1
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
2
|
Woodie LN, Melink LC, Alberto AJ, Burrows M, Fortin SM, Chan CC, Hayes MR, Lazar MA. Hindbrain REV-ERB nuclear receptors regulate sensitivity to diet-induced obesity and brown adipose tissue pathophysiology. Mol Metab 2024; 79:101861. [PMID: 38142970 PMCID: PMC10792761 DOI: 10.1016/j.molmet.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
OBJECTIVE The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS Male REV-ERBα/β floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/β double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.
Collapse
Affiliation(s)
- Lauren N Woodie
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily C Melink
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahren J Alberto
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Burrows
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Calvin C Chan
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Calarco CA, Keppetipola SM, Kumar G, Shipper AG, Lobo MK. Whole blood mitochondrial copy number in clinical populations with mood disorders: a meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557572. [PMID: 37745411 PMCID: PMC10515896 DOI: 10.1101/2023.09.13.557572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Major depressive disorder (MDD) and bipolar disorder (BD), are globally prevalent, contributing to significant disease burden and adverse health outcomes. These mood disorders are associated with changes in many aspects of brain reward pathways, yet cellular and molecular changes in the brain are not readily available in clinical populations. Therefore, the use of biomarkers as proxies for changes in the brain are necessary. The proliferation of mitochondria in blood has emerged as a potentially useful biomarker, yet a clear consensus on how these mood disorders impact mitochondrial DNA copy number (mtDNAcn) has not been reached. Methods Following PRISMA guidelines for a systematic search, 22 papers met inclusion criteria for meta-analysis (10 MDD, 10 BD, 2 both MDD and BD). We extracted demographic, disorder, and methodological information with mtDNAcn. Using the metafor package for R, calculated effect sizes were used in random effects or meta regression models for MDD and BD. Results Our results show a trending increase in mtDNAcn in patients with MDD, which reaches significance when one study with outlying demographic characteristics is excluded. Overall, there was no effect of BD on mtDNAcn, however, further subgroup and meta-regression analysis indicated the effects on mtDNAcn are dependent on BD type. Conclusions Together our data suggest whole blood/leukocyte mtDNAcn may be a useful biomarker for mood disorders, with MDD and BD Type II associated with higher mtDNAcn, and BD Type I associated with lower mtDNAcn. Further study of blood mtDNAcn could predict downstream health outcomes or treatment responsivity in individuals with mood disorders.
Collapse
|