1
|
Yoshimura Y, Iwahashi T, Kasuya T, Shimada T, Konishi K, Kamata A, Konishi M, Kazui A, Shiode R, Miyamura S, Oka K, Okada S, Tanaka H. Methylcobalamin-containing nanofiber sheets have better neuroprotective effects than small intestinal submucosa sheets. Sci Rep 2025; 15:950. [PMID: 39762256 PMCID: PMC11704040 DOI: 10.1038/s41598-024-78933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model. Behavioral and electrophysiological analyses showed superior results in the MeCbl sheet group compared with those in the untreated group, all of which were non-inferior to the SIS sheet group. Histological analysis revealed less collagen and inflammatory cell invasion into the nerve parenchyma and a higher number of residual axons and myelination rate in the MeCbl sheet group than in the untreated group. Moreover, the MeCbl sheet group was superior to the SIS sheet group in terms of the myelination rate and decreased number of infiltrating macrophages. Furthermore, the distribution of residual axons by diameter revealed that the MeCbl sheet group had thicker axons than the SIS sheet group. The use of MeCbl sheets may represent a novel approach for preventing secondary nervous system impairment following inflammation.
Collapse
Affiliation(s)
- Yoshiaki Yoshimura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Kasuya
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Shimada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsuyuki Konishi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kamata
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mai Konishi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Arisa Kazui
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryoya Shiode
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Miyamura
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Kunihiro Oka
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 amadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Sports Medical Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Wang JL, Huang QM, Hu DX, Zhang WJ. Therapeutic effect of exosomes derived from Schwann cells in the repair of peripheral nerve injury. Life Sci 2024; 357:123086. [PMID: 39357794 DOI: 10.1016/j.lfs.2024.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Peripheral nerve injury (PNI) can cause nerve demyelination, neuronal apoptosis, axonal atrophy, inflammatory infiltration, glial scar formation, and other pathologies that can lead to sensory and motor dysfunction and seriously affect the psychosomatic health of patients. There is currently no effective treatment method, so exploring a promising treatment method is of great significance. Several studies have revealed the therapeutic roles of Schwann cells (SCs) and their exosomes in nerve injury repair. Exosomes are extracellular nanovesicles secreted by cells that act as key molecules in intercellular communication. Progress has been made in understanding the role of exosomes derived from SCs (SC-EXOs) in peripheral nerve regeneration, including the promotion of axonal regeneration and myelin formation, anti-inflammation, vascular regeneration, neuroprotection, and neuroregulation. Therefore, in this paper, we summarize the functional characteristics of SC-EXOs and discuss their potential therapeutic effects on PNI repair as well as some existing problems and future challenges.
Collapse
Affiliation(s)
- Jia-Ling Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
3
|
Cui H, Sun F, Yu N, Cao Y, Wang X, Zhang D, Chen Z, Wang N, Yuan B, Liu P, Duan W, Qiu W, Yin X, Ma C. TLR2/NF-κB signaling in macrophage/microglia mediated COVID-pain induced by SARS-CoV-2 envelope protein. iScience 2024; 27:111027. [PMID: 39435149 PMCID: PMC11493200 DOI: 10.1016/j.isci.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Pain has become a major symptom of long COVID-19 without effective therapy. Apart from viral infection pathological process, SARS-CoV-2 membranal proteins (envelope [S2E], spike [S2S] and membrane [S2M]) also present pro-inflammatory feature independently. Here, we aim to uncover the neuroinflammatory mechanism of COVID-pain induced by SARS-CoV-2 membranal proteins. We detected the three proteins in both peripheral sensory ganglions and spinal dorsal horn of COVID-19 donors. After intradermal and intrathecal injection, only S2E triggered pain behaviors, accompanied with upregulated-phosphorylation nuclear factor kappa B (NF-κB), which was significantly attenuated by minocycline in mice. We further identified Toll-like receptor 2 (TLR2) among TLRs as the target of S2E to evoke inflammatory responses leading to COVID-pain. This study identified the nociceptive effect of S2E through directly interacting with macrophage/microglia TLR2 and inducing the following NF-κB inflammatory storm. Clearing away S2E and inhibiting macrophage/microglia TLR2 served as perspective therapeutic strategies for COVID-19 pain.
Collapse
Affiliation(s)
- Huan Cui
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
| | - Fengrun Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
| | - Ning Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
| | - Yan Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
| | - Xue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Di Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Zhen Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Naili Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Bo Yuan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
| | - Penghao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Laboratory of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Laboratory of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Wenying Qiu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Xiangsha Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
| | - Chao Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Joint Laboratory of Anesthesia and Pain, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 DongDanSanTiao, Dongcheng District, Beijing 100005, China
- National Human Brain Bank for Development and Function, Beijing, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
4
|
Kim YS, Kim HS. Tetracyclines Revisited: Tetracyclines in the Field of Dermatology. Dermatology 2024; 240:844-858. [PMID: 39427643 DOI: 10.1159/000542006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Tetracyclines are a class of broad-spectrum antibiotics favored by dermatologists. Over the last decade, the clinical efficacy of tetracyclines has expanded into various dermatoses. SUMMARY This review tries to encompass the possible indications of tetracycline in the field of dermatology and possible mechanisms of action. This comprehensive review encompasses all possible indications of tetracyclines besides acne vulgaris and rosacea: hidradenitis suppurativa, autoimmune bullous dermatoses, vitiligo, alopecia, prurigo pigmentosa, granulomatous dermatoses, Kaposi's sarcoma, cold urticaria, atopic dermatitis, scrub typhus, scarring, and miscellaneous dermatoses. We also focus on the recently approved sarecycline, a third-generation narrow-spectrum tetracycline, and its clinical efficacy and potential impact on the microbiome. Our review provides a better understanding of this extremely familiar drug class and encourages its use in a wider spectrum of dermatologic diseases and symptoms. KEY MESSAGES This study comprehensively reviewed the current literature on potential indications of tetracyclines in the field of dermatology.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea,
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Li C, Song Y, Meng X. The Role of Macrophages in Nerve Regeneration: Polarization and Combination with Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38832865 DOI: 10.1089/ten.teb.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.
Collapse
Affiliation(s)
- Changqing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyu Song
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- Department of Orthopedics, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Ni M, Zheng M, Chen B, Lu X, Zhao H, Zhu T, Cheng L, Han H, Ye T, Liu H, Ye Y, Huang C, Yuan X. Microglial stimulation triggered by intranasal lipopolysaccharide administration produces antidepressant-like effect through ERK1/2-mediated BDNF synthesis in the hippocampus. Neuropharmacology 2023; 240:109693. [PMID: 37678448 DOI: 10.1016/j.neuropharm.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
We recently reported that reversing the chronic stress-induced decline of microglia in the dentate gyrus (DG) of the hippocampus by intraperitoneal injection of a low dose of lipopolysaccharide (LPS) ameliorated depression-like behavior in chronically stressed mice. In this study, we found that a single intranasal administration of LPS dose-dependently improved depression-like behavior in mice treated with chronic unpredictable stress (CUS), as evidenced by the reduction of immobility time in the tail suspension test (TST) and forced swimming test (FST) and by the increase of sucrose uptake in the sucrose preference test (SPT). The antidepressant effects of intranasal administration of LPS could be abolished by inhibition of brain-derived neurotrophic factor (BDNF) signaling by infusion of an anti-BDNF antibody, by knock-in of the mutant BDNF Val68Met allele, or by the BDNF receptor antagonist K252a. In addition, intranasal administration of LPS was found to exert antidepressant effects in a BDNF-dependent manner via promotion of BDNF synthesis mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling in DG. Inhibition of microglia by minocycline or depletion of microglia by PLX3397 was able to abolish the reversal effect of intranasal LPS administration on CUS-induced depression-like behaviors as well as the CUS-induced decrease in phospho-ERK1/2 and BDNF protein levels in DG. These results demonstrate that stimulation of hippocampal microglia by intranasal LPS administration can induce antidepressant effects via ERK1/2-dependent synthesis of BDNF protein, providing hope for the development of new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Mingxie Ni
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Meng Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui Zhao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No.7 People's Hospital, 288# Yanling East Road, Changzhou, 213000, Jiangsu, China
| | - Han Han
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, The Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng, 224006, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, #32 Xi'er Duan, 1ST Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
7
|
Zhan Y, Zhou Z, Chen M, Gong X. Photothermal Treatment of Polydopamine Nanoparticles@Hyaluronic Acid Methacryloyl Hydrogel Against Peripheral Nerve Adhesion in a Rat Model of Sciatic Nerve. Int J Nanomedicine 2023; 18:2777-2793. [PMID: 37250473 PMCID: PMC10224687 DOI: 10.2147/ijn.s410092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Peripheral nerve adhesion occurs following injury and surgery. Functional impairment leading by peripheral nerve adhesion remains challenging for surgeons. Local tissue overexpression of heat shock protein (HSP) 72 can reduce the occurrence of adhesion. This study aims to develop a photothermal material polydopamine nanoparticles@Hyaluronic acid methacryloyl hydrogel (PDA NPs@HAMA) and evaluate their efficacy for preventing peripheral nerve adhesion in a rat sciatic nerve adhesion model. Materials and Methods PDA NPs@HAMA was prepared and characterized. The safety of PDA NPs@HAMA was evaluated. Seventy-two rats were randomly assigned to one of the following four groups: the control group; the hyaluronic acid (HA) group; the polydopamine nanoparticles (PDA) group and the PDA NPs@HAMA group (n = 18 per group). Six weeks after surgery, the scar formation was evaluated by adhesion scores and biomechanical and histological examinations. Nerve function was assessed with electrophysiological examination, sensorimotor analysis and gastrocnemius muscle weight measurements. Results There were significant differences in the score on nerve adhesion between the groups (p < 0.001). Multiple comparisons indicated that the score was significantly lower in the PDA NPs@HAMA group (95% CI: 0.83, 1.42) compared with the control group (95% CI: 1.86, 2.64; p = 0.001). Motor nerve conduction velocity and muscle compound potential of the PDA NPs@HAMA group were higher than the control group's. According to immunohistochemical analysis, the PDA NPs@HAMA group expressed more HSP72, less α-smooth muscle actin (α-SMA), and had fewer inflammatory reactions than the control group. Conclusion In this study, a new type of photo-cured material with a photothermic effect was designed and synthesized-PDA NPs@HAMA. The photothermic effect of PDA NPs@HAMA protected the nerve from adhesion to preserve the nerve function in the rat sciatic nerve adhesion model. This effectively prevented adhesion-related damage.
Collapse
Affiliation(s)
- Yongxin Zhan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Miao Chen
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Cong Y, Wang Y, Yuan T, Zhang Z, Ge J, Meng Q, Li Z, Sun S. Macrophages in aseptic loosening: Characteristics, functions, and mechanisms. Front Immunol 2023; 14:1122057. [PMID: 36969165 PMCID: PMC10030580 DOI: 10.3389/fimmu.2023.1122057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Aseptic loosening (AL) is the most common complication of total joint arthroplasty (TJA). Both local inflammatory response and subsequent osteolysis around the prosthesis are the fundamental causes of disease pathology. As the earliest change of cell behavior, polarizations of macrophages play an essential role in the pathogenesis of AL, including regulating inflammatory responses and related pathological bone remodeling. The direction of macrophage polarization is closely dependent on the microenvironment of the periprosthetic tissue. When the classically activated macrophages (M1) are characterized by the augmented ability to produce proinflammatory cytokines, the primary functions of alternatively activated macrophages (M2) are related to inflammatory relief and tissue repair. Yet, both M1 macrophages and M2 macrophages are involved in the occurrence and development of AL, and a comprehensive understanding of polarized behaviors and inducing factors would help in identifying specific therapies. In recent years, studies have witnessed novel discoveries regarding the role of macrophages in AL pathology, the shifts between polarized phenotype during disease progression, as well as local mediators and signaling pathways responsible for regulations in macrophages and subsequent osteoclasts (OCs). In this review, we summarize recent progress on macrophage polarization and related mechanisms during the development of AL and discuss new findings and concepts in the context of existing work.
Collapse
Affiliation(s)
- Yehao Cong
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zheng Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jianxun Ge
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Ziqing Li, ; Shui Sun,
| |
Collapse
|
9
|
DUSP8/TAK1 signaling mediates neuropathic pain through regulating neuroinflammation and neuron death in a spinal nerve ligation (SNL) rat model. Int Immunopharmacol 2022; 113:109284. [DOI: 10.1016/j.intimp.2022.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
10
|
Hou X, Shen Y, Sun M, Zhang B, Dai J, Chen D, Liu Z. Effect of regulating macrophage polarization phenotype on intervertebral disc degeneration. Immun Inflamm Dis 2022; 10:e714. [PMID: 36301028 PMCID: PMC9609449 DOI: 10.1002/iid3.714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/07/2022] Open
Abstract
Background Macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus and their polarization plays an important role in intervertebral disc degeneration (IVDD). This paper attempted to investigate the pathogenesis of IVDD by altering the polarization state of macrophages. Methods Macrophage RAW264.7 cells were induced by interferonγ (IFN‐γ) and lipopolysaccharide (LPS). The polarization of RAW264.7 cells was estimated by western blot and immunofluorescence. The expressions of inflammatory factors were detected by ELISA. Subsequently, RAW264.7 cells were treated with different concentrations of minocycline (Mino) and sinomenine (Sino), followed by the assessment of cell viability with cell counting kit‐8 kit. Then, RAW264.7 cell culture medium was collected for the culture of human nucleus pulposus cells (NPCs). Toluidine blue staining and type II collagen staining were applied to assay the level of type II collagen. The cell apoptosis, oxidative stress, and nitric oxide (NO) level were appraised by TUNEL, oxidative stress kits and NO kit, respectively. Western blot was employed to test the levels of apoptosis‐ and oxidative stress‐related proteins. Results IFN‐γ and LPS could induce M1 polarization of RAW264.7 cells. Mino and Sino could reduce the polarization of RAW264.7 cells toward M1. M1‐polarized medium inhibited LPS‐induced activity, inflammation, and damage of NPCs, which were enhanced by Mino and Sino in medium. Conclusion M1 polarization of macrophages promoted LPS‐induced inflammation and damage of NPCs.
Collapse
Affiliation(s)
- Xuefeng Hou
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Yucheng Shen
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Minli Sun
- Department of GeriatricsBinhai County People's HospitalBinhaiJiangsu ProvinceChina
| | - Bing Zhang
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Jiuming Dai
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Dong Chen
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| | - Zhidong Liu
- Department of OrthopedicsBinhai County People's HospitalJiangsu ProvinceChina
| |
Collapse
|
11
|
Wang XL, Chen F, Shi H, Zhang M, Yan L, Pei XY, Peng XD. Oxymatrine inhibits neuroinflammation byRegulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway. Int Immunopharmacol 2021; 100:108139. [PMID: 34517275 DOI: 10.1016/j.intimp.2021.108139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Microglia are the primary immune cells involved in the immune response, inflammation, and injury repair in the central nervous system. Under different stimuli, the dual polarization of classically-activated M1 microglia and anti-inflammatory selectively-activated M2 microglia is observed. Oxymatrine (OMT) exerts various anti-inflammatory and neuroprotective effects, but the mechanism underlying its action remains unclear. In the present study, we investigated the effects of OMT on the polarization of M1/M2 microglia in a lipopolysaccharide (LPS)-induced inflammation model in order to elucidate the potential molecular mechanism of action of OMT in vitro. We first used a Cell Counting Kit-8 (CCK-8) to evaluate the effects of different concentrations OMT on the viability of N9 microglia to determine the appropriate concentration for follow-up experiments. Next, Griess reagent and enzyme-linked immunosorbent assay (ELISA) kits were used to detect the expression of the inflammation-related factors nitric oxide (NO), tumour necrosis factor-alpha (TNF-α), and interleukin (IL)-6, -1β, and -10. To evaluate the protective effects of OMT, the ultrastructure of the cells was observed using electron microscopy. Immunofluorescence, flow cytometry, and western blotting were performed to evaluate the effects of OMT on the following markers of M1 and M2 microglia: CD16/32, CD206, Arginase-10 (Arg-1), and inducible nitric oxide synthase (iNOS). Lastly, western blotting and quantitative polymerase chain reaction (qPCR) were used to detect factors associated with the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling pathway in order to explore the potential mechanism by which OMT regulates microglial polarization. The viability of N9 cells did not decrease when treated with a concentration of 1000 μg/mL OMT. Electron microscopy revealed that a concentration of 100 μg/mL OMT exerted a protective effect on N9 cells stimulated by LPS. The results of the present study indicated that OMT inhibited the over-activation of microglia, increased the levels of the M2 marker IL-10, decreased the levels of the M1 markers NO, TNF-α, IL-6, and IL-1β, promoted the polarization of N9 microglia to the M2 phenotype, and regulated M1/M2 polarization in the microglia by inhibiting TLR4/NF-κB signalling, which effectively attenuated the LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Xiao-Long Wang
- Department of Basic Pharmacology and Toxicology, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| | - Fei Chen
- Department of Basic Pharmacology and Toxicology, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| | - Hui Shi
- Department of Basic Pharmacology and Toxicology, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| | - Man Zhang
- Department of Basic Pharmacology and Toxicology, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| | - Lin Yan
- Functional Experiment Centre, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiu-Ying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Xiao-Dong Peng
- Department of Basic Pharmacology and Toxicology, School of Pharmacy, Ningxia Medical University, Yinchuan, China; Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; Functional Experiment Centre, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|