1
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Rahmati-Dehkordi F, Birang N, Jalalian MN, Tamtaji Z, Dadgostar E, Aschner M, Shafiee Ardestani M, Jafarpour H, Mirzaei H, Nabavizadeh F, Tamtaji OR. Can infliximab serve as a new therapy for neuropsychiatric symptoms? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03397-w. [PMID: 39225829 DOI: 10.1007/s00210-024-03397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neuropsychiatric disorders present a global challenge to public health. Mechanisms associated with neuropsychiatric disorders etiology include apoptosis, oxidative stress, and neuroinflammation. Tumor necrosis factor alpha, an inflammatory cytokine, mediates pathophysiology of neuropsychiatric disorders. Therefore, its inhibition by infliximab might afford a valuable target for intervention. Infliximab is commonly used to treat inflammatory diseases, including ulcerative colitis, Crohn's disease, and rheumatoid arthritis. Recently, it has been shown that infliximab improves cognitive dysfunction, depression, anxiety, and life quality. Here, we review contemporary knowledge supporting the need to further characterize infliximab as a potential treatment for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Birang
- Department of Physical Medicine and Rehabilitation, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bao M, Hua X, Chen X, An T, Mo H, Sun Z, Tao M, Yue G, Song J. PICALM Regulating the Generation of Amyloid β-Peptide to Promote Anthracycline-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401945. [PMID: 38935046 PMCID: PMC11348153 DOI: 10.1002/advs.202401945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Anthracyclines are chemotherapeutic drugs used to treat solid and hematologic malignancies. However, life-threatening cardiotoxicity, with cardiac dilation and heart failure, is a drawback. A combination of in vivo for single cell/nucleus RNA sequencing and in vitro approaches is used to elucidate the underlying mechanism. Genetic depletion and pharmacological blocking peptides on phosphatidylinositol binding clathrin assembly (PICALM) are used to evaluate the role of PICALM in doxorubicin-induced cardiotoxicity in vivo. Human heart tissue samples are used for verification. Patients with end-stage heart failure and chemotherapy-induced cardiotoxicity have thinner cell membranes compared to healthy controls do. Using the doxorubicin-induced cardiotoxicity mice model, it is possible to replicate the corresponding phenotype in patients. Cellular changes in doxorubicin-induced cardiotoxicity in mice, especially in cardiomyocytes, are identified using single cell/nucleus RNA sequencing. Picalm expression is upregulated only in cardiomyocytes with doxorubicin-induced cardiotoxicity. Amyloid β-peptide production is also increased after doxorubicin treatment, which leads to a greater increase in the membrane permeability of cardiomyocytes. Genetic depletion and pharmacological blocking peptides on Picalm reduce the generation of amyloid β-peptide. This alleviates the doxorubicin-induced cardiotoxicity in vitro and in vivo. In human heart tissue samples of patients with chemotherapy-induced cardiotoxicity, PICALM, and amyloid β-peptide are elevated as well.
Collapse
Affiliation(s)
- Mengni Bao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Tao An
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- Department of CardiologyFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant MaterialsAnimal Experimental CentreFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- Shenzhen Key Laboratory of Cardiovascular DiseaseFuwai HospitalChinese Academy of Medical SciencesShenzhen518057China
- Department of Cardiovascular SurgeryFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
- The Cardiomyopathy Research GroupFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing10037China
| |
Collapse
|
4
|
El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats; insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell 2024; 87:102313. [PMID: 38286061 DOI: 10.1016/j.tice.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Doxorubicin (Dox) is one of the most effective anti-neoplastic agents. Quercetin (QE) exhibits antioxidant and anti-inflammatory properties. AIM To detect neuroprotective properties of quercetin in rats exposed to doxorubicin-induced brain injury. MATERIAL AND METHODS 48 rats were allocated equally into four groups: control group: (given normal saline), QE group: (given 80 mg/kg of QE orally daily for 2 weeks), Dox group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections), and Dox+QE group: (received 2.5 mg/kg of Dox every other day for a total of seven intraperitoneal injections and 80 mg/kg of QE orally daily for 2 weeks). Subsequently, biochemical analyses were carried out along with histopathological (light and electron microscopic) and immunohistochemical examinations of the cerebral cortex and hippocampus. RESULTS The Dox group revealed a decline in the activities of superoxide dismutase, catalase, and glutathione peroxidase, along with an increase in malondialdehyde and an increase in DNA damage. Furthermore, sections of the cerebral cortex and hippocampus revealed neurodegenerative changes, decreased synaptophysin, and increased Interleukin-1 beta expressions. Biochemical and histopathological results were markedly improved by QE administration. CONCLUSIONS It can be concluded that QE induces protective effects against Dox-induced neurotoxicity.
Collapse
Affiliation(s)
- Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Anatomy, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Ibrahim Amin Ibrahim
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Mahde Kamel
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola Ali Abdelwahab
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Yao R, Man Y, Lu Y, Su Y, Zhou M, Wang S, Gu X, Wang R, Wu Y, Wang L. Infliximab alleviates memory impairment in rats with chronic pain by suppressing neuroinflammation and restoring hippocampal neurogenesis. Neuropharmacology 2024; 245:109813. [PMID: 38110173 DOI: 10.1016/j.neuropharm.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Patients with chronic pain commonly report impaired memory. Increasing evidence has demonstrated that inhibition of neurogenesis by neuroinflammation plays a crucial role in chronic pain-associated memory impairments. There is currently a lack of treatment strategies for this condition. An increasing number of clinical trials have reported the therapeutic potential of anti-inflammatory therapies targeting tumour necrosis factor-α (TNF-α) for inflammatory diseases. The present study investigated whether infliximab alleviates chronic pain-associated memory impairments in rats with chronic constriction injury (CCI). We demonstrated that infliximab alleviated spatial memory impairment and hyperalgesia induced by CCI. Furthermore, infliximab inhibited the activation of hippocampal astrocytes and microglia and decreased the release of proinflammatory cytokines in CCI rats. Furthermore, infliximab reversed the decrease in the numbers of newborn neurons and mature neurons in the dentate gyrus (DG) caused by chronic pain. Our data provide evidence that infliximab alleviates chronic pain-associated memory impairments, suppresses neuroinflammation and restores hippocampal neurogenesis in a CCI model. These facts indicate that infliximab may be a potential therapeutic agent for the treatment of chronic pain and associated memory impairments.
Collapse
Affiliation(s)
- Rui Yao
- Department of Anesthesiology, Xuzhou First People's Hospital, Xuzhou, 22100, China
| | - Yuanyuan Man
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Yao Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China
| | - Yang Su
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Shuang Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rongguo Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China.
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China.
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China.
| |
Collapse
|
6
|
Nageeb MM, Talaat A, Reda SM, Elsammak GA. Infliximab abrogates adenine-induced chronic kidney disease via modulation of the MAPK/JNK/ASK signaling pathway in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:207-219. [PMID: 37401969 PMCID: PMC10771379 DOI: 10.1007/s00210-023-02585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Chronic kidney disease (CKD) is a prominent cause of death worldwide. Infliximab is one of the anti-TNF-α; herein, we studied the effect of infliximab on adenine-induced CKD. To inspect the role of infliximab, either ameliorative or curative, on CDK induced with adenine. Thirty Wistar albino rats were separated into five groups of 6 rats' each: rats of group Ι were kept as control given saline, rats of group II were treated with infliximab (5 mg/kg, i.p.) for 5 weeks, rats of group ΙΙΙ (the diseased group) had an adenine containing diet (0.25% W/W in feed) for 5 weeks, rats of group ΙV (the ameliorative group) had an adenine-containing diet and infliximab (5 mg/kg, i.p.) for 5 weeks simultaneously, and rats of group V (the curative group) had adenine containing diet then a single dose of infliximab (5 mg/kg, i.p.) was given in the 6th week. Infliximab treatment revealed a decrease in the plasma levels of urea, creatinine, NGAL, and MDA with a substantial increase in TAC. Also, inflammatory mediators such as IL-6 and NF-κB were significantly decreased with the down-regulation of the ASK1/MAPK/JNK pathway. Caspase 3 was downregulated. Also, infliximab treatment exhibited improvement in the histological and immunohistochemical kidney changes. Through its involvement in reducing oxidative stress, inflammation, and apoptosis, infliximab has an ameliorative and curative effect on CKD induced with adenine.
Collapse
Affiliation(s)
- Mahitab M Nageeb
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Aliaa Talaat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar M Reda
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada A Elsammak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Karakuyu NF, Savran M, Candan IA, Buyukbayram HI, Erzurumlu Y. Investigation of cardioprotective effect of lercanidipine on doxorubicin-induced cardiotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3635-3645. [PMID: 37284897 DOI: 10.1007/s00210-023-02566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Although doxorubicin (DOX) is an effective anti-neoplastic drug for many types of cancer, particularly dose-related cardiotoxicity limits the use of the drug. In this study, it was aimed to investigate the protective effect of lercanidipine (LRD) against DOX-induced cardiotoxicity. In our study, 40 Wistar albino female rats were randomly divided into 5 groups as control, DOX, LRD 0.5 (DOX + 0.5 mg/kg LRD), LRD 1 (DOX + 1 mg/kg LRD), and LRD 2 (DOX + 2 mg/kg LRD). At the end of the experiment, the rats were sacrificed, and their blood, heart, and endothelial tissues were examined biochemically, histopathologically, immunohistochemically, and genetically. According to our findings, necrosis, tumor necrosis factor alpha activity, vascular endothelial growth factor activity, and oxidative stress were increased in the heart tissues of the DOX group. In addition, DOX treatment caused the deteriorations in biochemical parameters, and levels of autophagy-related proteins, Atg5, Beclin1, and LC3-I/II were detected. Significant dose-related improvements in these findings were observed with LRD treatment. Besides, Atg5, LC3-I/II, and Beclin1 levels evaluated by western blot revealed that LRD exerts a tissue protective effect by regulating autophagy in endothelial tissue. LRD treatment, which is a new-generation calcium channel blocker, showed antioxidant, anti-inflammatory, and anti-apoptotic properties in heart and endothelial tissue in a dose-dependent manner and also showed protective activity by regulating autophagy in endothelial tissue. With studies evaluating these mechanisms in more detail, the protective effects of LRD will be revealed more clearly.
Collapse
Affiliation(s)
- Nasif Fatih Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ibrahim Aydin Candan
- Department of Histology and Embryology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | | | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
9
|
Liu Y, Tan Y, Zhang Z, Li H, Yi M, Zhang Z, Hui S, Peng W. Neuroimmune mechanisms underlying Alzheimer's disease: Insights into central and peripheral immune cell crosstalk. Ageing Res Rev 2023; 84:101831. [PMID: 36565960 DOI: 10.1016/j.arr.2022.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a highly life-threatening neurodegenerative disease. Dysregulation of the immune system plays a critical role in promoting AD, which has attracted extensive attention recently. Central and peripheral immune responses are involved in the pathogenesis of AD. Immune changes precede Aβ-associated senile plaque formation and tau-related neurofibrillary tangles, which are the recognised pathological features of AD. Therefore, elucidating immune-related mechanisms underlying the development of AD can help to prevent and treat AD at the source by blocking its progression before the development of pathological changes. To understand the specific pathogenesis of AD, it is important to examine the role of central and peripheral immunity in AD. This review summarises immune-related mechanisms underlying the pathogenesis of AD, focusing on the effect of various central and peripheral immune cells, and describes the possible crosstalk between central and peripheral immunity during the development of AD. This review provides novel insights into the treatment of AD and offers a new direction for immune-related research on AD in the future.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.
| |
Collapse
|
10
|
Zygo-Albuside A: New Saponin from Zygophyllum album L. with Significant Antioxidant, Anti-Inflammatory and Antiapoptotic Effects against Methotrexate-Induced Testicular Damage. Int J Mol Sci 2022; 23:ijms231810799. [PMID: 36142712 PMCID: PMC9501557 DOI: 10.3390/ijms231810799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1β, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.
Collapse
|