1
|
Giri D, Dey SK, Manna S, Das Chaudhuri A, Mahata R, Pradhan A, Roy T, Jana K, Das S, Roy S, Maiti Choudhury S. Nanoconjugate Carrying pH-Responsive Transferrin Receptor-Targeted Hesperetin Triggers Triple-Negative Breast Cancer Cell Death through Oxidative Attack and Assemblage of Pro-Apoptotic Proteins. ACS APPLIED BIO MATERIALS 2024; 7:7556-7573. [PMID: 39504304 DOI: 10.1021/acsabm.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as a major aggressive subtype of breast cancer due to its expeditious worsening growth, extensive metastatic capability, and recalcitrance to standard current treatments. Hesperetin (HSP), a natural bioflavonoid from citrus fruits, demonstrates pronounced anticancer efficacy, but its hydrophobicity limits its clinical development. The present study reports the fabrication of a biocompatible and pH-responsive transferrin (TF) receptor-targeted HSP-loaded poly(lactic-co-glycolic acid) (PLGA) nanobioconjugate (PLGA-HSP-TF NPs) and the exploration of its in vitro and in vivo antineoplastic potential. PLGA nanoparticles (NPs), PLGA-HSP NPs, and PLGA-HSP-TF NPs were synthesized and characterized by DLS, FTIR, FE-SEM, and 1H NMR spectroscopy. The stability and in vitro release profile of nanoparticles were inspected, and anticancer efficacy was scrutinized in terms of in vitro cytotoxicity, oxidative stress and apoptosis biomarkers, and cell cycle arrest. In vivo tumor regression and host survival studies were executed in Ehrlich ascites carcinoma (EAC) cell-bearing Swiss albino mice. The drug uptake of highly stable PLGA-HSP-TF NPs was accomplished effectively in MDA-MB-231 cells and showed the pH-dependent intracellular release of HSP, which generated excessive intracellular reactive oxygen species (ROS) that led to oxidative assault to the TNBC cells. This elevated ROS dropped the mitochondrial membrane potential and triggered apoptosis-mediated cell death by arresting the cell cycle at the G0/G1 phase. Furthermore, PLGA-HSP-TF NPs unveiled significant in vivo Ehrlich ascites carcinoma regression and host survival compared to free HSP with minimum toxicity at a minimum dose of 20 mg/kg body weight. The study divulges that PLGA-HSP-TF NPs may be an astounding anticancer nanocandidate for aggressive triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Dibyendu Giri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
- Department of Physiology, Ghatal Rabindra Satabarsiki Mahavidyalaya, Ghatal, Paschim Medinipur, West Bengal, India, 721212
| | - Surya Kanta Dey
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sounik Manna
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Angsuman Das Chaudhuri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Rumi Mahata
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Ananya Pradhan
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Tamanna Roy
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 CIT scheme VIIM, Kolkata, West Bengal, India, 700054
| | - Subhasis Das
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| |
Collapse
|
2
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gajewska S, Kurant D, Kurant M, Sousak M. Can Asiatic Acid from Centella asiatica Be a Potential Remedy in Cancer Therapy?-A Review. Cancers (Basel) 2024; 16:1317. [PMID: 38610995 PMCID: PMC11011005 DOI: 10.3390/cancers16071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Centella asiatica has been recognized for centuries in Eastern medicine for its pharmacological properties. Due to the increasing prevalence of oncological diseases worldwide, natural substances that could qualify as anticancer therapeutics are becoming increasingly important subjects of research. This review aims to find an innovative use for asiatic acid (AA) in the treatment or support of cancer therapy. It has been demonstrated that AA takes part in inhibiting phosphorylation, inducing cell death, and reducing tumor growth and metastasis by influencing important signaling pathways, such as PI3K, Akt, mTOR, p70S6K, and STAT3, in cancer cells. It is also worth mentioning the high importance of asiatic acid in reducing the expression of markers such as N-cadherin, β-catenin, claudin-1, and vimentin. Some studies have indicated the potential of asiatic acid to induce autophagy in cancer cells through changes in the levels of specific proteins such as LC3 and p62. It can also act as an anti-tumor immunotherapeutic agent, thanks to its inductive effect on Smad7 in combination with naringenin (an Smad3 inhibitor). It seems that asiatic acid may be a potential anticancer drug or form of adjunctive therapy. Further studies should take into account safety and toxicity issues, as well as limitations related to the pharmacokinetics of AA and its low oral bioavailability.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Sandra Gajewska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.W.); (Z.K.); (D.K.)
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Masaoud Sousak
- Department of General Surgery, Paluckie Health Center Sp. o.o., Szpitalna 30, 88-400 Żnin, Poland;
| |
Collapse
|
3
|
Perecko T, Pereckova J, Hoferova Z, Falk M. Cell-type specific anti-cancerous effects of nitro-oleic acid and its combination with gamma irradiation. Biol Chem 2024; 405:177-187. [PMID: 37712609 DOI: 10.1515/hsz-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Nitro-fatty acids (NFAs) are endogenous lipid mediators capable of post-translational modifications of selected regulatory proteins. Here, we investigated the anti-cancerous effects of nitro-oleic acid (NO2OA) and its combination with gamma irradiation on different cancer cell lines. The effects of NO2OA on cell death, cell cycle distribution, or expression of p21 and cyclin D1 proteins were analyzed in cancer (A-549, HT-29 and FaDu) or normal cell lines (HGF, HFF-1). Dose enhancement ratio at 50 % survival fraction (DERIC50) was calculated for samples pre-treated with NO2OA followed by gamma irradiation. NO2OA suppressed viability and induced apoptotic cell death. These effects were cell line specific but not in general selective for cancer cells. HT-29 cell line exerted higher sensitivity toward NO2OA treatment among cancer cell lines tested: induction of cell cycle arrest in the G2/M phase was associated with an increase in p21 and a decrease in cyclin D1 expression. Pre-treatment of HT-29 cells with NO2OA prior irradiation showed a significantly increased DERIC50, demonstrating radiosensitizing effects. In conclusion, NO2OA exhibited potential for combined chemoradiotherapy. Our results encourage the development of new NFAs with improved features for cancer chemoradiation.
Collapse
Affiliation(s)
- Tomas Perecko
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Jana Pereckova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Zuzana Hoferova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
4
|
Chatterjee S, Chakraborty P, Dutta S, Karak S, Mahalanobis S, Ghosh N, Dewanjee S, Sil PC. Formulation of Carnosic-Acid-Loaded Polymeric Nanoparticles: An Attempt to Endorse the Bioavailability and Anticancer Efficacy of Carnosic Acid against Triple-Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1656-1670. [PMID: 38364267 DOI: 10.1021/acsabm.3c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered to be one of the most difficult subtypes of breast cancer (BC) to treat. The sheer absence of certain receptors makes it very tough to target, leaving high-dose chemotherapy as probably the sole therapeutic option at the cost of nonspecific toxic effects. Carnosic acid (CA) has been established as a potential chemotherapeutic agent against a range of cancer cells. However, its in vivo chemotherapeutic potential is significantly challenged due to its poor pharmacokinetic attributes. In this study, poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were formulated to circumvent the biopharmaceutical limitations of CA. CA-loaded polymeric NPs (CA-PLGA NPs) have been evaluated as a potential therapeutic option in the treatment of TNBC. Different in vitro studies exhibited that CA-PLGA NPs significantly provoked oxidative-stress-mediated apoptotic death in MDA-MB-231 cells. The improved anticancer potential of CA-PLGA NPs over CA was found to be associated with improved cellular uptake of the nanoformulation by TNBC cells. In vivo studies also established the improvement in the chemotherapeutic efficacy of CA-nanoformulation over that of free CA without showing any sign of systemic toxicity. Thus, CA-PLGA NPs emerge as a promising candidate to fix two bugs with a single code, resolving biopharmaceutical attributes of CA as well as introducing a treatment option for TNBC.
Collapse
Affiliation(s)
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sanchari Karak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
5
|
Chakraborty P, Bhattacharyya C, Sahu R, Dua TK, Kandimalla R, Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol 2024; 91:105267. [DOI: 10.1016/j.jddst.2023.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Gujju R, Dewanjee S, Singh K, Andugulapati SB, Tirunavalli SK, Jaina VK, Kandimalla R, Misra S, Puvvada N. Carbon Dots' Potential in Wound Healing: Inducing M2 Macrophage Polarization and Demonstrating Antibacterial Properties for Accelerated Recovery. ACS APPLIED BIO MATERIALS 2023; 6:4814-4827. [PMID: 37886889 DOI: 10.1021/acsabm.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Bacterial infections and persistent inflammation can impede the intrinsic healing process of wounds. To combat this issue, researchers have delved into the potential use of carbon dots (CDs) in the regulation of inflammation and counteract infections. These CDs were synthesized using a microwave-assisted hydrothermal process and have demonstrated outstanding antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. Additionally, CDs displayed biocompatibility at therapeutic concentrations and the ability to specifically target mitochondria. CD treatment effectively nullified lipopolysaccharide-triggered reactive oxygen species production by macrophages, while simultaneously promoting macrophage polarization toward an anti-inflammatory phenotype (M2), leading to a reduction in inflammation and an acceleration in wound healing. In vitro scratch assays also revealed that CDs facilitated the tissue-repairing process by stimulating epithelial cell migration during reepithelialization. In vivo studies using CDs topically applied to lipopolysaccharide (LPS)-stimulated wounds in C57/BL6 mice demonstrated significant improvements in wound healing due to enhanced fibroblast proliferation, angiogenesis, and collagen deposition. Crucially, histological investigations showed no indications of systemic toxicity in vital organs. Collectively, the application of CDs has shown immense potential in speeding up the wound-healing process by regulating inflammation, preventing bacterial infections, and promoting tissue repair. These results suggest that further clinical translation of CDs should be considered.
Collapse
Affiliation(s)
- Rajesh Gujju
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kamini Singh
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satya Krishna Tirunavalli
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Sunil Misra
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagaprasad Puvvada
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Chemistry, School of Advanced Science, VIT-AP University, Amaravati, Andhra Pradesh 522237, India
| |
Collapse
|
7
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
8
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|