1
|
Millán O, Julian J, Brunet M. miRNAs, dd-cf-DNA, and Chemokines as Potential Noninvasive Biomarkers for the Assessment of Clinical Graft Evolution and Personalized Immunosuppression Requirement in Solid Organ Transplantation. Ther Drug Monit 2024:00007691-990000000-00279. [PMID: 39503575 DOI: 10.1097/ftd.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024]
Abstract
ABSTRACT The use of noninvasive biomarkers may reduce the need for biopsy and guide immunosuppression adjustments during transplantation. The scientific community in solid organ transplantation currently considers that chemokines, T- and B-cell immunophenotypes, and gene expression, among other molecular biomarkers, have great potential as diagnostic and predictive biomarkers for graft evolution; however, in clinical practice, few valid early biomarkers have emerged. This review focuses on the most relevant scientific advances in this field in the last 5 years regarding the role of 3 biomarkers: miRNAs, chemokines, and ddcf-DNA, in both adult and pediatric populations. An update was provided on the scores based on the combination of these biomarkers. The most-featured articles were identified through a literature search of the PubMed database. This review provides a comprehensive analysis of the potential clinical applications of these biomarkers in the diagnosis and prediction of graft outcomes and discusses the reasons why none have been implemented in clinical practice to date. Translating these biomarkers into routine clinical practice and combining them with pharmacogenetics and pharmacokinetic monitoring is challenging; however, it is the key to present/future individualized immunosuppressive therapies. It is essential that they be shown to be applicable and robust in real-life patient conditions and properly evaluate their added value when combined with the standard-of-care factor monitoring for graft clinical assessment. Partnership strategies among scientists, academic institutions, consortia, including expert working groups and scientific societies, and pharmaceutical and/or biotechnology companies should promote the development of prospective, randomized, multicenter intervention studies for adequate clinical validation of these biomarkers and their monitoring frequency, and their commercialization to make them available to transplant physicians.
Collapse
Affiliation(s)
- Olga Millán
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), c/Sinesio Delgado, Madrid; and
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| | - Judit Julian
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| | - Mercè Brunet
- Biomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III (ISCII), c/Sinesio Delgado, Madrid; and
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, c/Villarroel, Barcelona, Spain
| |
Collapse
|
2
|
Brugière O, Dreyfuss D, Guilet R, Rong S, Hirschi S, Renaud-Picard B, Reynaud-Gaubert M, Coiffard B, Bunel V, Messika J, Demant X, Le Pavec J, Dauriat G, Saint Raymond C, Falque L, Mornex JF, Tissot A, Lair D, Le Borgne Krams A, Bousseau V, Magnan A, Picard C, Roux A, Glorion M, Carmagnat M, Gazeau F, Aubertin K, Carosella E, Vallée A, Landais C, Rouas-Freiss N, LeMaoult J. Circulating Vesicular-bound HLA-G as Noninvasive Predictive Biomarker of CLAD After Lung Transplantation. Transplantation 2024:00007890-990000000-00873. [PMID: 39294868 DOI: 10.1097/tp.0000000000005175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) have shown promising results as noninvasive biomarkers for predicting disease outcomes in solid organ transplantation. Because in situ graft cell expression of the tolerogenic molecule HLA-G is associated with acceptance after lung transplantation (LTx), we hypothesized that plasma EV-bound HLA-G (HLA-GEV) levels could predict chronic lung allograft dysfunction (CLAD) development. METHODS We analyzed 78 LTx recipients from the Cohort-for-Lung-Transplantation cohort, all in a stable (STA) state within the first year post-LTx. At 3 y, 41 patients remained STA, and 37 had CLAD (bronchiolitis obliterans syndrome, BOS, [n = 32] or restrictive allograft syndrome [n = 5]). HLA-GEV plasma levels were measured at month 6 (M6) and M12 in 78 patients. CLAD occurrence and graft failure at 3 y post-LTx were assessed according to early HLA-GEV plasma levels. RESULTS In patients with subsequent BOS, (1) HLA-GEV levels at M12 were significantly lower than those in STA patients (P = 0.013) and (2) also significantly lower than their previous levels at M6 (P = 0.04).A lower incidence of CLAD and BOS and higher graft survival at 3 y were observed in patients with high HLA-GEV plasma levels at M12 (high versus low HLA-GEVs patients [cutoff 21.3 ng/mL]: freedom from CLAD, P = 0.002; freedom from BOS, P < 0.001; and graft survival, P = 0.04, [log-rank]). Furthermore, in multivariate analyses, low HLA-GEV levels at M12 were independently associated with a subsequent risk of CLAD, BOS, and graft failure at 3 y (P = 0.015, P = 0.036, and P = 0.026, respectively [Cox models]). CONCLUSIONS This exploratory study suggests the potential of EV-bound HLA-G plasma levels as a liquid biopsy in predicting CLAD/BOS onset and subsequent graft failure.
Collapse
Affiliation(s)
- Olivier Brugière
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Dora Dreyfuss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Ronan Guilet
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sophie Rong
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Sandrine Hirschi
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Benjamin Renaud-Picard
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | | | - Benjamin Coiffard
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Marseille, Marseille, France
| | - Vincent Bunel
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Jonathan Messika
- APHP.Nord-Université de Paris, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
| | - Xavier Demant
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gaelle Dauriat
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Christel Saint Raymond
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Loic Falque
- Service Hospitalier Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Échirolles, France
| | - Jean-Francois Mornex
- Université Claude Bernard Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, Inserm CIC1407, Bron, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Lair
- Nantes Université, CHU Nantes, INSERM, Service de Pneumologie, l'institut du thorax, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | | | - Veronique Bousseau
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital HEGP, Paris, France
| | - Antoine Magnan
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Clément Picard
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | | | | | - Florence Gazeau
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Kelly Aubertin
- Université Paris Cité, MSC et intégrateur IVETh, CNRS UMR7057, Paris, France
| | - Edgardo Carosella
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Alexandre Vallée
- Service d'épidémiologie et santé publique, Hôpital Foch, Suresnes, France
| | - Cecile Landais
- Departement de biostatistiques, DRCI Hôpital Foch, Suresnes, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| | - Joel LeMaoult
- CEA, DRF-Institut de Biologie Francois Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI, IRSL, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
4
|
Nedaeinia R, Najafgholian S, Salehi R, Goli M, Ranjbar M, Nickho H, Haghjooy Javanmard S, A Ferns G, Manian M. The role of cancer-associated fibroblasts and exosomal miRNAs-mediated intercellular communication in the tumor microenvironment and the biology of carcinogenesis: a systematic review. Cell Death Discov 2024; 10:380. [PMID: 39187523 PMCID: PMC11347635 DOI: 10.1038/s41420-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
CAFs (cancer-associated fibroblasts) are highly flexible cells of the cancer microenvironment. They produce the extracellular matrix (ECM) constituents that form the structure of the tumor stroma but are also a source of metabolites, growth factors, chemokines, and exosomes that impact every aspect of the tumor, including its response to treatment. It is believed that exosomal miRNAs facilitate intercellular signaling, which is essential for the development of cancer. The role of miRNAs and CAFs in the tumor microenvironment (TME) and carcinogenesis is reviewed in this paper. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines were used to perform a systematic review. Several databases, including Web of Science, Medline, Embase, Cochrane Library, and Scopus, were searched using the following keywords: CAFs, CAF, cancer-associated fibroblasts, stromal fibroblasts, miRNA, exosomal miRNAs, exosome and similar terms. We identified studies investigating exosomal miRNAs and CAFs in the TME and their role in carcinogenesis. A total of 12,572 papers were identified. After removing duplicates (n = 3803), 8774 articles were screened by title and abstract. Of these, 421 were excluded from further analysis. It has been reported that if exosomal miRNAs in CAFs are not functioning correctly, this may influence the secretory phenotype of tip cells and contribute to increased tumor invasiveness, tumor spread, decreased treatment efficacy, and a poorer prognosis. Under their influence, normal fibroblasts (NFs) are transformed into CAFs. Furthermore, they participate in metabolic reprogramming, which allows for fast proliferation of the cancer cell population, adaptation to growing energy demands, and the capacity to avoid immune system identification.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine, Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Ranjbar
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamid Nickho
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Mostafa Manian
- Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
6
|
Saravanan PB, Kalivarathan J, McClintock K, Mohammed S, Burch E, Morecock C, Liu J, Khan A, Levy MF, Kanak MA. Inflammatory and hypoxic stress-induced islet exosomes released during isolation are associated with poor transplant outcomes in islet autotransplantation. Am J Transplant 2024; 24:967-982. [PMID: 38364959 DOI: 10.1016/j.ajt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA.
| | - Jagan Kalivarathan
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Kaeden McClintock
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA
| | | | - Elijah Burch
- VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Christiane Morecock
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, VCU, Richmond, Virginia, USA
| | - Aamir Khan
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Marlon F Levy
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, VCU, Richmond, Virginia, USA; VCU Hume-Lee Islet Cell Transplant Lab, VCU Health System, Richmond, Virginia, USA
| |
Collapse
|
7
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|