1
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Rini DM, Sitolo GC, Adesina PA, Suzuki T. The role of dietary fibre in intestinal heat shock protein regulation. Int J Food Sci Technol 2024; 59:8114-8123. [DOI: 10.1111/ijfs.17577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 01/21/2025]
Abstract
SummaryThe gastrointestinal tract serves as a pivotal physical barrier that prevents the translocation of exogenous substances from the intestinal lumen into the systemic circulation. Dysfunction of intestinal barrier function has been implicated in the pathogenesis of several diseases, such as metabolic disorders. Heat shock proteins (HSPs) play a critical role in maintaining the resilience and viability of epithelial cells when exposed to stressors. Evidence suggests that dietary fibre (DF), a known inducer of HSP production, may be a promising candidate for strengthening the intestinal barrier. Understanding the regulation of intestinal HSPs and the protective effect of DF is critical to defending against environmental threats and preserving human health. To date, six DFs—pectin, chicory, psyllium, guar gum, partially hydrolysed guar gum, and xylooligosaccharide—have been reported to have promotive effects on intestinal HSP induction. DF promotes intestinal HSP induction through gut microbiota‐dependent and independent mechanisms. DF is fermented by gut microbiota to produce short‐chain fatty acids, specifically butyrate and propionate, to promote HSP production. Meanwhile, DF also promotes intestinal HSP induction through direct interaction with intestinal epithelial cells, independent of gut microbiota activity, although the precise mechanism is still unclear. Regulation of intestinal HSP occurs by transcriptional modulation through activation of heat shock transcription factors, primarily heat shock factor 1, or at the post‐transcriptional level by modulation of the translation process. This review highlights recent advances in understanding the role of DF in improving intestinal barrier function, with particular emphasis on the regulatory mechanisms of intestinal HSPs.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering Universitas Pembangunan Nasional Veteran Jawa Timur Surabaya 60294 Indonesia
- Innovation Center of Appropriate Food Technology for Lowland and Coastal Area Universitas Pembangunan Nasional Veteran Jawa Timur Surabaya 60294 Indonesia
| | - Gertrude Cynthia Sitolo
- Department of Physics and Biochemical Sciences Malawi University of Business & Applied Sciences Blantyre 312225 Malawi
| | - Precious Adedayo Adesina
- Division for Pre‐Clinical Innovation, National Center for Advancing Translational Sciences National Institutes of Health Bethesda 20892‐4874 MD USA
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima 739‐8528 Japan
| |
Collapse
|
3
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
4
|
Hu L, Xu Y, Li J, Zhang M, Sun Z, Ban Y, Tian X, Liu D, Hu L. Gut microbiome characteristics of women with hypothyroidism during early pregnancy detected by 16S rRNA amplicon sequencing and shotgun metagenomic. Front Cell Infect Microbiol 2024; 14:1369192. [PMID: 39185088 PMCID: PMC11341541 DOI: 10.3389/fcimb.2024.1369192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This study aimed to explore the correlation between microbiota dysbiosis and hypothyroidism in early pregnancy by 16S rRNA amplicon sequencing combined with metagenomic sequencing. Methods Sixty pregnant women (30 with hypothyroidism and 30 normal controls) were recruited for 16S rRNA amplicon sequencing, and 6 patients from each group were randomly selected for metagenomic sequencing to assess the gut microbiome profile. Results The 16S rRNA results showed that beta-diversity in the hypothyroidism group was decreased. The relative abundances of the Prevotella and Paraprevotella genera increased in the hypothyroidism group, and Blautia predominated in the controls. The metagenomics results revealed that Prevotella_stercorea_CAG_629, Prevotella_hominis, Prevotella_sp_AM34_19LB, etc. were enriched in the hypothyroidism group at the species level. Functional analysis revealed that the pyridoxal 5'-phosphate synthase pdxT subunit module was decreased, and the short-chain fatty acid (SCFA) transporter and phospholipase/carboxylesterase modules were strongly enriched in the hypothyroidism group. Hypothyroidism patients had increased C-reactive protein (CRP), interleukin-2 (IL-2), IL-4, IL-10, and tumor necrosis factor (TNF)-α levels. The pyridoxal 5'-phosphate synthase pdxT subunit, the SCFA transporter, and the phospholipase/carboxylesterase module were associated with different Prevotella species. Conclusion In early pregnancy, women with hypothyroidism exhibit microbiota dysbiosis, and Prevotella may affect the metabolism of glutamate, SCFA, and phospholipases, which could be involved in the development of hypothyroidism during pregnancy.
Collapse
Affiliation(s)
| | - Yajuan Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu Z, Hua W, Jin S, Wang Y, Pang Y, Wang B, Zhao N, Song Y, Qi J. Canagliflozin protects against hyperglycemia-induced cerebrovascular injury by preventing blood-brain barrier (BBB) disruption via AMPK/Sp1/adenosine A2A receptor. Eur J Pharmacol 2024; 968:176381. [PMID: 38341077 DOI: 10.1016/j.ejphar.2024.176381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Diabetes mellitus causes brain microvascular endothelial cell (MEC) damage, inducing dysfunctional angiogenic response and disruption of the blood-brain barrier (BBB). Canagliflozin is a revolutionary hypoglycemic drug that exerts neurologic and/or vascular-protective effects beyond glycemic control; however, its underlying mechanism remains unclear. In the present study, we hypothesize that canagliflozin ameliorates BBB permeability by preventing diabetes-induced brain MEC damage. Mice with high-fat diet/streptozotocin-induced diabetes received canagliflozin for 8 weeks. We assessed vascular integrity by measuring cerebrovascular neovascularization indices. The expression of specificity protein 1 (Sp1), as well as tight junction proteins (TJs), phosphorylated AMP-activated protein kinase (p-AMPK), and adenosine A2A receptors was examined. Mouse brain MECs were grown in high glucose (30 mM) to mimic diabetic conditions. They were treated with/without canagliflozin and assessed for migration and angiogenic ability. We also performed validation studies using AMPK activator (AICAR), inhibitor (Compound C), Sp1 small interfering RNA (siRNA), and adenosine A2A receptor siRNA. We observed that cerebral pathological neovascularization indices were significantly normalized in mice treated with canagliflozin. Increased Sp1 and adenosine A2A receptor expression and decreased p-AMPK and TJ expression were observed under diabetic conditions. Canagliflozin or AICAR treatment alleviated these changes. However, this alleviation effect of canagliflozin was diminished again after Compound C treatment. Either Sp1 siRNA or adenosine A2A receptor siRNA could increase the expression of TJs. Luciferase reporter assay confirmed that Sp1 could bind to the adenosine A2A receptor gene promoter. Our study identifies the AMPK/Sp1/adenosine A2A receptor pathway as a treatment target for diabetes-induced cerebrovascular injury.
Collapse
Affiliation(s)
- Zhiyi Liu
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Wei Hua
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Sinan Jin
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yueying Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuxin Pang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Benshuai Wang
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Nan Zhao
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, Harbin Medical University, First Clinical Hospital, Harbin, 150001, China.
| |
Collapse
|
6
|
Smith AD, Chen C, Cheung L, Ward RE, Jones BS, Pletsch EA, Dawson HD. A type 4 resistant potato starch alters the cecal microbiome and gene expression in mice fed a western diet based on NHANES data. Food Funct 2024; 15:3141-3157. [PMID: 38439638 DOI: 10.1039/d3fo04512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.
Collapse
Affiliation(s)
- Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Robert E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, USA
| | - B Sky Jones
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, USA
| | - Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10, 300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
7
|
Xi M, Yan Y, Duan S, Li T, Szeto IMY, Zhao A. Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota. Front Microbiol 2024; 15:1356462. [PMID: 38440144 PMCID: PMC10909814 DOI: 10.3389/fmicb.2024.1356462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction The short-chain fatty acids (SCFAs) contained in breast milk play a key role in infant growth, affecting metabolism and enhancing intestinal immunity by regulating inflammation. Methods In order to examine the associations between the microbiota and SCFA levels in breast milk, and explore the roles of SCFAs in regulating the infant gut microbiota, we enrolled 50 paired mothers and infants and collected both breast milk and infant fecal samples. Breast milk SCFA contents were determined by UPLC-MS, and whole genome shotgun sequencing was applied to determine the microbial composition of breast milk and infant feces. The SCFA levels in breast milk were grouped into tertiles as high, medium, or low, and the differences of intestinal microbiota and KEGG pathways were compared among groups. Results The results demonstrated that breast milk butyric acid (C4) is significantly associated with Clostridium leptum richness in breastmilk. Additionally, the specific Bifidobacterium may have an interactive symbiosis with the main species of C4-producing bacteria in human milk. Women with a low breast milk C4 tertile are associated with a high abundance of Salmonella and Salmonella enterica in their infants' feces. KEGG pathway analysis further showed that the content of C4 in breast milk is significantly correlated with the infants' metabolic pathways of lysine and arginine biosynthesis. Discussion This study suggests that interactive symbiosis of the microbiota exists in breast milk. Certain breast milk microbes could be beneficial by producing C4 and further influence the abundance of certain gut microbes in infants, playing an important role in early immune and metabolic development.
Collapse
Affiliation(s)
- Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yalu Yan
- Inner Mongolia Yili Industrial Group Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Ting Li
- Inner Mongolia Yili Industrial Group Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, Deng M, Luo W, Chen X, Wang X. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol 2023; 14:1286667. [PMID: 37868958 PMCID: PMC10585177 DOI: 10.3389/fimmu.2023.1286667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract. Though the pathogenesis of IBD remains unclear, diet is increasingly recognized as a pivotal factor influencing its onset and progression. Fatty acids, essential components of dietary lipids, play diverse roles in IBD, ranging from anti-inflammatory and immune-regulatory functions to gut-microbiota modulation and barrier maintenance. Short-chain fatty acids (SCFAs), products of indigestible dietary fiber fermentation by gut microbiota, have strong anti-inflammatory properties and are seen as key protective factors against IBD. Among long-chain fatty acids, saturated fatty acids, trans fatty acids, and ω-6 polyunsaturated fatty acids exhibit pro-inflammatory effects, while oleic acid and ω-3 polyunsaturated fatty acids display anti-inflammatory actions. Lipid mediators derived from polyunsaturated fatty acids serve as bioactive molecules, influencing immune cell functions and offering both pro-inflammatory and anti-inflammatory benefits. Recent research has also highlighted the potential of medium- and very long-chain fatty acids in modulating inflammation, mucosal barriers, and gut microbiota in IBD. Given these insights, dietary intervention and supplementation with short-chain fatty acids are emerging as potential therapeutic strategies for IBD. This review elucidates the impact of various fatty acids and lipid mediators on IBD and delves into potential therapeutic avenues stemming from these compounds.
Collapse
Affiliation(s)
- Dong Yan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yi Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xin Xiang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|