; 14:1128136. [PMID: 37113991 PMCID: PMC10127684 DOI: 10.3389/fgene.2023.1128136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is a widespread diabetic complication and a major cause of terminal kidney disease. There is no doubt that DN is a chronic disease that imposes substantial health and economic burdens on the world's populations. By now, several important and exciting advances have been made in research on etiopathogenesis. Therefore, the genetic mechanisms underlying these effects remain unknown. Methods: The GSE30122, GSE30528, and GSE30529 microarray datasets were downloaded from the Gene Expression Omnibus database (GEO). Analyses of differentially expressed genes (DEGs), enrichment of gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed. Protein-protein interaction (PPI) network construction was completed by the STRING database. Hub genes were identified by Cytoscape software, and common hub genes were identified by taking intersection sets. The diagnostic value of common hub genes was then predicted in the GSE30529 and GSE30528 datasets. Further analysis was carried out on the modules to identify transcription factors and miRNA networks. As well, a comparative toxicogenomics database was used to assess interactions between potential key genes and diseases associated upstream of DN. Results: Samples from 19 DNs and 50 normal controls were identified in the GSE30122 dataset. 86 upregulated genes and 34 downregulated genes (a total of 120 DEGs). GO analysis showed significant enrichment in humoral immune response, protein activation cascade, complement activation, extracellular matrix, glycosaminoglycan binding, and antigen binding. KEGG analysis showed significant enrichment in complement and coagulation cascades, phagosomes, the Rap1 signaling pathway, the PI3K-Akt signaling pathway, and infection. GSEA was mainly enriched in the TYROBP causal network, the inflammatory response pathway, chemokine receptor binding, the interferon signaling pathway, ECM receptor interaction, and the integrin 1 pathway. Meanwhile, mRNA-miRNA and mRNA-TF networks were constructed for common hub genes. Nine pivotal genes were identified by taking the intersection. After validating the expression differences and diagnostic values of the GSE30528 and GSE30529 datasets, eight pivotal genes (TYROBP, ITGB2, CD53, IL10RA, LAPTM5, CD48, C1QA, and IRF8) were finally identified as having diagnostic values. Conclusion: Pathway enrichment analysis scores provide insight into the genetic phenotype and may propose molecular mechanisms of DN. The target genes TYROBP, ITGB2, CD53, IL10RA, LAPTM5, CD48, C1QA, and IRF8 are promising new targets for DN. SPI1, HIF1A, STAT1, KLF5, RUNX1, MBD1, SP1, and WT1 may be involved in the regulatory mechanisms of DN development. Our study may provide a potential biomarker or therapeutic locus for the study of DN.
Collapse
Affiliation(s)
- Bo Li
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Xu Zhao
- Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wanrun Xie
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhenzhen Hong
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Yi Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
19
|
Ngum JA, Tatang FJ, Toumeni MH, Nguengo SN, Simo USF, Mezajou CF, Kameni C, Ngongang NN, Tchinda MF, Dongho Dongmo FF, Akami M, Ngane Ngono AR, Tamgue O. An overview of natural products that modulate the expression of non-coding RNAs involved in oxidative stress and inflammation-associated disorders. Front Pharmacol 2023; 14:1144836. [PMID: 37168992 PMCID: PMC10165025 DOI: 10.3389/fphar.2023.1144836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Oxidative stress is a state in which oxidants are produced in excess in the body's tissues and cells, resulting in a biological imbalance amid the generation of reactive oxygen and nitrogen species (RONS) from redox reactions. In case of insufficient antioxidants to balance, the immune system triggers signaling cascades to mount inflammatory responses. Oxidative stress can have deleterious effects on major macromolecules such as lipids, proteins, and nucleic acids, hence, Oxidative stress and inflammation are among the multiple factors contributing to the etiology of several disorders such as diabetes, cancers, and cardiovascular diseases. Non-coding RNAs (ncRNAs) which were once referred to as dark matter have been found to function as key regulators of gene expression through different mechanisms. They have dynamic roles in the onset and development of inflammatory and oxidative stress-related diseases, therefore, are potential targets for the control of those diseases. One way of controlling those diseases is through the use of natural products, a rich source of antioxidants that have drawn attention with several studies showing their involvement in combating chronic diseases given their enormous gains, low side effects, and toxicity. In this review, we highlighted the natural products that have been reported to target ncRNAs as mediators of their biological effects on oxidative stress and several inflammation-associated disorders. Those natural products include Baicalein, Tanshinone IIA, Geniposide, Carvacrol/Thymol, Triptolide, Oleacein, Curcumin, Resveratrol, Solarmargine, Allicin, aqueous extract or pulp of Açai, Quercetin, and Genistein. We also draw attention to some other compounds including Zanthoxylum bungeanum, Canna genus rhizome, Fuzi-ganjiang herb pair, Aronia melanocarpa, Peppermint, and Gingerol that are effective against oxidative stress and inflammation-related disorders, however, have no known effect on ncRNAs. Lastly, we touched on the many ncRNAs that were found to play a role in oxidative stress and inflammation-related disorders but have not yet been investigated as targets of a natural product. Shedding more light into these two last points of shadow will be of great interest in the valorization of natural compounds in the control and therapy of oxidative stress- and inflammation-associated disorders.
Collapse
|
20
|
Chang WW, Zhang L, Wen LY, Huang Q, Tong X, Tao YJ, Chen GM. Association of tag single nucleotide polymorphisms (SNPs) at lncRNA MALAT1 with type 2 diabetes mellitus susceptibility in the Chinese Han population: A case-control study. Gene X 2023; 851:147008. [DOI: 10.1016/j.gene.2022.147008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
|
21
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
22
|
Rozi R, Zhou Y, Rong K, Chen P. miR-124-3p sabotages lncRNA MALAT1 stability to repress chondrocyte pyroptosis and relieve cartilage injury in osteoarthritis. J Orthop Surg Res 2022; 17:453. [PMID: 36243708 PMCID: PMC9571420 DOI: 10.1186/s13018-022-03334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis (OA) is a prevalent inflammatory joint disorder. microRNAs (miRNAs) are increasingly involved in OA. Aim Our study is proposed to clarify the role of miR-124-3p in chondrocyte pyroptosis and cartilage injury in OA.
Methods OA mouse model was established via the treatment of destabilization of the medial meniscus (DMM), and the in vitro cell model was also established as mouse chondrocytes were induced by lipopolysaccharide (LPS). Mouse cartilage injury was assessed using safranin-O-fast green staining, hematoxylin–eosin staining, and OARSI grading method. Expressions of miR-124-3p, MALAT1, KLF5, and CXCL11 were determined. Cartilage injury (MMP-13, osteocalcin), inflammation (IL-6, IL-2, TNF-, IL-1β, and IL-18)- and pyroptosis-related factors (Cleaved Caspase-1 and GSDMD-N) levels were detected. Mechanically, MALAT1 subcellular localization was confirmed. The binding relationships of miR-124-3p and MALAT1 and MALAT1 and KLF5 were verified. MALAT1 half-life period was detected. Then, miR-124-3p was overexpressed using agomiR-124-3p to perform the rescue experiments with oe-MALAT1 or oe-CXCL11. Results miR-124-3p was downregulated in DMM mice and LPS-induced chondrocytes where cartilage injury, and increased levels of inflammation- and pyroptosis-related factors were found. miR-124-3p overexpression relieved cartilage injury and repressed chondrocyte pyroptosis. miR-124-3p bounds to MALAT1 to downregulate its stability and expression, and MALAT1 bounds to KLF5 to enhance CXCL11 transcription. Overexpression of MALAT1 or CXCL11 annulled the repressive function of miR-124-3p in chondrocyte pyroptosis. Conclusion miR-124-3p reduced MALAT1 stability and inhibited the binding of MALAT1 and KLF5 to downregulate CXCL11, thereby suppressing chondrocyte pyroptosis and cartilage injury in OA.
Collapse
Affiliation(s)
- Rigbat Rozi
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Yubo Zhou
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Kai Rong
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Pingbo Chen
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China.
| |
Collapse
|
23
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|
24
|
lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res 2022; 2022:8098001. [PMID: 35910856 PMCID: PMC9334040 DOI: 10.1155/2022/8098001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Objective The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) are closely associated with the pathogenesis of diabetic nephropathy (DN). But a complete mechanism for MALAT1 in DN has yet to be identified. This study investigated the effect of MALAT1 on DN through the regulation of miR-15b-5p/TLR4 signaling. Method Renal tissues were collected from DN patients. Human renal tubular epithelial cells (HK-2) were used as a model of DN induced by high glucose (HG). We then measured the viability, apoptosis, and inflammatory cytokine levels of HK-2 cells using the corresponding assays. Following transfections of si-MALAT1, si-MALAT1+miR-15b-5p inhibitor, or si-MALAT1+vector TLR4 into HG-stimulated HK-2 cells, cell viability, apoptosis, and inflammatory cytokines were again measured. Furthermore, dual-luciferase reporter assay validated the interactions of MALAT1/miR-15b-5p and miR-15b-5p/TLR4. In addition, the interaction between MALAT1 and miR-15b-5p was investigated by RNA immunoprecipitation (RIP). Results A significant upregulation of MALAT1 was observed in DN kidney tissues, as well as in HG-stimulated HK-2 cells. MALAT1 knockdown attenuates the inhibition of cell viability, apoptosis, and inflammatory response induced by HG in HK-2 cells. Moreover, a miR-15b-5p inhibitor or TLR4 overexpression reversed the above effects induced by MALAT1 knockdown. Conclusion These results indicate that reduced MALAT1 ameliorates HG-stimulated HK-2 cell damage through an inhibition of the miR-15b-5p/TLR4 axis. MALAT1 may serve as a biomarker and potential therapeutic target for DN.
Collapse
|
25
|
Sun IO, Bae YU, Lee H, Kim H, Jeon JS, Noh H, Choi JS, Doh KO, Kwon SH. Circulating miRNAs in extracellular vesicles related to treatment response in patients with idiopathic membranous nephropathy. J Transl Med 2022; 20:224. [PMID: 35568952 PMCID: PMC9107687 DOI: 10.1186/s12967-022-03430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Background Extracellular vesicle (EV)-microRNAs (miRNAs) are potential biomarkers for various renal diseases. This study attempted to identify the circulating EV-miRNA signature not only for discriminating idiopathic membranous nephropathy (IMN) from idiopathic nephrotic syndrome (INS), but also to predict the treatment response of patients with IMN. Methods We prospectively enrolled 60 participants, including those with IMN (n = 19) and INS (n = 21) and healthy volunteers (HVs; n = 20) in this study. Using RNA sequencing, we assessed the serum EV-miRNA profiles of all participants. To identify the EV-miRNAs predictive of treatment response in IMN, we also analyzed EV-miRNAs among patients with IMN with and without clinical remission. Results The expression levels of 3 miRNAs differed between IMN patients, INS patients and HVs. In addition, compared to HVs, RNA sequencing revealed differential expression of 77 and 44 EV-miRNAs in patients with IMN without and with remission, respectively. We also identified statistically significant (|fold change ≥ 2, p < 0.05) differences in the expression levels of 23 miRNAs in IMN without remission. Biological pathway analysis of miRNAs in IMN without remission indicated that they are likely involved in various pathways, including renal fibrosis. Conclusion Our study identified EV-miRNAs associated with IMN as well as those associations with therapeutic response. Therefore, these circulating EV-miRNAs may be used as potential markers for the diagnosis and prediction of treatment response in patients with IMN. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03430-7.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Yun-Ui Bae
- Department of Internal Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea
| | - Jong-Soo Choi
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, 04401, Republic of Korea.
| |
Collapse
|
26
|
Transcriptome expression profiles associated with diabetic nephropathy development. Mol Cell Biochem 2022; 477:1931-1946. [PMID: 35357607 DOI: 10.1007/s11010-022-04420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 01/20/2023]
Abstract
The objective of this study was to identify different transcriptome expression profiles involved in the pathogenesis of diabetic nephropathy (DN) and to illustrate the diagnostic and therapeutic potential of mRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in DN progression. The participants were divided into four groups: normoalbuminuria (group DM), microalbuminuria (group A2), macroalbuminuria (group A3) and healthy controls (group N). There were three individuals in each group for sequencing. Transcriptome sequencing analysis was performed on the peripheral blood of all the participants to identify the differential expression of mRNAs, lncRNAs, and circRNAs between intervention groups and controls. The functional enrichment analysis, the short time-series expression miner (STEM) program, and the miRNA-circRNA-mRNA network were further conducted. To verify the reproducibility of transcriptome sequencing, 10 and 30 blood samples were collected from the control and diseased groups, respectively. Four candidate biomarkers were selected from differentially expressed circRNAs (circ_0005379, circ_0002024, and circ_0000567, and circ_0001017) and their concentrations in the blood were measured using quantitative PCR (qPCR). In the comparison of A2 with N, 549 mRNAs, 1259 lncRNAs, and 12 circRNAs were screened. In the comparison of A3 with N, 1217 mRNAs, 1613 lncRNAs, and 24 circRNAs were screened. Moreover, in the comparison of diabetes mellitus (DM) with N, 948 mRNAs, 1495 lncRNAs, and 25 circRNAs were screened. Functional enrichment analysis showed that differentially expressed mRNAs were related to insulin secretion, insulin resistance, and inflammation, while differentially expressed lncRNAs were mainly associated with crossover junction endodeoxyribonuclease activity. In STEM analysis, a total of 481 mRNAs and 152 differential expression circRNAs showed a significant tendency. The key relationships in the miRNA-circRNA-mRNA network were identified, such as hsa-miR-103a-3p-circ_0005379-PTEN, hsa-miR-497-5p-circ_0002024-IGF1R and hsa-miR-1269a-circ_0000567-SOX6. In addition, qPCR showed consistent results with RNA sequencing. We found that differentially expressed mRNAs, lncRNAs, and circRNAs participated in DN development. Circ_0005379, circ_0002024, and circ_0000567 could be adopted as potential biomarkers for DN.
Collapse
|
27
|
Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK, Hollander JM. Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol 2022; 322:C482-C495. [PMID: 35108116 PMCID: PMC8917913 DOI: 10.1152/ajpcell.00446.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus has been linked to an increase in mitochondrial microRNA-378a (miR-378a) content. Enhanced miR-378a content has been associated with a reduction in mitochondrial genome-encoded mt-ATP6 abundance, supporting the hypothesis that miR-378a inhibition may be a therapeutic option for maintaining ATP synthase functionality during diabetes mellitus. Evidence also suggests that long noncoding RNAs (lncRNAs), including lncRNA potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (Kcnq1ot1), participate in regulatory axes with microRNAs (miRs). Prediction analyses indicate that Kcnq1ot1 has the potential to bind miR-378a. This study aimed to determine if loss of miR-378a in a genetic mouse model could ameliorate cardiac dysfunction in type 2 diabetes mellitus (T2DM) and to ascertain whether Kcnq1ot1 interacts with miR-378a to impact ATP synthase functionality by preserving mt-ATP6 levels. MiR-378a was significantly higher in patients with T2DM and 25-wk-old Db/Db mouse mitochondria, whereas mt-ATP6 and Kcnq1ot1 levels were significantly reduced when compared with controls. Twenty-five-week-old miR-378a knockout Db/Db mice displayed preserved mt-ATP6 and ATP synthase protein content, ATP synthase activity, and preserved cardiac function, implicating miR-378a as a potential therapeutic target in T2DM. Assessments following overexpression of the 500-bp Kcnq1ot1 fragment in established mouse cardiomyocyte cell line (HL-1) cardiomyocytes overexpressing miR-378a revealed that Kcnq1ot1 may bind and significantly reduce miR-378a levels, and rescue mt-ATP6 and ATP synthase protein content. Together, these data suggest that Kcnq1ot1 and miR-378a may act as constituents in an axis that regulates mt-ATP6 content, and that manipulation of this axis may provide benefit to ATP synthase functionality in type 2 diabetic heart.
Collapse
Affiliation(s)
- Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
28
|
Chu PM, Yu CC, Tsai KL, Hsieh PL. Regulation of Oxidative Stress by Long Non-Coding RNAs in Vascular Complications of Diabetes. Life (Basel) 2022; 12:life12020274. [PMID: 35207562 PMCID: PMC8877270 DOI: 10.3390/life12020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a well-known metabolic disorder with numerous complications, such as macrovascular diseases (e.g., coronary heart disease, diabetic cardiomyopathy, stroke, and peripheral vascular disease), microvascular diseases (e.g., diabetic nephropathy, retinopathy, and diabetic cataract), and neuropathy. Multiple contributing factors are implicated in these complications, and the accumulation of oxidative stress is one of the critical ones. Several lines of evidence have suggested that oxidative stress may induce epigenetic modifications that eventually contribute to diabetic vascular complications. As one kind of epigenetic regulator involved in various disorders, non-coding RNAs have received great attention over the past few years. Non-coding RNAs can be roughly divided into short (such as microRNAs; ~21–25 nucleotides) or long non-coding RNAs (lncRNAs; >200 nucleotides). In this review, we briefly discussed the research regarding the roles of various lncRNAs, such as MALAT1, MEG3, GAS5, SNHG16, CASC2, HOTAIR, in the development of diabetic vascular complications in response to the stimulation of oxidative stress.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence:
| |
Collapse
|
29
|
Fang T, Xue G, Jianjun W, Wei L, Xiaomeng Z, Fan Y. Dissecting lncRNA-mRNA competitive regulatory network in human islet tissue exosomes of a type 1 diabetes model reveals exosome miRNA markers. Front Endocrinol (Lausanne) 2022; 13:1015800. [PMID: 36440209 PMCID: PMC9682028 DOI: 10.3389/fendo.2022.1015800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Emerging evidence shows that exosomes play a crucial role in the occurrence and development of diabetes and its complications. The molecules in exosomes can be regarded as important markers for the diagnosis of diseases. However, it is presently unclear the pathological association mechanism between exosomes and diabetes. RESULTS In this study, transcriptome data and lncRNA regulatory association data of human pancreatic islet-derived exosome were integrated to construct the ceRNA network. Network analysis revealed that lncRNA with differential expression were primarily involved in islet insulin secretion signaling pathways, including Hippo, TGF-beta, Wnt, FOXO, Neurotrophin and ErbB signaling pathway. Further, combined with miRNA mediated competitive regulation and differential expression analysis results, potential markers of diabetes were revealed and validated in independent datasets. Finally, we analyzed the mechanisms of diabetes based on the competitive regulatory association and function of lncRNA. CONCLUSION Our results suggest that lncRNA such as lncRNA PVT1, LINC00960 and hsa-miR-107 might be involved in inflammation response in T1DM, and the former lncRNA chose in the present study may serve as novel biomarkers and potential targets for the diagnosis and treatment of T1DM.
Collapse
Affiliation(s)
- Tian Fang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gong Xue
- Harbin Center for Disease Control and Prevention, Harbin Municipal Health Commission, Harbin, China
| | - Wu Jianjun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhang Xiaomeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yang Fan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
- *Correspondence: Yang Fan,
| |
Collapse
|