1
|
Desai DA, Baby A, Ananthamohan K, Green LC, Arif M, Duncan BC, Kumar M, Singh RR, Koch SE, Natesan S, Rubinstein J, Jegga AG, Sadayappan S. Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in db/db mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100075. [PMID: 38957358 PMCID: PMC11218625 DOI: 10.1016/j.jmccpl.2024.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.
Collapse
Affiliation(s)
- Darshini A. Desai
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Kalyani Ananthamohan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa C. Green
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohammed Arif
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brittany C. Duncan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rohit R. Singh
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sheryl E. Koch
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Jack Rubinstein
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Bao J, Gao Z, Hu Y, Ye L, Wang L. Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models. Channels (Austin) 2023; 17:2281743. [PMID: 37983306 PMCID: PMC10761101 DOI: 10.1080/19336950.2023.2281743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang N, Harsch B, Zhang MJ, Gyberg DJ, Stevens JA, Wagner BM, Mendelson J, Patterson MT, Orchard DA, Healy CL, Williams JW, Townsend D, Shearer GC, Murphy KA, O'Connell TD. FFAR4 regulates cardiac oxylipin balance to promote inflammation resolution in HFpEF secondary to metabolic syndrome. J Lipid Res 2023; 64:100374. [PMID: 37075982 PMCID: PMC10209340 DOI: 10.1016/j.jlr.2023.100374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.
Collapse
Affiliation(s)
- Naixin Zhang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Brian Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael J Zhang
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Dylan J Gyberg
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jackie A Stevens
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Brandon M Wagner
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jenna Mendelson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Devin A Orchard
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Chastity L Healy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jesse W Williams
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Katherine A Murphy
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
5
|
Kornej J, Qadan MA, Alotaibi M, Van Wagoner DR, Watrous JD, Trinquart L, Preis SR, Ko D, Jain M, Benjamin EJ, Cheng S, Lin H. The association between eicosanoids and incident atrial fibrillation in the Framingham Heart Study. Sci Rep 2022; 12:20218. [PMID: 36418854 PMCID: PMC9684401 DOI: 10.1038/s41598-022-21786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Chronic inflammation is a continuous low-grade activation of the systemic immune response. Whereas downstream inflammatory markers are associated with atrial fibrillation (AF), upstream inflammatory effectors including eicosanoids are less studied. To examine the association between eicosanoids and incident AF. We used a liquid chromatography-mass spectrometry for the non-targeted measurement of 161 eicosanoids and eicosanoid-related metabolites in the Framingham Heart Study. The association of each eicosanoid and incident AF was assessed using Cox proportional hazards models and adjusted for AF risk factors, including age, sex, height, weight, systolic/diastolic blood pressure, current smoking, antihypertensive medication, diabetes, history of myocardial infarction and heart failure. False discovery rate (FDR) was used to adjust for multiple testing. Eicosanoids with FDR < 0.05 were considered significant. In total, 2676 AF-free individuals (mean age 66 ± 9 years, 56% females) were followed for mean 10.8 ± 3.4 years; 351 participants developed incident AF. Six eicosanoids were associated with incident AF after adjusting for multiple testing (FDR < 0.05). A joint score was built from the top eicosanoids weighted by their effect sizes, which was associated with incident AF (HR = 2.72, CI = 1.71-4.31, P = 2.1 × 10-5). In conclusion, six eicosanoids were associated with incident AF after adjusting for clinical risk factors for AF.
Collapse
Affiliation(s)
- Jelena Kornej
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA. .,Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| | - Maha A. Qadan
- grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - Mona Alotaibi
- grid.266100.30000 0001 2107 4242Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA USA
| | - David R. Van Wagoner
- grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - Jeramie D. Watrous
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Ludovic Trinquart
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Sarah R. Preis
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Darae Ko
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
| | - Mohit Jain
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Emelia J. Benjamin
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Susan Cheng
- grid.512369.aDepartment of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA USA
| | - Honghuang Lin
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.168645.80000 0001 0742 0364Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
6
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
7
|
Weerts J, Mourmans SG, Eringa E, van Empel VP. Improving insights into the heterogeneous HFpEF syndrome through microvascular research. J Mol Cell Cardiol 2022; 167:106-108. [DOI: 10.1016/j.yjmcc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022]
|
8
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
9
|
Hellenthal KEM, Brabenec L, Gross ER, Wagner NM. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021; 11:biom11101401. [PMID: 34680034 PMCID: PMC8533644 DOI: 10.3390/biom11101401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The transient receptor potential (TRP) cation channel superfamily comprises more than 50 channels that play crucial roles in physiological processes. TRP channels are responsive to several exogenous and endogenous biomolecules, with aldehydes emerging as a TRP channel trigger contributing to a cellular cascade that can lead to disease pathophysiology. The body is not only exposed to exogenous aldehydes via tobacco products or alcoholic beverages, but also to endogenous aldehydes triggered by lipid peroxidation. In response to lipid peroxidation from inflammation or organ injury, polyunsaturated fatty acids undergo lipid peroxidation to aldehydes, such as 4-hydroxynonenal. Reactive aldehydes activate TRP channels via aldehyde-induced protein adducts, leading to the release of pro-inflammatory mediators driving the pathophysiology caused by cellular injury, including inflammatory pain and organ reperfusion injury. Recent studies have outlined how aldehyde dehydrogenase 2 protects against aldehyde toxicity through the clearance of toxic aldehydes, indicating that targeting the endogenous aldehyde metabolism may represent a novel treatment strategy. An addition approach can involve targeting specific TRP channel regions to limit the triggering of a cellular cascade induced by aldehydes. In this review, we provide a comprehensive summary of aldehydes, TRP channels, and their interactions, as well as their role in pathological conditions and the different therapeutical treatment options.
Collapse
Affiliation(s)
- Katharina E. M. Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (K.E.M.H.); (L.B.)
- Correspondence: ; Tel.: +49-251-83-46837
| |
Collapse
|