1
|
Gargiulo L, Mele G, Izzo LG, Romano LE, Aronne G. Local mapping of root orientation traits by X-ray micro-CT and 3d image analysis: A study case on carrot seedlings grown in simulated vs real weightlessness. PLANT METHODS 2024; 20:150. [PMID: 39342217 PMCID: PMC11439289 DOI: 10.1186/s13007-024-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Root phenotyping is particularly challenging because of complexity and inaccessibility of root apparatus. Orientation is one of the most important architectural traits of roots and its characterization is generally addressed using multiple approaches often based on overall measurements which are difficult to correlate to plant specific physiological aspects and its genetic features. Hence, a 3D image analysis approach, based on the recent method of Straumit, is proposed in this study to obtain a local mapping of root angles. RESULTS Proposed method was applied here on radicles of carrot seedlings grown in real weightlessness on the International Space Station (ISS) and on Earth simulated weightlessness by clinorotation. A reference experiment in 1 g static condition on Earth was also performed. Radicles were imaged by X-ray micro-CT and two novel root orientation traits were defined: the "root angle to sowing plane" (RASP) providing accurate angle distributions for each analysed radicle and the "root orientation changes" (ROC) number. The parameters of the RASP distributions and the ROC values did not exhibit any significant difference in orientation between radicles grown under clinorotation and on the ISS. Only a slight thickening in root corners was found in simulated vs real weightlessness. Such results showed that a simple uniaxial clinostat can be an affordable analog in experimental studies reckoning on weightless radicles growth. CONCLUSIONS The proposed local orientation mapping approach can be extended also to different root systems providing a contribution in the challenging task of phenotyping complex and important plant structures such as roots.
Collapse
Affiliation(s)
- L Gargiulo
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Portici, Italy
| | - G Mele
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Portici, Italy.
| | - L G Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - L E Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - G Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Romano LE, van Loon JJWA, Izzo LG, Iovane M, Aronne G. Effects of altered gravity on growth and morphology in Wolffia globosa implications for bioregenerative life support systems and space-based agriculture. Sci Rep 2024; 14:410. [PMID: 38172193 PMCID: PMC10764921 DOI: 10.1038/s41598-023-49680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding the response of plants to varied gravitational conditions is vital for developing effective food production in space bioregenerative life support systems. This study examines the impact of altered gravity conditions on the growth and morphological responses of Wolffia globosa (commonly known as "water lentils" or "duckweed"), assessing its potential as a space crop. Although an experiment testing the effect of simulated microgravity on Wolffia globosa has been previously conducted, for the first time, we investigated the effect of multiple gravity levels on the growth and morphological traits of Wolffia globosa plants. The plant responses to simulated microgravity, simulated partial gravity (Moon), and hypergravity environments were evaluated using random positioning machines and the large-diameter centrifuge. As hypothesized, we observed a slight reaction to different gravitational levels in the growth and morphological traits of Wolffia globosa. The relative growth rates (RGR) of plants subjected to simulated microgravity and partial gravity were reduced when compared to those in other gravity levels. The morphological analysis revealed differences in plant dimensions and frond length-to-width ratios under diverse gravity conditions. Our findings showed that Wolffia globosa is responsive to gravitational changes, with its growth and morphological adaptations being slightly influenced by varying gravitational environments. As for other crop species, growth was reduced by the microgravity conditions; however, RGR remained substantial at 0.33 a day. In conclusion, this study underscores the potential of Wolffia globosa as a space crop and its adaptability to diverse gravitational conditions, contributing to the development of sustainable food production and bioregenerative life support systems for future space exploration missions.
Collapse
Affiliation(s)
- Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Jack J W A van Loon
- Department Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences and Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- TEC-MMG-LIS Lab, European Space Agency (ESA) Technology Center (ESTEC), Noordwijk, The Netherlands
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
3
|
Retzer K, Weckwerth W. Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1154088. [PMID: 37008498 PMCID: PMC10060999 DOI: 10.3389/fpls.2023.1154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Roots are sensors evolved to simultaneously respond to manifold signals, which allow the plant to survive. Root growth responses, including the modulation of directional root growth, were shown to be differently regulated when the root is exposed to a combination of exogenous stimuli compared to an individual stress trigger. Several studies pointed especially to the impact of the negative phototropic response of roots, which interferes with the adaptation of directional root growth upon additional gravitropic, halotropic or mechanical triggers. This review will provide a general overview of known cellular, molecular and signalling mechanisms involved in directional root growth regulation upon exogenous stimuli. Furthermore, we summarise recent experimental approaches to dissect which root growth responses are regulated upon which individual trigger. Finally, we provide a general overview of how to implement the knowledge gained to improve plant breeding.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Molecular Systems Biology (MoSys), University of Vienna, Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Wien, Austria
| |
Collapse
|
4
|
Su SH, Moen A, Groskopf RM, Baldwin KL, Vesperman B, Masson PH. Low-Speed Clinorotation of Brachypodium distachyon and Arabidopsis thaliana Seedlings Triggers Root Tip Curvatures That Are Reminiscent of Gravitropism. Int J Mol Sci 2023; 24:1540. [PMID: 36675054 PMCID: PMC9861679 DOI: 10.3390/ijms24021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Alexander Moen
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Rien M. Groskopf
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | | | - Brian Vesperman
- Kate Baldwin LLC, Analytical Design, Cross Plains, WI 53528, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
5
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|
6
|
Lacek J, García-González J, Weckwerth W, Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int J Mol Sci 2021; 22:12784. [PMID: 34884591 PMCID: PMC8657594 DOI: 10.3390/ijms222312784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
Collapse
Affiliation(s)
- Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
| |
Collapse
|