1
|
Chaudhari DS, Francescutti DM, Winters AD, Koka O, Kracht DJ, Greenberg JM, Theis KR, Angoa-Perez M. Contributions of the gut microbiota to Gulf War Illness susceptibility: Findings from a mouse model. Life Sci 2024; 359:123244. [PMID: 39551360 DOI: 10.1016/j.lfs.2024.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
AIMS In light of the evidence supporting a significant role of the gut microbiome in Gulf War Illness (GWI) pathology, we sought to examine its contribution to GWI susceptibility in a mouse model. We also aimed to identify bacterial taxa and microbially-derived metabolites associated with disease susceptibility. MAIN METHODS Male mice receiving pyridostigmine bromide (PB) orally, and controls were evaluated for symptoms of GWI at 8 weeks post-treatment. The Kansas criteria were adapted to assess behaviors associated with the following domains: gastrointestinal alterations, pain, mood, cognitive function, skin and respiratory disturbances. PB-treated subjects were classified into susceptible (GWI-S) or resilient (GWI-R). The status of the gut microbiome was assessed via analyses of the 16S rRNA gene and microbial-derived metabolites were evaluated with metabolomics tools. KEY FINDINGS Our results indicate that application of the Kansas criteria to behavioral outcomes in PB-treated mice resulted in a GWI susceptibility rate of ~35 %, similar to the one reported in humans. The composition and structure of the gut microbiome was different in GWI-S subjects compared to both control and GWI-R mice at 8 weeks but differences in microbial community structure were observed prior to PB treatment between GWI-R and GWI-S mice. GWI-S subjects exhibited a pattern of differentially abundant bacterial taxa and microbial metabolites. SIGNIFICANCE To our knowledge, this is the first preclinical report in which a stratification by susceptibility to GWI and its association with the gut microbiome is described. In light of the research conundrum that vulnerability to GWI represents, the use of tools that could provide further insight into this complex factor should be considered.
Collapse
Affiliation(s)
- Diptaraj S Chaudhari
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D Winters
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Orena Koka
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - David J Kracht
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Jonathan M Greenberg
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariana Angoa-Perez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 PMCID: PMC10969521 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
4
|
Zhu Y, Zhu J, Song G. The impact of aerobic exercise training on cognitive function and gut microbiota in methamphetamine-dependent individuals in the community. Physiol Behav 2023; 270:114302. [PMID: 37474085 DOI: 10.1016/j.physbeh.2023.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the impact and mechanism of gut microbiota on the enhancement of cognitive function in methamphetamine (MA)-dependent individuals during aerobic exercise training. METHODS A total of sixty-four MA-dependent individuals were randomly assigned to either an aerobic exercise training group (DK, n = 32) or a conventional rehabilitation group (CK, n = 32). After an eight-week intervention, the participants' working memory and inhibition ability were assessed using the Stroop paradigm and Go/NoGo paradigm, respectively. Gut microbiota composition was analyzed using high-throughput sequencing. RESULTS 1) Eight weeks of aerobic exercise training significantly improved the working memory and inhibition ability of MA-dependent individuals (P < 0.05). 2) Following the intervention, the DK group exhibited significantly higher levels of Lactobacillus, Lactococcus lactis, Prevotellaceae, and Ruminococcaceae compared to the CK group. Conversely, the DK group demonstrated significantly lower levels of Desulfovibrio and Akkermansia compared to the CK group. Furthermore, the DK group showed significantly increased metabolic pathways associated with d-Glutaralate and d-Galactate Degradation, as well as the Alanine, aspartate, and glutamate metabolism pathway, compared to the control group. 3) Cognitive function related to MA addiction positively correlated with Bifidobacterium, Dialister, and Adlercreutzia, while negatively correlated with Enterobacteria, Bacillus cereus, Catabacter, and Akkermansia. CONCLUSION Aerobic exercise training enhances working memory and inhibition ability in MA-dependent individuals, thereby mitigating the detrimental effects of MA addiction on cognitive function. Additionally, analysis of gut microbiota suggests that the modulation of gut microbiota and associated metabolic pathways play a role in regulating the improvement of cognitive function in MA-dependent individuals through exercise.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Jiang Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Bhatti G, Villalon A, Li R, Elammari M, Price A, Steele L, Garcia JM, Marcelli M, Jorge R. Hormonal changes in veterans with Gulf War Illness. Life Sci 2023; 328:121908. [PMID: 37406768 DOI: 10.1016/j.lfs.2023.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
AIMS Gulf War Illness (GWI) is a multi-system condition of complex etiology and pathophysiology without specific treatment. There is an overlap between the symptoms of GWI and endocrinopathies. This study aimed to identify hormonal alterations in 1990-91 Gulf War (GW) veterans and the relationship between GWI and hormonal dysregulation. MAIN METHODS Data from 81 GW veterans (54 with GWI and 27 controls without GWI) was analyzed in a cross-sectional, case-control observational study. Participants completed multiple questionnaires, neuropsychiatric assessments, and a comprehensive set of hormone assays including a glucagon stimulation test (GST) for adult growth hormone deficiency (AGHD) and a high-dose adrenocorticotropic hormone (ACTH) stimulation test for adrenal insufficiency. KEY FINDINGS The GWI group had lower quality of life and greater severity of all symptoms compared to controls. Pain intensity and pain-related interference with general activity were also higher in the GWI group. AGHD was observed in 18 of 51 veterans with GWI (35.3 %) and 2 of 26 veterans without GWI (7.7 %) (p = 0.012 for interaction). Veterans with GWI also exhibited reduced insulin-like growth factor 1 (IGF-1) levels and IGF-1 Z-scores compared to controls. One participant with GWI met the criteria for adrenal insufficiency. No significant changes were observed in other hormonal axes. SIGNIFICANCE The frequency of AGHD was significantly higher in veterans with GWI compared to controls. Recombinant human growth hormone replacement therapy (GHRT) may become a breakthrough therapeutic option for this subgroup. A large clinical trial is needed to evaluate the efficacy of GHRT in patients with GWI and AGHD.
Collapse
Affiliation(s)
- Gursimrat Bhatti
- Michael E. DeBakey VA Medical Center, Seattle, WA, USA; Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA
| | - Audri Villalon
- Michael E. DeBakey VA Medical Center, Seattle, WA, USA; Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA
| | - Ruosha Li
- UT Health Science Center School of Public Health, Seattle, WA, USA
| | - Mohamed Elammari
- Michael E. DeBakey VA Medical Center, Seattle, WA, USA; Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA
| | - Alexandra Price
- Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA
| | - Lea Steele
- Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, and Gerontology and Geriatric Medicine-Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ricardo Jorge
- Michael E. DeBakey VA Medical Center, Seattle, WA, USA; Beth K and Stuart C Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Slevin E, Koyama S, Harrison K, Wan Y, Klaunig JE, Wu C, Shetty AK, Meng F. Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness. J Cell Mol Med 2023; 27:891-905. [PMID: 36716094 PMCID: PMC10064030 DOI: 10.1111/jcmm.17631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 01/31/2023] Open
Abstract
Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.
Collapse
Affiliation(s)
- Elise Slevin
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Kelly Harrison
- Department of Transplant SurgeryBaylor Scott & White Memorial HospitalTempleTexasUSA
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - James E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Chaodong Wu
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Ashok K. Shetty
- Department of Molecular and Cellular MedicineInstitute for Regenerative Medicine, Texas A&M College of MedicineCollege StationTexasUSA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
7
|
Reddy DS, Wu X, Singh T, Neff M. Experimental Models of Gulf War Illness, a Chronic Neuropsychiatric Disorder in Veterans. Curr Protoc 2023; 3:e707. [PMID: 36947687 DOI: 10.1002/cpz1.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Gulf War illness (GWI) is a chronic multifaceted condition with debilitating pain and fatigue, as well as sleep, behavioral, and cognitive impairments in war veterans. Currently, there is no effective treatment or cure for GWI; therefore, there is a critical need to develop experimental models to help better understand its mechanisms and interventions related to GWI-associated neuropsychiatric disorders. Chemical neurotoxicity appears to be one cause of GWI, and its symptoms manifest as disruptions in neuronal function. However, the mechanisms underlying such incapacitating neurologic and psychiatric symptoms are poorly understood. The etiology of GWI is complex, and many factors including chemical exposure, psychological trauma, and environmental stressors have been associated with its development. Attempts have been made to create GWI-like symptomatic models, including through chronic induction in mice and rats. Here, we present a brief protocol of GWI in rats and mice, which exhibit robust neuropsychiatric signs and neuropathologic changes reminiscent of GWI. This article provides a guide to working protocols, application of therapeutic drugs, outcomes, troubleshooting, and data analysis. Our broad profiling of GWI-like symptoms in rodents reveals features of progressive morphologic and long-lasting neuropsychiatric features. Together, the GWI model in rodents shows striking consistency in recapitulating major hallmark features of GWI in veterans. These models help identify mechanisms and interventions for GWI. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Experimental induction of Gulf War illness in rats Support Protocol 1: Monitoring of Gulf War illness signs and neuroimaging analysis in rats Basic Protocol 2: Experimental induction of Gulf War illness in mice Support Protocol 2: Monitoring of Gulf War illness signs and neuropathology analysis in mice.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- School of Engineering Medicine (EnMed), Texas A&M University, Houston, Texas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Michael Neff
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
8
|
Collier CA, Foncerrada S, Clevenger AJ, Shetty A, Raghavan SA. Acute Exposure to Pyridostigmine Bromide Disrupts Cholinergic Myenteric Neuroimmune Function in Mice. Adv Biol (Weinh) 2023; 7:e2200254. [PMID: 36802210 DOI: 10.1002/adbi.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Indexed: 02/21/2023]
Abstract
Gulf War Illness (GWI) results from chemical exposure during the Gulf War, with notable impacts on gastrointestinal motility. Due to the limited demographic impacted by this ailment, an in-depth investigation of the GWI has yielded little regarding the underlying pathophysiological mechanisms. Here, the hypothesis that exposure to pyridostigmine bromide (PB) results in severe enteric neuro-inflammation, that cascades to disruptions in colonic motility, is tested. The analyses are performed on male C57BL/6 mice that are treated with physiologically similar doses of PB given to GW veterans. When colonic motility is assessed, GWI colons have significantly reduced forces in response to acetylcholine or electrical field stimulation. GWI is also accompanied by high levels of pro-inflammatory cytokines and chemokines, associated with increased numbers of CD40+ pro-inflammatory macrophages within the myenteric plexus. Enteric neurons responsible for mediating colonic motility reside within the myenteric plexus, and PB exposure reduced their numbers. Significant smooth muscle hypertrophy is also observed due to increased inflammation. Together, the results show that PB exposure caused functional and anatomical dysfunction, promoting impaired motility within the colon. Achieving a greater understanding of the mechanisms of GWI will allow more refinement in therapeutic options that improve veterans' quality of life.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Steven Foncerrada
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Abigail J Clevenger
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| | - Ashok Shetty
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, 8447 Riverside Pkwy, Bryan, College Station, TX, 77807, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 3120 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Kozlova EV, Carabelli B, Bishay AE, Denys ME, Chinthirla DB, Tran JD, Hsiao A, Nieden NZ, Curras-Collazo MC. Persistent exercise fatigue and associative learning deficits in combination with transient glucose dyshomeostasis in a GWI mouse model. Life Sci 2021; 289:120094. [PMID: 34710444 PMCID: PMC9053767 DOI: 10.1016/j.lfs.2021.120094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Aims: To characterize exercise fatigue, metabolic phenotype and cognitive and mood deficits correlated with brain neuroinflammatory and gut microbiome changes in a chronic Gulf War Illness (GWI) mouse model. The latter have been described in an accompanying paper [1]. Main methods: Adult male C57Bl/6N mice were exposed for 28 days (5 days/week) to pyridostigmine bromide: 6.5 mg/kg, b.i.d., P.O. (GW1) or 8.7 mg/kg, q.d., P.O. (GW2); topical permethrin (1.3 mg/kg in 100% DMSO) and N,N-diethyl-meta-toluamide (DEET 33% in 70% EtOH) and restraint stress (5 min). Exercise, metabolic and behavioral endpoints were compared to sham stress control (CON/S). Key findings: Relative to CON/S, GW2 presented persistent exercise intolerance (through post-treatment (PT) day 161), deficient associative learning/memory, and transient insulin insensitivity. In contrast to GW2, GW1 showed deficient long-term object recognition memory, milder associative learning/memory deficit, and behavioral despair. Significance: Our findings demonstrate that GW chemicals dose-dependently determine the presentation of exercise fatigue and severity/type of cognitive/mood-deficient phenotypes that show persistence. Our comprehensive mouse model of GWI recapitulates the major multiple symptom domains characterizing GWI, including fatigue and cognitive impairment that can be used to more efficiently develop diagnostic tests and curative treatments for ill Gulf War veterans.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Bruno Carabelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Maximilian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Devi B Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Jasmin D Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Nicole Zur Nieden
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - M C Curras-Collazo
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| |
Collapse
|