1
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2024. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Mason CE, Green J, Adamopoulos KI, Afshin EE, Baechle JJ, Basner M, Bailey SM, Bielski L, Borg J, Borg J, Broddrick JT, Burke M, Caicedo A, Castañeda V, Chatterjee S, Chin CR, Church G, Costes SV, De Vlaminck I, Desai RI, Dhir R, Diaz JE, Etlin SM, Feinstein Z, Furman D, Garcia-Medina JS, Garrett-Bakelman F, Giacomello S, Gupta A, Hassanin A, Houerbi N, Irby I, Javorsky E, Jirak P, Jones CW, Kamal KY, Kangas BD, Karouia F, Kim J, Kim JH, Kleinman AS, Lam T, Lawler JM, Lee JA, Limoli CL, Lucaci A, MacKay M, McDonald JT, Melnick AM, Meydan C, Mieczkowski J, Muratani M, Najjar D, Othman MA, Overbey EG, Paar V, Park J, Paul AM, Perdyan A, Proszynski J, Reynolds RJ, Ronca AE, Rubins K, Ryon KA, Sanders LM, Glowe PS, Shevde Y, Schmidt MA, Scott RT, Shirah B, Sienkiewicz K, Sierra MA, Siew K, Theriot CA, Tierney BT, Venkateswaran K, Hirschberg JW, Walsh SB, Walter C, Winer DA, Yu M, Zea L, Mateus J, Beheshti A. A second space age spanning omics, platforms and medicine across orbits. Nature 2024; 632:995-1008. [PMID: 38862027 DOI: 10.1038/s41586-024-07586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| | | | - Konstantinos I Adamopoulos
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National University of Athens, Athens, Greece
| | - Evan E Afshin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jordan J Baechle
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luca Bielski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Josef Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Jared T Broddrick
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Marissa Burke
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Verónica Castañeda
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
| | | | - Christopher R Chin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Rajeev I Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Raja Dhir
- Seed Health, Venice, CA, USA
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Juan Esteban Diaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sofia M Etlin
- Department of Astrobiology, Cornell University, New York, NY, USA
| | - Zachary Feinstein
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Argentina
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Francine Garrett-Bakelman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Amira Hassanin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nadia Houerbi
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Future of Life Institute, Campbell, CA, USA
| | - Peter Jirak
- Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Hospital Gmünd, Lower Austria, Austria
| | - Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Khaled Y Kamal
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
- Department of Kinesiology, Iowa State University, Ames, USA
| | - Brian D Kangas
- Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Fathi Karouia
- Blue Marble Institute of Science, Exobiology Branch NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- BioServe Space Technologies, Smead Aerospace Engineering Science Department, University of Colorado Boulder, Boulder, CO, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Joo Hyun Kim
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Try Lam
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John M Lawler
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Jessica A Lee
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C., USA
| | - Ari M Melnick
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jakub Mieczkowski
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Deena Najjar
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Mariam A Othman
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, New York, NY, USA
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Jiwoon Park
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Adrian Perdyan
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Robert J Reynolds
- University of Texas Medical Branch, Galveston, TX, USA
- KBR, Inc., Houston, TX, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Wake Forest Medical School, Dept of Obstetrics and Gynecology, Winston-Salem, NC, USA
| | | | - Krista A Ryon
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Yash Shevde
- Ursa Biotechnology Corporation, Ursa Bio, New York, NY, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Braden T Tierney
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Claire Walter
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Min Yu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luis Zea
- Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA
- Jaguar Space, LLC, Erie, CO, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|