1
|
Perroud C, Thurian D, Andres M, Künzi A, Wiedemann G, Zeerleder S, Bacher U, Pabst T, Banz Y, Porret N, Rebmann E. Effect of MAPK activation via mutations in NRAS, KRAS and BRAF on clinical outcome in newly diagnosed multiple myeloma. Hematol Oncol 2023; 41:912-921. [PMID: 37452600 DOI: 10.1002/hon.3208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Until now, next generation sequencing (NGS) data has not been incorporated into any prognostic stratification of multiple myeloma (MM) and no therapeutic considerations are based upon it. In this work, we correlated NGS data with (1) therapy response and survival parameters in newly diagnosed multiple myeloma, treated by VRd * and (2) MM disease stage: newly diagnosed multiple myeloma (ndMM) versus relapsed and/or refractory (relapsed/refractory multiple myeloma). We analyzed 126 patients, with ndMM and relapsed refractory multiple myeloma (rrMM), treated at the University Hospital of Bern (Inselspital). Next generation sequencing was performed on bone marrow, as part of routine diagnostics. The NGS panel comprised eight genes CCND1, DIS3, EGR1, FAM46C (TENT5C), FGFR3, PRDM1, TP53, TRAF3 and seven hotspots in BRAF, IDH1, IDH2, IRF4, KRAS, NRAS. The primary endpoint was complete remission (CR) after VRd in ndMM, in correlation with mutational profile. Mutational load was generally higher in rrMM, with more frequently mutated TP53: 11/87 (13%) in ndMM versus 9/11 (81%) in rrMM (OR 0.0857, p = 0.0007). In ndMM, treated by VRd, mutations in MAPK-pathway members (NRAS, KRAS or BRAF) were associated with reduced probability of CR (21/38, 55%), as compared with wild type NRAS, KRAS or BRAF (34/40, 85%; OR 0.2225, p = 0.006). NRAS c.181C > A (p.Q61K) as a single mutation event showed a trend to reduced probability of achieving CR (OR 0.0912, p = 0.0247). Activation of MAPK pathway via mutated NRAS, KRAS and BRAF genes seems to have a negative impact on outcome in ndMM patients receiving VRd therapy. VRd* - bortezomib (Velcade®), lenalidomide (Revlimid®) and dexamethasone.
Collapse
Affiliation(s)
- Camille Perroud
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of Internal Medicine, Hôpital Cantonal Fribourgeois HFR, Fribourg, Switzerland
| | - Dario Thurian
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of Internal Medicine, Spital Thun STS AG, Thun, Switzerland
| | - Martin Andres
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Arnaud Künzi
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Gertrud Wiedemann
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sacha Zeerleder
- Department of Hematology, Kantonsspital Luzern and University of Bern, Luzern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Clinical Oncology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Naomi Porret
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Ekaterina Rebmann
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of Oncology-Hematology, Hospital of Neuchâtel (RHNe), Neuchâtel, Switzerland
| |
Collapse
|
2
|
Roloff GW, Shaw R, O’Connor TE, Hathaway F, Drazer MW. Stagnation in quality of next-generation sequencing assays for the diagnosis of hereditary hematopoietic malignancies. J Genet Couns 2023; 32:744-749. [PMID: 36642751 PMCID: PMC11310923 DOI: 10.1002/jgc4.1672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Hereditary hematopoietic malignancies (HHMs) are inherited syndromes that confer the risk of blood cancer development. With the rapid acceleration of next-generation sequencing (NGS) into commercial biotechnology markets, HHMs are increasingly recognized by genetic counselors and clinicians. In 2020, it was demonstrated that most diagnostic test offerings for HHMs were insufficient for accurate diagnosis, failing to sequence the full spectrum of genetic events known to cause HHMs. We hypothesized the number of genes on commercially available HHM assay increased from 2020 to 2022, consistent with a more comprehensive sequencing approach. Here, we analyzed assays from eight commercial laboratories to determine the HHM-related genes sequenced by these assays. We compared these assays with panels from 2020 to determine trends in sequencing quality. Most HHM diagnostic assays did not change and remain insensitive for the detection of all HHM-related variants. Most (75%) HHM assays do not sequence CHEK2, the gene most frequently mutated in HHMs, and 25% of HHM assays does not sequence DDX41, the second most frequent HHM driver. The quality of HHM diagnostic assays stagnated despite the discovery of novel HHM-related genes and prior work demonstrating heterogeneity in the quality of HHM testing. Most commercially available HHM tests remain insufficient.
Collapse
Affiliation(s)
- Gregory W. Roloff
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Timothy E. O’Connor
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Feighanne Hathaway
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Michael W. Drazer
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Calvo KR, Hickstein DD. The spectrum of GATA2 deficiency syndrome. Blood 2023; 141:1524-1532. [PMID: 36455197 PMCID: PMC10082373 DOI: 10.1182/blood.2022017764] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited or de novo germ line heterozygous mutations in the gene encoding the transcription factor GATA2 lead to its deficiency. This results in a constellation of clinical features including nontuberculous mycobacterial, bacterial, fungal, and human papillomavirus infections, lymphedema, pulmonary alveolar proteinosis, and myelodysplasia. The onset, or even the presence, of disease is highly variable, even in kindreds with the identical mutation in GATA2. The clinical manifestations result from the loss of a multilineage progenitor that gives rise to B lymphocytes, monocytes, natural killer cells, and dendritic cells, leading to cytopenias of these lineages and subsequent infections. The bone marrow failure is typically characterized by hypocellularity. Dysplasia may either be absent or subtle but typically evolves into multilineage dysplasia with prominent dysmegakaryopoiesis, followed in some instances by progression to myeloid malignancies, specifically myelodysplastic syndrome, acute myelogenous leukemia, and chronic myelomonocytic leukemia. The latter 3 malignancies often occur in the setting of monosomy 7, trisomy 8, and acquired mutations in ASXL1 or in STAG2. Importantly, myeloid malignancy may represent the primary presentation of disease without recognition of other syndromic features. Allogeneic hematopoietic stem cell transplantation (HSCT) results in reversal of the phenotype. There remain important unanswered questions in GATA2 deficiency, including the following: (1) Why do some family members remain asymptomatic despite harboring deleterious mutations in GATA2? (2) What are the genetic changes that lead to myeloid progression? (3) What causes the apparent genetic anticipation? (4) What is the role of preemptive HSCT?
Collapse
Affiliation(s)
- Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency – Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Kotmayer L, Romero‐Moya D, Marin‐Bejar O, Kozyra E, Català A, Bigas A, Wlodarski MW, Bödör C, Giorgetti A. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol 2022; 199:482-495. [PMID: 35753998 PMCID: PMC9796058 DOI: 10.1111/bjh.18330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Damia Romero‐Moya
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Oskar Marin‐Bejar
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Albert Català
- Department of Hematology and OncologyInstitut de Recerca Sant Joan de DéuHospital Sant Joan de DeuBarcelonaSpain,Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
| | - Anna Bigas
- Cancer Research ProgramInstitut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del MarBarcelonaSpain,Josep Carreras Research Institute (IJC), BadalonaBarcelonaSpain
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain,Fondazione Pisana Per la Scienza ONLUS (FPS)San Giuliano TermeItaly,Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health SciencesBarcelona UniversityBarcelonaSpain
| |
Collapse
|
5
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
6
|
Bi L, Ma T, Li X, Wei L, Liu Z, Feng B, Dong B, Chen X. New progress in the study of germline susceptibility genes of myeloid neoplasms. Oncol Lett 2021; 21:317. [PMID: 33692849 PMCID: PMC7933751 DOI: 10.3892/ol.2021.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
In 2016, the World Health Organization incorporated ‘myeloid neoplasms with germline predisposition’ into its classification of tumors of hematopoietic and lymphoid tissues, revealing the important role of germline mutations in certain myeloid neoplasms, particularly myelodysplastic syndrome and acute myeloid leukemia. The awareness of germline susceptibility has increased, and some patients with myeloid neoplasms present with a preexisting disorder or organ dysfunction. In such cases, mutations in genes including CCAAT enhancer binding protein α (CEBPA), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), RUNX family transcription factor 1 (RUNX1), GATA binding protein 2 (GATA2), Janus kinase 2 (JAK2) and ETS variant transcription factor 6 (ETV6) have been recognized. Moreover, with the application of advanced technologies and reports of more cases, additional germline mutations associated with myeloid neoplasms have been identified and provide insights into the formation, prognosis and therapy of myeloid neoplasms. The present review discusses the well-known CEBPA, DDX41, RUNX1, GATA2, JAK2 and ETV6 germline mutations, and other mutations including those of lymphocyte adapter protein/SH2B adapter protein 3 and duplications of autophagy related 2B, GSK3B interacting protein αnd RB binding protein 6, ubiquitin ligase, that remain to be confirmed or explored. Recommendations for the management of diseases associated with germline mutations are also provided.
Collapse
Affiliation(s)
- Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianyuan Ma
- Department of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xu Li
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lai Wei
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zinuo Liu
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bingyue Feng
- College of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,Hematology and Oncology Center, Affiliated Hospital of Northwest University and Xian No. 3 Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
7
|
Le Y. Screening and identification of key candidate genes and pathways in myelodysplastic syndrome by bioinformatic analysis. PeerJ 2019; 7:e8162. [PMID: 31803541 PMCID: PMC6886488 DOI: 10.7717/peerj.8162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous hematologic malignancy derived from hematopoietic stem cells and the molecular mechanism of MDS remains unclear. This study aimed to elucidate potential markers of diagnosis and prognosis of MDS. The gene expression profiles GSE19429 and GSE58831 were obtained and downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in MDS were screened using GEO2R and overlapped DEGs were obtained with Venn Diagrams. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analyses, protein–protein interaction network establishment and survival analyses were performed. Functional enrichment analysis indicated that these DEGs were significantly enriched in the interferon signaling pathway, immune response, hematopoietic cell lineage and the FOXO signaling pathway. Four hub genes and four significant modules including 25 module genes were obtained via Cytoscape MCODE. Survival analysis showed that the overall survival of MDS patients having BLNK, IRF4, IFITM1, IFIT1, ISG20, IFI44L alterations were worse than that without alterations. In conclusion, the identification of these genes and pathways helps understand the underlying molecular mechanisms of MDS and provides candidate targets for the diagnosis and prognosis of MDS.
Collapse
Affiliation(s)
- Ying Le
- Department of Hematology, Maoming People's Hospital, Maoming, Guangdong, China
| |
Collapse
|