1
|
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X, Liu C, Wang F, Yang X. Zinc Mitigates the Combined Neurotoxicity of Binary Metal Mixtures via Mitophagy and Mitochondrial Fusion. Mol Neurobiol 2024:10.1007/s12035-024-04648-w. [PMID: 39673661 DOI: 10.1007/s12035-024-04648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wanting Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfeng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
3
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Xie D, Yan J, Zhang H, Zhang H, Nie G, Zhu X, Li X. Cadmium exacerbates liver injury by remodeling ceramide metabolism: Multiomics and laboratory evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171405. [PMID: 38432385 DOI: 10.1016/j.scitotenv.2024.171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Honglong Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Haijun Zhang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Guole Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou 730000, China; Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou 730000, China.
| |
Collapse
|
5
|
Yang X, Xu J, Xu Y, Wang C, Lin F, Yu J. Regulatory mechanism of perinatal nonylphenol exposure on cardiac mitochondrial autophagy and the PINK1/Parkin signaling pathway in male offspring rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155434. [PMID: 38367424 DOI: 10.1016/j.phymed.2024.155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.
Collapse
Affiliation(s)
- Xiaolian Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fangmei Lin
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Liu J, Gao Y, Zhang H, Hao Z, Zhou G, Wen H, Su Q, Tong C, Yang X, Wang X. Forsythiaside A attenuates mastitis via PINK1/Parkin-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155358. [PMID: 38241916 DOI: 10.1016/j.phymed.2024.155358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Bovine mastitis is the most common animal production disease in the global dairy industry, which affects the health of dairy cows. When bovine mastitis occurs, the mitochondrial metabolism of breast tissue increases, and the relationship between inflammation and mitophagy has become a hot topic for many scholars. The abuse of antibiotics leads to the increase of resistance to bovine mastitis. FTA is one of the main effective components of Forsythia suspensa, which has anti-inflammatory, anti-infection, anti-oxidation and anti-virus pharmacological effects, and has broad application prospects in the prevention and treatment of bovine mastitis. However, the relationship between the anti-inflammatory effects of FTA and mitophagy is still unclear. PURPOSE This study mainly explores the anti-inflammatory effect of FTA in bovine mastitis and the relationship between mitophagy. METHODS MAC-T cells and wild-type mice were used to simulate the in vitro and in vivo response of mastitis. After the pretreatment with FTA, CsA inhibitors and siPINK1 were used to interfere with mitophagy, and the mitochondrial function impairment and the expression of inflammatory factors were detected. RESULTS It was found that pre-treatment with FTA significantly reduced LPS induced inflammatory response and mitochondrial damage, while promoting the expression of mitophagy related factors. However, after inhibiting mitophagy, the anti-inflammatory effect of FTA was inhibited. CONCLUSION This study is the first to suggest the relationship between the anti-inflammatory effect of FTA and mitophagy. PINK1/Parkin-mediated mitophagy is one of the ways that FTA protects MAC-T cells from LPS-induced inflammatory damage.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Guangwei Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450000, Henan province, PR China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450000, Henan province, PR China.
| |
Collapse
|
7
|
Zhu M, Yan M, Li H, Zou X, Li M. Egg white composition, antioxidant capacity, serum and yolk lipids and oxidative damage of the oviduct magnum in laying hens fed diets contaminated with different concentrations of cadmium. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2184730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Mingkun Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ming Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Huaiyu Li
- Qingdao Animal Husbandry Workstation (Qingdao Institute of Animal Science and Veterinary Medicine), Qingdao, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Muwang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
8
|
Tinkov AA, Aschner M, Santamaria A, Bogdanov AR, Tizabi Y, Virgolini MB, Zhou JC, Skalny AV. Dissecting the role of cadmium, lead, arsenic, and mercury in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. ENVIRONMENTAL RESEARCH 2023; 238:117134. [PMID: 37714366 DOI: 10.1016/j.envres.2023.117134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid β-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Alfred R Bogdanov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Russian State Social University, 129226, Moscow, Russia; Municipal State Hospital No. 13 of the Moscow City Health Department, 115280, Moscow, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Miriam B Virgolini
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, China
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
9
|
Ren X, Yuan P, Niu J, Liu Y, Li Y, Huang L, Jiang S, Jiao N, Yuan X, Li J, Yang W. Effects of dietary supplementation with microencapsulated Galla chinensis tannins on growth performance, antioxidant capacity, and lipid metabolism of young broiler chickens. Front Vet Sci 2023; 10:1259142. [PMID: 37954663 PMCID: PMC10637619 DOI: 10.3389/fvets.2023.1259142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
This study aimed to investigate the impacts of dietary supplementation with Galla chinensis tannins (GCT) on the growth performance, antioxidant capacity, and lipid metabolism of young broilers. Overall, a total of 216 healthy 1 day-old broilers were randomly allocated to CON group and GCT group, and provided with a basal diet or a basal diet added with 300 mg/kg microencapsulated GCT, respectively, in a 21 days trial. Our findings indicated that dietary GCT addition had no significant effects (p > 0.05) on growth performance. However, GCT supplementation led to a significant reduction in the total cholesterol (TC) concentration in the serum and liver (p < 0.05). Furthermore, GCT supplementation significantly increased the ratios of high-density lipoprotein (HDL) to low-density lipoprotein (LDL) and HDL to TC in the serum, in addition to elevating the activities of enzymes related to lipid metabolism in the liver (p < 0.05). Dietary GCT addition also improved the antioxidant capacity of the broilers, as evidenced by a significant decrease in the concentration of malondialdehyde in serum and liver (p < 0.05). Additionally, the GCT group exhibited significantly increased expressions of hepatic genes associated with antioxidant enzymes (HO-1, GPX1, SOD2, SIRT1, CPT-1, and PPARα) (p < 0.05), while the mRNA expression of SREBP-1 was significantly decreased (p < 0.05) compared with the CON group. In conclusion, dietary addition of 300 mg/kg microencapsulated GCT improved the antioxidant status and lipid metabolism of broilers without affecting their growth performance.
Collapse
Affiliation(s)
- Xiaojie Ren
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Shengliyuan Group Co., Ltd, Tai’an, China
| | - Peng Yuan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Jiaxing Niu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Junxun Li
- Shandong Taishan Shengliyuan Group Co., Ltd, Tai’an, China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
10
|
Jia D, Tang Y, Qin F, Liu B, Hu T, Chen W. Ganoderma lucidum polysaccharide alleviates Cd toxicity in common carp (Cyprinus carpio): Neuropeptide, growth performance and lipid accumulation. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109663. [PMID: 37263520 DOI: 10.1016/j.cbpc.2023.109663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is the most common heavy metal and is easily detected in aquatic environments on a global scale. Common carp (Cyprinus carpio) is a common cultural species in aquaculture. This study aimed the polysaccharide from Ganoderma lucidum in ameliorating Cd-induced toxicity in common carp. The study included a blank control group (CK, without Cd and GPL) and LGPL group (2 g/kg LGPL + 0.5 mg/L Cd) and HGPL group (4 g/kg HGPL + 0.5 mg/L Cd). The fish were sampled at 2 and 4 weeks, and bioaccumulation, neurotransmitters, lipid accumulation, and growth performance were measured. Ganoderma lucidum polysaccharide administration can significant protect against Cd toxicity by reducing Cd bioaccumulation in tissues, regulating neurotransmitters, decreasing lipid accumulation, and enhancing growth performance. Our results suggested that administering Ganoderma lucidum polysaccharides can alleviate waterborne Cd toxicity in common carp.
Collapse
Affiliation(s)
- Dongshu Jia
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Yujiao Tang
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Fengxian Qin
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China
| | - Bei Liu
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China.
| | - Tiejun Hu
- Deer Industry Engineering Research Center, Changchun Sci-Tech University, Changchun 130600, China
| | - Wei Chen
- School of Life Sciences, Changchun Sci-Tech University, Changchun 130600, China.
| |
Collapse
|
11
|
Mitophagy and Traumatic Brain Injury: Regulatory Mechanisms and Therapeutic Potentials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1649842. [PMID: 36846712 PMCID: PMC9957633 DOI: 10.1155/2023/1649842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network. Mitophagy ensures that mitochondria remain healthy during TBI, determining whether neurons live or die. Mitophagy acts as a critical regulator in maintaining neuronal survival and healthy. This review will discuss the TBI pathophysiology and the consequences of the damage it causes to mitochondria. This review article will explore the mitophagy process, its key factors, and pathways and reveal the role of mitophagy in TBI. Mitophagy will be further recognized as a therapeutic approach in TBI. This review will offer new insights into mitophagy's role in TBI progression.
Collapse
|
12
|
Zhu L, Wu X, Liao R. Mechanism and regulation of mitophagy in nonalcoholic fatty liver disease (NAFLD): A mini-review. Life Sci 2022; 312:121162. [PMID: 36372213 DOI: 10.1016/j.lfs.2022.121162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of nonalcoholic fatty liver disease (NAFLD). Thus, maintenance of mitochondria homeostasis and function is important for NAFLD treatment. Mitophagy, a process that selectively clears damaged or dysfunctional mitochondria through autophagic machinery, is beneficial for mitochondrial homeostasis. Notably, strategies that regulate mitophagy exert beneficial effects in preclinical experiments. Traditional Chinese medicine (TCM) is a natural product including active ingredients, extracts, and has great potential in the prevention and treatment of liver diseases. Given the importance of mitophagy, this review summarizes mitophagy-related pathways and the latest findings on the regulation of mitophagy in NAFLD. We also highlight the potential of TCM targeting mitophagy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| | - Xiao Wu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China.
| |
Collapse
|