1
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024:10.1007/s43032-024-01638-0. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
2
|
Biasetti L, Zervogiannis N, Shaw K, Trewhitt H, Serpell L, Bailey D, Wright E, Hall CN. Risk factors for severe COVID-19 disease increase SARS-CoV-2 infectivity of endothelial cells and pericytes. Open Biol 2024; 14:230349. [PMID: 38862017 DOI: 10.1098/rsob.230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.
Collapse
Affiliation(s)
- Luca Biasetti
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Nikos Zervogiannis
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Kira Shaw
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Harry Trewhitt
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| | - Louise Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex , East Sussex BN1 9QG, UK
| | | | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex , , East Sussex BN1 9QG, UK
| | - Catherine N Hall
- Sussex Neuroscience, School of Psychology, University of Sussex , East Sussex BN1 9QG, UK
| |
Collapse
|
3
|
Pereira CGM, Nunes MAP, Lessa AL, Cerqueira LC, Veloso OM, Delpino FM, Ferreira A, de Góis FN, Costa PSR, Santos HO. Sex distinctions regarding serum zinc levels in critically ill COVID-19 patients. J Trace Elem Med Biol 2023; 79:127262. [PMID: 37451092 DOI: 10.1016/j.jtemb.2023.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Men and women exhibit different presentations in COVID-19. Changes in zinc finger domains in X chromosome causes disorders of sex development. So, we aimed to evaluate sex distinctions regarding serum zinc in severe COVID-19. METHOD Data from electronic records of severe COVID-19 patients were correlated with serum zinc. Logistic regression investigated predictors and protectors of hypozincemia in men and women. RESULTS We assessed 188 medical records (men = 114, women = 74). Men correlated low zinc with hypertension (cc = 0.303, p < 0.001), diabetes (cc = 0.198, p = 0.031), hemoglobin (cc = -0.258, p = 0.005), and albumin (cc = -0.219, p = 0.027). Low lymphocyte count (cc = 0.315, p = 0.005), C-reactive protein (cc = -0.248, p = 0.037), and enteral nutrition (cc = 0.269, p = 0.016) were correlated with hypozincemia in women. Age correlated with low zinc in men (c = -0.304, p = 0.001) and women (cc = -0.298, p = 0.010). In men, hypertension (OR = 4.905, p = 0.005) and lymphopenia (OR = -0.999, p = 0.019) were low zinc predictors, while lung injury > 50% was a protective factor (OR = -0.280, p = 0.025). Lymphopenia (OR = -0.999, p = 0.005) and difficult weaning from mechanical ventilation (MV) (OR = 4.359, p = 0.036) were predictors of hypozincemia in women. Difficult weaning from MV (OR = 3.012, p = 0.003) and age (OR = 1.038, p = 0.002) were hypozincemia predictors regardless sex. CONCLUSION Hypertension, diabetes, hemoglobin and albumin were correlated with low zinc in men. Lymphopenia, reactive-C protein and enteral nutrition were correlated with low zinc in women. In men, hypertension and low lymphocytes were predictors of hypozincemia. Lymphopenia and difficult weaning from MV were predictors of low zinc in women.
Collapse
Affiliation(s)
- Cristina Gama Matos Pereira
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil; São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil.
| | - Marco Antônio Prado Nunes
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Arthur Leite Lessa
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Lara Carvalho Cerqueira
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Octavio Morais Veloso
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Felipe Mendes Delpino
- Pós Graduação em Enfermagem, Universidade Federal de Pelotas (UFPel), Rua Gomes Carneiro, 01 / 2º andar - Sala 208, Pelotas, Rio Grande do Sul, Brazil
| | - Andrêa Ferreira
- Departamento de Nutrição, Universidade Federal da Bahia, (UFBA), Rua Araújo Pinho 32, Canela, Salvador, Bahia, Brazil
| | - Fernanda Noronha de Góis
- São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil
| | - Patrícia Santos Rodrigues Costa
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil; São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil
| | - Heitor Oliveira Santos
- Escola de Medicina, Universidade Federal de Uberlândia (UFU), Avenida Pará, bloco 2u, Uberlândia, Minas Gerais 1720, Brazil
| |
Collapse
|
4
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Zuo X, Ren S, Zhang H, Tian J, Tian R, Han B, Liu H, Dong Q, Wang Z, Cui Y, Niu R, Zhang F. Chemotherapy induces ACE2 expression in breast cancer via the ROS-AKT-HIF-1α signaling pathway: a potential prognostic marker for breast cancer patients receiving chemotherapy. J Transl Med 2022; 20:509. [PMID: 36335375 PMCID: PMC9636712 DOI: 10.1186/s12967-022-03716-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin-angiotensin system and a well-known functional receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells. The COVID-19 pandemic has brought ACE2 into the spotlight, and ACE2 expression in tumors and its relationship with SARS-COV-2 infection and prognosis of cancer patients have received extensive attention. However, the association between ACE2 expression and tumor therapy and prognosis, especially in breast cancer, remains ambiguous and requires further investigation. We have previously reported that ACE2 is elevated in drug-resistant breast cancer cells, but the exact function of ACE2 in drug resistance and progression of this malignant disease has not been explored. Methods The expression of ACE2 and HIF-1α in parental and drug-resistant breast cancer cells under normoxic and hypoxic conditions was analyzed by Western blot and qRT-PCR methods. The protein levels of ACE2 in plasma samples from breast cancer patients were examined by ELISA. The relationship between ACE2 expression and breast cancer treatment and prognosis was analyzed using clinical specimens and public databases. The reactive oxygen species (ROS) levels in breast cancer cells were measured by using a fluorescent probe. Small interfering RNAs (siRNAs) or lentivirus-mediated shRNA was used to silence ACE2 and HIF-1α expression in cellular models. The effect of ACE2 knockdown on drug resistance in breast cancer was determined by Cell Counting Kit 8 (CCK-8)-based assay, colony formation assay, apoptosis and EdU assay. Results ACE2 expression is relatively low in breast cancer cells, but increases rapidly and specifically after exposure to anticancer drugs, and remains high after resistance is acquired. Mechanistically, chemotherapeutic agents increase ACE2 expression in breast cancer cells by inducing intracellular ROS production, and increased ROS levels enhance AKT phosphorylation and subsequently increase HIF-1α expression, which in turn upregulates ACE2 expression. Although ACE2 levels in plasma and cancer tissues are lower in breast cancer patients compared with healthy controls, elevated ACE2 in patients after chemotherapy is a predictor of poor treatment response and an unfavorable prognostic factor for survival in breast cancer patients. Conclusion ACE2 is a gene in breast cancer cells that responds rapidly to chemotherapeutic agents through the ROS-AKT-HIF-1α axis. Elevated ACE2 modulates the sensitivity of breast cancer cells to anticancer drugs by optimizing the balance of intracellular ROS. Moreover, increased ACE2 is not only a predictor of poor response to chemotherapy, but is also associated with a worse prognosis in breast cancer patients. Thus, our findings provide novel insights into the spatiotemporal differences in the function of ACE2 in the initiation and progression of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03716-w.
Collapse
|
6
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
7
|
Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, Sun C. Zinc and COVID-19: Immunity, Susceptibility, Severity and Intervention. Crit Rev Food Sci Nutr 2022; 64:1969-1987. [PMID: 36094452 DOI: 10.1080/10408398.2022.2119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic and continuing emergence of viral mutants, there has been a lack of effective treatment methods. Zinc maintains immune function, with direct and indirect antiviral activities. Zinc nutritional status is a critical factor in antiviral immune responses. Importantly, COVID-19 and zinc deficiency overlap in high-risk population. Hence, the potential effect of zinc as a preventive and adjunct therapy for COVID-19 is intriguing. Here, this review summarizes the immune and antiviral function of zinc, the relationship between zinc levels, susceptibility, and severity of COVID-19, and the effect of zinc supplementation on COVID-19. Existing studies have confirmed that zinc deficiency was associated with COVID-19 susceptibility and severity. Zinc supplementation plays a potentially protective role in enhancing immunity, decreasing susceptibility, shortening illness duration, and reducing the severity of COVID-19. We recommend that zinc levels should be monitored, particularly in COVID-19 patients, and zinc as a preventive and adjunct therapy for COVID-19 should be considered for groups at risk of zinc deficiency to reduce susceptibility and disease severity.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr 2022; 9:982032. [PMID: 36034929 PMCID: PMC9411985 DOI: 10.3389/fnut.2022.982032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
Trace elements are a group of essential metals or metalloids, which are necessary for life, and present in minute amounts. Despite substantial researches highlighting the importance of trace elements in Coronavirus disease 2019 (COVID-19) diseases, a thorough evaluation of the levels of circulating trace elements is lacking. Therefore, we conducted a systematic review and meta-analysis to evaluate the trace element status (Zn, Fe, Cu, Mg, and Se) in COVID-19 disease. We also assessed the relationship between circulating trace elements and COVID-19 disease severity and survival status during follow-up. We searched comprehensively MEDLINE, Web of Science, CNKI, and WangFang databases without language restriction, between November 1, 2019 and April 1, 2022. The search identified 1,566 preliminary references. A total of 49 studies met the eligibility criteria and were included in the review, and 42 studies were included in the final meta-analysis. Meta-analysis showed that COVID-19 patients had significantly lower circulating Zn (SMD: -0.83, 95% CI: -1.19 to -0.46, P < 0.001), Fe (SMD: -1.56, 95% CI: -2.90 to -0.21, P = 0.023), and Se (SMD: -0.75, 95% CI: -0.94 to -0.56, P < 0.001) levels than healthy controls, and circulating Zn (SMD: -0.47, 95% CI: -0.75 to -0.18, P = 0.002), Fe (SMD: -0.45, 95% CI: -0.79 to -0.12, P = 0.008), and Se (SMD: -0.27, 95% CI: -0.49 to -0.04, P = 0.020) levels were associated with the presence of severity status in COVID-19 patients. Moreover, circulating Fe levels in non-survivors were significantly lower than survivors in COVID-19 (SMD: -0.28, 95% CI: -0.44 to -0.12, P = 0.001). However, there was no significant difference in Cu and Mg levels between COVID-19 patients and controls, severity and non-severity status, and survivors and non-survivors (all P > 0.05). Taken together, COVID-19 patients displayed lower circulating levels of Zn, Fe, and Se, and their levels were associated with severity status. Moreover, circulating Fe levels may provide part of the explanation for the unfavorable survival status. Therefore, we presumed optimistically that supplements of trace elements might provide an adjutant treatment in the early stages of COVID-19. Systematic review registration [https://www.crd.york.ac.uk/prospero], identifier [CRD42022348599].
Collapse
Affiliation(s)
- Yunhui Li
- Clinical Laboratory, PLA North Military Command Region General Hospital, Shenyang, China
| | - Weihe Luo
- Department of Medical Engineering, PLA North Military Command Region General Hospital, Shenyang, China
| | - Bin Liang
- Department of Bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
10
|
Valipour M. Different Aspects of Emetine's Capabilities as a Highly Potent SARS-CoV-2 Inhibitor against COVID-19. ACS Pharmacol Transl Sci 2022; 5:387-399. [PMID: 35702393 PMCID: PMC9159504 DOI: 10.1021/acsptsci.2c00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/18/2023]
Abstract
In the global movement to find the appropriate agents to fight the coronavirus disease of 2019 (COVID-19), emetine is one of the strongest anti-SARS-CoV-2 compounds with sub-micromolar EC50 values, identified in several studies and high-throughput screening efforts. The reported anti-SARS-CoV-2 mechanisms indicate the effect of this compound on both virus-based and host-based targets. In addition to having excellent antiviral effects, emetine can relieve COVID-19 patients by reducing inflammation through inhibitory activity against NF-κB by the mechanism of IκBα phosphorylation inhibition; it can also limit the lipopolysaccharide-induced expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Emetine also can well reduce pulmonary arterial hypertension as an important COVID-19 complication by modulating a variety of cellular processes such as the Rho-kinase/CyPA/Bsg signaling pathway. The therapeutic value of emetine for combating COVID-19 was highlighted when in vivo pharmacokinetic studies showed that the concentration of this compound in the lungs increases significantly higher than the EC50 of the drug. Despite its valuable therapeutic effects, emetine has some cardiotoxic effects that limit its use in high doses. However, high therapeutic capabilities make emetine a valuable lead compound that can be used for the design and development of less toxic anti-COVID-19 agents in the future. This Review provides a collection of information on the capabilities of emetine and its potential for the treatment of COVID-19, along with structural analysis which could be used for further research in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry,
Faculty of Pharmacy, Mazandaran University
of Medical Sciences, 48175-866 Sari, Iran
| |
Collapse
|
11
|
Lu J, Zhang Y, Qi D, Yan C, Wu B, Huang JH, Yao J, Wu E, Zhang G. An L-theanine derivative targets against SARS-CoV-2 and its Delta and Omicron variants. Heliyon 2022; 8:e09660. [PMID: 35706933 PMCID: PMC9181633 DOI: 10.1016/j.heliyon.2022.e09660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Recent research efforts have shown that tea has activities against SARS-CoV-2. However, the active compounds and the action mechanisms are largely unknown. Here we study the inhibitory potential of L-theanine from tea and its semi-synthesized derivative, a small-molecule fluorescent compound, ethyl 6-bromocoumarin-3-carboxylyl L-theanine (TBrC) against infection and replication of SARS-CoV-2 and the underlying mechanisms of action. We reveal that TBrC has potential activities against SARS-CoV-2 in addition to its activity against lung cancer. TBrC showed extracellular inhibition of SARS-CoV-2 Mpro/3CL and the host cell receptor ACE2 while interacting with the viral spike glycoproteins (wild-type, Delta, and Omicron mutants). Moreover, TBrC and L-theanine significantly suppressed growth and TNFα-induced nuclear transcriptional activation of NF-κB in human lung cancer cells without affecting the viability of normal lung cells, suggesting a potential protection of TBrC and L-theanine from pulmonary damages in SARS-CoV-2 infected patients, especially for lung cancer patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| | - Ying Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China.,Shandong YingdongYinghao Biotechnology Inc., Yantai, Shandong, 264670, China.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Dan Qi
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA
| | - Chunyan Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China.,Department of Pharmacy, Yantai Yuhuangding Hospital (Laishan branch), Yantai, Shandong, 264003, China
| | - Benhao Wu
- Shandong YingdongYinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Jason H Huang
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA.,College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jianwen Yao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| | - Erxi Wu
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA.,College of Medicine, Texas A&M University, College Station, TX, 77843, USA.,College of Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guoying Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
12
|
Gudowska-Sawczuk M, Mroczko B. The Role of Nuclear Factor Kappa B (NF-κB) in Development and Treatment of COVID-19: Review. Int J Mol Sci 2022; 23:ijms23095283. [PMID: 35563673 PMCID: PMC9101079 DOI: 10.3390/ijms23095283] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 19 (COVID-19), a disease that has affected more than 500 million people worldwide since the end of 2019. Due to its high complications and death rates, there is still a need to find the best therapy for SARS-CoV-2 infection. The dysregulation of the inflammatory response in COVID-19 plays a very important role in disease progression. It has been observed that abnormal activity of Nuclear Factor kappa B (NF-κB) is directly associated with, inter alia, increased synthesis of proinflammatory factors. Therefore, this review paper focuses on the functions of NF-κB in the development of SARS-CoV-2 infection and potential application of NF-κB inhibitors in COVID-19 immunotherapy. A comprehensive literature search was performed using the MEDLINE/PubMed database. In the current review, it is highlighted that NF-κB plays important functions in the modulation of an adaptive inflammatory response, including inducing the expression of proinflammatory genes. Increased activation of NF-κB in SARS-CoV-2 infection was observed. The association between NF-κB activation and the expression of SARS-CoV-2 structural and non-structural proteins were also reported. It was observed that modulation of NF-κB using, e.g., traditional Chinese medicine or glucocorticosteroids resulted in decreased synthesis of proinflammatory factors caused by SARS-CoV-2 infection. This review summarizes the role of NF-κB in COVID-19 and describes its potential immunotherapeutic target in treatment of SARS-CoV-2 infection. However, indisputably more studies involving patients with a severe course of COVID-19 are sorely needed.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8703
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
13
|
Tecalco Cruz AC. Free ISG15 and protein ISGylation emerging in SARS-CoV-2 infection. Curr Drug Targets 2022; 23:686-691. [PMID: 35297347 DOI: 10.2174/1389450123666220316094720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Interferon-simulated gene 15 (ISG15) belongs to the family of ubiquitin-like proteins. ISG15 acts as a cytokine and modifies proteins through ISGylation. This posttranslational modification has been associated with antiviral and immune response pathways. In addition, it is known that the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes proteases critical for viral replication. Consequently, these proteases are also central in the progression of coronavirus disease 2019 (COVID-19). Interestingly, the protease SARS-CoV-2-PLpro removes ISG15 from ISGylated proteins such as IRF3 and MDA5, affecting immune and antiviral defense from the host. Here, the implications of ISG15, ISGylation, and generation of SARS-CoV-2-PLpro inhibitors in SARS-CoV-2 infection are discussed.
Collapse
Affiliation(s)
- Angeles C Tecalco Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), CDMX, México
| |
Collapse
|
14
|
Panahibakhsh M, Amiri F, Doroudi T, Sadeghi M, Kolivand P, Alipour F, Gorji A. The association between micronutrients and the SARS-CoV-2-specific antibodies in convalescent patients. Infection 2022; 50:965-972. [PMID: 35190974 PMCID: PMC8860137 DOI: 10.1007/s15010-022-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Various micronutrients play key roles in the immune responses to viral infection, antibody synthesis, and susceptibility to infection. This study aimed to investigate the role of micronutrients on the immune responses following SARS-CoV-2 infection. METHODS To evaluate humoral immunity following SARS-CoV-2 infection, the levels of SARS-CoV-2-specific IgM and IgG, as well as the concentrations of different micronutrients, were determined in 36 convalescent COVID-19 patients 60 days after infection. Furthermore, the correlation between biochemical and hematological parameters, clinical features, and the changes in adiposity with SARS-CoV-2 antibodies was evaluated. RESULTS Serum IgM and IgG antibodies were detected in 38.8% and 83.3% of recovered patients after 60 days of COVID-19 infection, respectively. The values of SARS-CoV-2-specific IgG were negatively correlated with the number of the platelet. Moreover, the values of SARS-CoV-2-specific IgM were positively correlated with LDH and the vitamin B12 concentration. Furthermore, a gender-specific association of SARS-CoV-2-specific IgG and IgM with vitamins D as well as with B9 and zinc was observed. A significant negative correlation was observed between the values of IgG with vitamin D in male participants and a positive correlation was detected between IgG values and B9 in female participants. Moreover, IgM levels with serum zinc values in females were negatively correlated. CONCLUSION Our study suggests the potential role of micronutrients in gender-specific humoral immunity following SARS-CoV-2 infection. Further studies are required with a greater sample of subjects to substantiate the validity and robustness of our findings.
Collapse
Affiliation(s)
| | - Faramarz Amiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Taher Doroudi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mostafa Sadeghi
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany. .,Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany. .,Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
15
|
Bagheri-Hosseinabadi Z, Pirsadeghi A, Rahnama A, Bahrehmand F, Abbasifard M. Is there any relationship between serum zinc levels and angiotensin-converting enzyme 2 gene expression in patients with coronavirus disease 2019? Meta Gene 2021; 31:100991. [PMID: 34778004 PMCID: PMC8572017 DOI: 10.1016/j.mgene.2021.100991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/09/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Background The level of angiotensin-converting enzyme 2 (ACE2) expression in different tissues is essential in the sensitivity, symptoms and consequences of COVID-19 infection. It seems that zinc is involved in the structure of the ACE2 enzyme has been identified; nonetheless, the relationship between ACE2 expression and zinc serum levels in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is still unclear. This study aimed to evaluate the expression of ACE2 in peripheral blood-derived immune cells of COVID-19 patients and its relationship with serum zinc levels. Methods Thirty healthy subjects and thirty patients with COVID-19 were enrolled in this study. The COVID-19 infection was confirmed by positive real-time polymerase chain reaction (RT-PCR) and radiological data. Peripheral blood samples were taken from healthy subjects and COVID-19 patients. Whole blood samples were also used to measure ACE2 gene expression by RT-PCR technique. The correlation matrix evaluated the relationship between ACE2 expression, serum zinc levels, and other related variables. Results The outcomes showed no considerable alteration in serum zinc levels between patients and the control group. Likewise, the ACE2 gene expression results showed a significant decrease in this receptor's expression in COVID-19 patients compared with the healthy subjects. A significant positive correlation was observed between serum zinc level and ACE2 gene expression in patients with COVID-19. Conclusion The immune system seems to reduce the mRNA expression of the ACE2 in the peripheral blood leukocytes following SARS-CoV-2 infection. Moreover, zinc deficiency can make patients more susceptible to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Rahnama
- Non-communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahrehmand
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|