1
|
Sun Q, Jin C. Cell signaling and epigenetic regulation of nicotine-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123426. [PMID: 38295934 PMCID: PMC10939829 DOI: 10.1016/j.envpol.2024.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/22/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Nicotine, a naturally occurring tobacco alkaloid responsible for tobacco addiction, has long been considered non-carcinogenic. However, emerging evidence suggests that nicotine may possess carcinogenic properties in mice and could be a potential carcinogen in humans. This review aims to summarize the potential molecular mechanisms underlying nicotine-induced carcinogenesis, with a specific focus on epigenetic regulation and the activation of nicotinic acetylcholine receptors (nAChRs) in addition to genotoxicity and excess reactive oxygen species (ROS). Additionally, we explore a novel hypothesis regarding nicotine's carcinogenicity involving the downregulation of stem-loop binding protein (SLBP), a critical regulator of canonical histone mRNA, and the polyadenylation of canonical histone mRNA. By shedding light on these mechanisms, this review underscores the need for further research to elucidate the carcinogenic potential of nicotine and its implications for human health.
Collapse
Affiliation(s)
- Qi Sun
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110013, China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Chunyuan Jin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10010, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Development of a liquid-based cytology method for detecting cervical cancer cells using functional gold nanorods. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Riudavets M, Garcia de Herreros M, Besse B, Mezquita L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers (Basel) 2022; 14:cancers14133142. [PMID: 35804914 PMCID: PMC9264880 DOI: 10.3390/cancers14133142] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Radon represents the main risk factor of lung cancer in non-smokers and the second one in smoking patients. In Europe, there are several radon-prone areas, but regulatory policies may vary between countries. Radon causes DNA damage and high genomic tumor instability, but its exact carcinogenesis mechanism in lung cancer remains unknown. Molecular drivers in NSCLC are more often described in non-smoker patients and a potential association between radon exposure and oncogenic-driven NSCLC has been postulated. This is an updated review on indoor radon exposure and its role in lung cancer carcinogenesis, especially focusing on its potential relation with NSCLC with driver genomic alterations. We want to contribute to rising knowledge and awareness on this still silent but preventable lung cancer risk factor. Abstract Lung cancer is a public health problem and the first cause of cancer death worldwide. Radon is a radioactive gas that tends to accumulate inside homes, and it is the second lung cancer risk factor after smoking, and the first one in non-smokers. In Europe, there are several radon-prone areas, and although the 2013/59 EURATOM directive is aimed to regulate indoor radon exposition, regulating measures can vary between countries. Radon emits alpha-ionizing radiation that has been linked to a wide variety of cytotoxic and genotoxic effects; however, the link between lung cancer and radon from the genomic point of view remains poorly described. Driver molecular alterations have been recently identified in non-small lung cancer (NSCLC), such as somatic mutations (EGFR, BRAF, HER2, MET) or chromosomal rearrangements (ALK, ROS1, RET, NTRK), mainly in the non-smoking population, where no risk factor has been identified yet. An association between radon exposure and oncogenic NSCLC in non-smokers has been hypothesised. This paper provides a practical, concise and updated review on the implications of indoor radon in lung cancer carcinogenesis, and especially of its potential relation with NSCLC with driver genomic alterations.
Collapse
Affiliation(s)
- Mariona Riudavets
- Medical Oncology Department, Gustave Roussy Cancer Campus, University Paris-Saclay, F-94800 Villejuif, France;
| | - Marta Garcia de Herreros
- Medical Oncology Department Hospital Clínic i Provincial de Barcelona, IDIBAPS, 08036 Barcelona, Spain; (M.G.d.H.); (L.M.)
| | - Benjamin Besse
- Medical Oncology Department, Gustave Roussy Cancer Campus, University Paris-Saclay, F-94800 Villejuif, France;
- Correspondence:
| | - Laura Mezquita
- Medical Oncology Department Hospital Clínic i Provincial de Barcelona, IDIBAPS, 08036 Barcelona, Spain; (M.G.d.H.); (L.M.)
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
4
|
Wu D, Tan H, Su W, Cheng D, Wang G, Wang J, Ma DA, Dong GM, Sun P. MZF1 mediates oncogene-induced senescence by promoting the transcription of p16 INK4A. Oncogene 2022; 41:414-426. [PMID: 34773072 PMCID: PMC8758531 DOI: 10.1038/s41388-021-02110-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Oncogene induced senescence is a tumor suppressing defense mechanism, in which the cell cycle-dependent protein kinase (CDK) inhibitor p16INK4A (encoded by the CDKN2A gene) plays a key role. We previously reported that a transcriptional co-activator chromodomain helicase DNA binding protein 7 (CHD7) mediates oncogenic ras-induced senescence by inducing transcription of the p16INK4A gene. In the current study, we identified myeloid zinc finger 1 (MZF1) as the transcriptional factor that recruits CHD7 to the p16INK4A promoter, where it mediates oncogenic ras-induced p16INK4A transcription and senescence through CHD7, in primary human cells from multiple origins. Moreover, the expression of MZF1 is induced by oncogenic ras in senescent cells through the c-Jun and Ets1 transcriptional factors upon their activation by the Ras-Raf-1-MEK-ERK signaling pathway. In non-small cell lung cancer (NSCLC) and pancreatic adenocarcinoma (PAAD) where activating ras mutations occur frequently, reduced MZF1 expression is observed in tumors, as compared to corresponding normal tissues, and correlates with poor patient survival. Analysis of single cell RNA-sequencing data from PAAD patients revealed that among the tumor cells with normal RB expression levels, those with reduced levels of MZF1 are more likely to express lower p16INK4A levels. These findings have identified novel signaling components in the pathway that mediates induction of the p16INK4A tumor suppressor and the senescence response, and suggested that MZF1 is a potential tumor suppressor in at least some cancer types, the loss of which contributes to the inactivation of the p16INK4A/RB pathway and disruption of senescence in tumor cells with intact RB.
Collapse
Affiliation(s)
- Dan Wu
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Hua Tan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weijun Su
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Guanwen Wang
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA,Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA,Nankai University School of Medicine, Tianjin, China
| | - Ding A. Ma
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - George M. Dong
- Departments of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Peiqing Sun
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-, Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Zhou Y, Höti N, Ao M, Zhang Z, Zhu H, Li L, Askin F, Gabrielson E, Zhang H, Li QK. Expression of p16 and p53 in non-small-cell lung cancer: clinicopathological correlation and potential prognostic impact. Biomark Med 2019; 13:761-771. [PMID: 31157548 DOI: 10.2217/bmm-2018-0441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: p16 and p53 are frequently altered intracellular pathways in cancers. We investigated the aberrant expression of p16 and its relationship with p53 and HPV status in primary non-small-cell lung carcinoma. Patients & methods: Lung tumor tissue microarray (n = 163), immunohistochemical study of p16 and p53, and HPV in-situ hybridization were analyzed. Results: p16 and p53 were detected in 50.7 and 57.3% of adenocarcinoma (ADCs; n = 75), and 35.2 and 63.6% of squamous cell carcinoma (n = 88). HPV was detected in 16 and 10.2% of ADC and squamous cell carcinoma. In ADCs, p16 positive tumors demonstrated a favorable median overall survival time of 60.9 months, compared with p16 negative tumors of 46.9 months (p < 0.05). Furthermore, we did not find significant relationships between p16 expression and HPV status, nor with p53 expression. Conclusion: p16 play an unique role in lung cancer survival. The mechanism of p16 needs to be further studied.
Collapse
Affiliation(s)
- Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, PR China.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ling Li
- Department of Pathology, School of Basic Medical Science, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Frederic Askin
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.,Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Zhao H, Zhang X, Han Z, Wang Y. Circulating anti-p16a IgG autoantibodies as a potential prognostic biomarker for non-small cell lung cancer. FEBS Open Bio 2018; 8:1875-1881. [PMID: 30410866 PMCID: PMC6212647 DOI: 10.1002/2211-5463.12535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
It has been reported that p16 protein is overexpressed in many types of solid cancer and its aberrant expression may trigger the immune response, leading to the secretion of anti‐p16 antibodies. Here, we developed an in‐house ELISA with three p16‐derived linear peptide antigens to examine plasma anti‐p16 antibody levels in patients with non‐small cell lung cancer (NSCLC). Blood samples were taken from 200 control subjects and 211 patients with NSCLC prior to anticancer therapy. A Mann–Whitney U test demonstrated that plasma anti‐p16a IgG levels were significantly higher in NSCLC patients than in control subjects (Z = −11.14, P < 0.001). However, neither plasma anti‐p16b nor plasma anti‐p16c IgG levels showed significant differences in patients with NSCLC as compared to control subjects. Moreover, further analysis indicated that anti‐p16a IgG levels increased with tumor stages, and patients with late stage NSCLC, namely group IV, had the highest IgG levels among four subgroups. Receiver operating characteristic analysis revealed that the anti‐p16a IgG assay had a sensitivity of 32.7% against a specificity of 95.0% in group IV, while Kaplan–Meier survival analysis revealed no significant difference in overall survival between patients with high anti‐p16a IgG levels and those with low anti‐p16a IgG levels (χ2 = 0.24, P = 0.63). In conclusion, anti‐p16a IgG may be suitable for use as a prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Huan Zhao
- Second Hospital of Jilin University Changchun China
| | - Xuan Zhang
- Second Hospital of Jilin University Changchun China
| | - Zhifeng Han
- Department of Thoracic Surgery China-Japan Union Hospital Jilin University Changchun China
| | - Yanjun Wang
- Second Hospital of Jilin University Changchun China
| |
Collapse
|
7
|
Du X, Qi F, Lu S, Li Y, Han W. Nicotine upregulates FGFR3 and RB1 expression and promotes non-small cell lung cancer cell proliferation and epithelial-to-mesenchymal transition via downregulation of miR-99b and miR-192. Biomed Pharmacother 2018. [PMID: 29518612 DOI: 10.1016/j.biopha.2018.02.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tobacco smoke is by far the greatest risk factor for non-small-cell lung cancer (NSCLC). Nicotine, an active alkaloid in tobacco, is unable to initiate tumorigenesis in humans and rodents, but can promote the growth and metastasis of various tumors, including NSCLC, initiated by tobacco carcinogens. Recently, cigarette smoke is reported to downregulate 24 miRNAs more than 3-fold in the lungs of rats, and most of these downregulated miRNAs are associated with NSCLC initiation and development. Nicotine as the major tobacco component might be associated with the expression changes of some miRNAs. METHODS qRT-PCR was performed to determine the miRNA and mRNA expression, and western blot was conducted to measure protein expression. MTT assay was used to detect cell proliferation. RESULTS The effects of nicotine on the expression of 24 miRNAs in NSCLC cell lines were determined, and the results showed that nicotine treatment decreased miR-99b and miR-192 expression. Cell proliferation and epithelial-to-mesenchymal transition (EMT) detection showed that nicotine promoted NSCLC cell proliferation and EMT, and restoration of miR-99b or miR-192 expression relieved the effects of nicotine on NSCLC cell proliferation and EMT. Subsequently, fibroblast growth factor receptor 3 (FGFR3) and retinoblastoma 1 (RB1) were confirmed to be the targets of miR-99b and miR-192, respectively, and were upregulated by nicotine in NSCLC cells. In addition, FGFR3 or RB1 knockdown inhibited NSCLC cell proliferation and EMT. CONCLUSION This study, for the first time, elucidates nicotine-miR-99b/miR-192-FGFR3/RB1 regulatory network that nicotine promotes NSCLC cell proliferation and EMT by downregulating miR-99b and miR-192, and upregulating their targets FGFR3 and RB1. These findings offer novel insights into the understanding of underlying molecular mechanisms of NSCLC related with the nicotine effects.
Collapse
Affiliation(s)
- Xuemei Du
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
| | - Fei Qi
- Department of Health Education, Qingdao Center for Disease Control and Prevention, Qingdao 266033, China
| | - Sheyu Lu
- Department of Health Education, Laoshan District Center for Disease Control and Prevention, Qingdao 266071, China
| | - Yongchun Li
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China.
| | - Wei Han
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China.
| |
Collapse
|
8
|
Loss of pRB in Conjunctival Squamous Cell Carcinoma: A Predictor of Poor Prognosis. Appl Immunohistochem Mol Morphol 2018; 26:e70-e76. [PMID: 29489511 DOI: 10.1097/pai.0000000000000592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conjunctival squamous cell carcinoma (SCC) is the most common tumor of conjunctival epithelium. It is associated with risk of permanent visual impairment and has the capability to recur, metastasize, and cause death. Deregulation of cell cycle control has been reported in a number of malignancies. The aim of the present study was to assess expression of G1/S cell cycle regulatory proteins [retinoblastoma protein (pRb)/P16/cyclin D1] in conjunctival SCC. Forty-four prospective cases of conjunctival SCC from a tertiary eye care referral center in northern India were included in this study. American Joint Committee on Cancer (AJCC) staging was performed and patients were followed up for 46±3.2 months. pRb loss was seen in 87% and overexpression of p16 and cyclin D1 in 36% and 66%, respectively. Kaplan-Meier analysis revealed reduced disease-free survival in patients with pRb loss (P=0.006). On univariate analysis, pRb loss (P=0.02), orbital invasion (P=0.03), and AJCC stage ≥T3 (P=0.03) emerged as significant high-risk features. On multivariate analysis pRb loss emerged as the most significant poor prognostic indicator in conjunctival SCC cases. Our findings suggest pRb loss to be a useful indicator of aggressive behavior and is recommended for identifying high-risk conjunctival SCC patients.
Collapse
|
9
|
Pei W, Tao L, Zhang LW, Zhang S, Cao J, Jiao Y, Tong J, Nie J. Circular RNA profiles in mouse lung tissue induced by radon. Environ Health Prev Med 2017; 22:36. [PMID: 29165116 PMCID: PMC5664590 DOI: 10.1186/s12199-017-0627-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background Radon is a known human lung carcinogen, whose underlying carcinogenic mechanism remains unclear. Recently, circular RNA (circRNA), a class of endogenous non-protein coding RNAs that contain a circular loop, was found to exhibit multiple biological effects. In this study, circRNA profiles in mouse lung tissues between control and radon exposure were analyzed. Methods Six mice were exposed to radon at concentration of 100,000 Bq/m3, 12 h/d, for up to cumulative doses of 60 working level months (WLM). H&E staining and immunohistochemistry of caspase-3 were used to detect the damages in lung tissue. The lung tissue of control and exposed group were selected for circRNA microarray study. The circRNA/microRNA interaction was analyzed by starBase prediction software. 5 highest expressing circRNAs were selected by real-time PCR to validate the consistency in mouse lung tissue exposed to radon. Results Inflammatory reaction was found in mouse lung tissue exposed to radon, and caspase-3 expression was significantly increased. Microarray screening revealed 107 up-regulated and 83 down-regulated circRNAs, among which top 30 circRNAs with the highest fold changes were chosen for further analysis, with 5 microRNAs binding sites listed for each circRNA. Consistency of the top 5 circRNAs with the highest expressions were confirmed in mice exposed with 60WLM of radon. Conclusion Mouse lung tissue was severely injured when exposed to radon through pathological diagnosis and immunohistochemical analysis. A series of differentially expressed circRNAs demonstrated that they may play an important role in pulmonary toxicity induced by radon.
Collapse
Affiliation(s)
- Weiwei Pei
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases, Suzhou, 215123, China
| | - Lijing Tao
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases, Suzhou, 215123, China
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Jianping Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215123, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases, Suzhou, 215123, China.
| | - Jihua Nie
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases, Suzhou, 215123, China.
| |
Collapse
|
10
|
Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis 2015; 36 Suppl 1:S2-18. [PMID: 26106139 DOI: 10.1093/carcin/bgv028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
Collapse
Affiliation(s)
- Rita Nahta
- Departments of Pharmacology and Hematology & Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA, Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile, Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA, Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA, Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontari
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah N Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gloria M Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA, Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Robert C Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Karine A Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901-1914, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 980033, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Gary S Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Harini Krishnan
- Graduate School of Biomedical Sciences and Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084-1501, USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 60503, USA
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Richard Ponce-Cusi
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica 8097877, Chile
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Hosni K Salem
- Urology Dept., kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, UP 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, 90127 Palermo, Italy, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics AS CR, Brno 612 65, Czech Republic
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan 16163, Italy and
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
12
|
Wu C, Xie X, Cui F, Jiao Y, Qi D, Nie J, Hei TK, Jiang Q, Chen Q, Tong J. Radon-induced demethylation of Cdk2 CpG island in the rat lung. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Omatsu M, Kunimura T, Mikogami T, Shiokawa A, Masunaga A, Nagai T, Kitami A, Suzuki T, Kadokura M. Cyclin-dependent kinase inhibitors, p16 and p27, demonstrate different expression patterns in thymoma and thymic carcinoma. Gen Thorac Cardiovasc Surg 2014; 62:678-84. [PMID: 24938902 DOI: 10.1007/s11748-014-0437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The role of cell cycle inhibitors in tumorigenesis has been proven in various neoplasms; however, their roles in thymic tumors are still unclear. We examined the expression of cell cycle inhibitors such as those of the Cip/Kip family (p21, p27, and p57) and the INK-4/ARF family (p16 and p14) in thymoma and thymic carcinoma. METHODS Samples from 41 thymoma and 14 thymic carcinoma patients, and 34 normal thymic tissue samples were prepared for the study. Immunohistochemical analysis using antibodies to p21, p27, p57, p16, and p14 was carried out, and the positivity for these inhibitors in each group was estimated in terms of their subcellular location and percentage of cells showing positive staining. RESULTS Nuclear p27 showed a stepwise decrease (p < 0.0001), and the cytoplasmic p27 showed a stepwise increase (p < 0.0001) in expression level with the increase in malignancy. p16 in both the nucleus and cytoplasm showed a stepwise increase (p < 0.0001) in expression level with the increase in malignancy. However, as for p21, p57, and p14, there was almost no nuclear or cytoplasmic expression in each group. CONCLUSIONS Our findings suggest that low nuclear and high cytoplasmic p27 expression levels, and high nuclear and cytoplasmic p16 expression levels may correlate with the increase in thymic malignancy.
Collapse
Affiliation(s)
- Mutsuko Omatsu
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
15
|
Hubaux R, Becker-Santos DD, Enfield KSS, Lam S, Lam WL, Martinez VD. Arsenic, asbestos and radon: emerging players in lung tumorigenesis. Environ Health 2012; 11:89. [PMID: 23173984 PMCID: PMC3534001 DOI: 10.1186/1476-069x-11-89] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 05/02/2023]
Abstract
The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards.
Collapse
Affiliation(s)
- Roland Hubaux
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | | | - Katey SS Enfield
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Stephen Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Wan L Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Victor D Martinez
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
16
|
Huang T, Jiang M, Kong X, Cai YD. Dysfunctions associated with methylation, microRNA expression and gene expression in lung cancer. PLoS One 2012; 7:e43441. [PMID: 22912875 PMCID: PMC3422260 DOI: 10.1371/journal.pone.0043441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 07/23/2012] [Indexed: 12/02/2022] Open
Abstract
Integrating high-throughput data obtained from different molecular levels is essential for understanding the mechanisms of complex diseases such as cancer. In this study, we integrated the methylation, microRNA and mRNA data from lung cancer tissues and normal lung tissues using functional gene sets. For each Gene Ontology (GO) term, three sets were defined: the methylation set, the microRNA set and the mRNA set. The discriminating ability of each gene set was represented by the Matthews correlation coefficient (MCC), as evaluated by leave-one-out cross-validation (LOOCV). Next, the MCCs in the methylation sets, the microRNA sets and the mRNA sets were ranked. By comparing the MCC ranks of methylation, microRNA and mRNA for each GO term, we classified the GO sets into six groups and identified the dysfunctional methylation, microRNA and mRNA gene sets in lung cancer. Our results provide a systematic view of the functional alterations during tumorigenesis that may help to elucidate the mechanisms of lung cancer and lead to improved treatments for patients.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Min Jiang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Gene expression and epigenetic changes by furan in rat liver. Toxicology 2012; 292:63-70. [DOI: 10.1016/j.tox.2011.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 02/02/2023]
|
18
|
Zhang YQ, Bianco A, Malkinson AM, Leoni VP, Frau G, De Rosa N, André PA, Versace R, Boulvain M, Laurent GJ, Atzori L, Irminger-Finger I. BARD1: an independent predictor of survival in non-small cell lung cancer. Int J Cancer 2011; 131:83-94. [PMID: 21815143 DOI: 10.1002/ijc.26346] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022]
Abstract
BRCA1 mRNA overexpression is correlated with poor survival in NSCLC. However, BRCA1 functions depend on the interaction with BARD1 for its stability, nuclear localization and ubiquitin ligase activity. Expression of alternatively spliced BARD1 isoforms that lack the BRCA1-interaction domain was found upregulated and correlated with poor prognosis in breast and ovarian cancer. These BARD1 isoforms are essential for proliferation of cancer cells in vitro. We investigated whether BARD1 isoforms are expressed in NSCLC. While in lung tissues from healthy controls BARD1 expression was undetectable on the mRNA level and protein level, we found two novel isoforms in addition to previously identified mRNAs expressed in all NSCLC samples tested. Furthermore, the pattern of BARD1 isoform expression was similar in tumor and morphologically normal peri-tumor tissues, and only one novel isoform π was specifically upregulated in tumors. Immunohistochemistry revealed that all 100 NSCLC cases tested expressed isoform-specific BARD1 epitopes, while BARD1 expression was undetectable in biopsies from healthy controls. Statistical analysis showed that the expression of epitopes PVC and WFS, present on isoform π, or epitope WFS alone, expressed on isoforms π, κ and β, were significantly correlated with decreased patient survival. These findings were corroborated in a mouse model of chemically induced lung cancer. Immunostaining of mouse tumors showed that BARD1 epitopes PVC and WFS were specifically upregulated in invasive, but not in confined lung tumors. Thus, BARD1 isoforms might be involved in tumor initiation and invasive progression and might represent a novel prognostic marker for NSCLC.
Collapse
Affiliation(s)
- Yong-Qiang Zhang
- Molecular Gynecology and Obstetrics Laboratory, Department of Gynecology and Obstetrics, University Hospitals Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hadj-Hamou NS, Ugolin N, Ory C, Britzen-Laurent N, Sastre-Garau X, Chevillard S, Malfoy B. A transcriptome signature distinguished sporadic from postradiotherapy radiation-induced sarcomas. Carcinogenesis 2011; 32:929-34. [PMID: 21470956 DOI: 10.1093/carcin/bgr064] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to ionizing radiation is a known risk factor for cancer. However, up to now, rigorously defined scientific criteria that could establish case-by-case the radiation-induced (RI) origin of a tumour have been lacking. To identify genes that could constitute a RI signature, we compared the transcriptome of 12 sarcomas arising in the irradiation field of a primary tumour following radiotherapy with the transcriptome of 12 sporadic sarcomas. This learning/training set contained four leiomyosarcomas, four osteosarcomas and four angiosarcomas in each subgroup. We identified a signature of 135 genes discriminating RI from sporadic sarcomas. The robustness of this signature was tested by the blind case-by-case classification of an independent set of 36 sarcomas of various histologies. Thirty-one sarcomas were classified as RI or sporadic; it was not possible to propose an aetiology for the five others. After the code break, it was found that one sporadic sarcoma was misclassified as RI. Thus, the signature is robust with a sensitivity of 96%, a positive and a negative predictive value of 96 and 100%, respectively and a specificity of 62%. The functions of the genes of the signature suggest that RI sarcomas were subject to chronic oxidative stress probably due to mitochondrial dysfunction.
Collapse
|
20
|
Romagosa C, Simonetti S, López-Vicente L, Mazo A, Lleonart ME, Castellvi J, Ramon y Cajal S. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 2011; 30:2087-97. [PMID: 21297668 DOI: 10.1038/onc.2010.614] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
p16(Ink4a) is a protein involved in regulation of the cell cycle. Currently, p16(Ink4a) is considered a tumor suppressor protein because of its physiological role and downregulated expression in a large number of tumors. Intriguingly, overexpression of p16(Ink4a) has also been described in several tumors. This review attempts to elucidate when and why p16(Ink4a) overexpression occurs, and to suggest possible implications of p16(Ink4a) in the diagnosis, prognosis and treatment of cancer.
Collapse
Affiliation(s)
- C Romagosa
- Pathology Department, Fundació Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Ory C, Ugolin N, Levalois C, Lacroix L, Caillou B, Bidart JM, Schlumberger M, Diallo I, de Vathaire F, Hofman P, Santini J, Malfoy B, Chevillard S. Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr Relat Cancer 2011; 18:193-206. [PMID: 21148326 PMCID: PMC3023880 DOI: 10.1677/erc-10-0205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both external and internal exposure to ionizing radiation are strong risk factors for the development of thyroid tumors. Until now, the diagnosis of radiation-induced thyroid tumors has been deduced from a network of arguments taken together with the individual history of radiation exposure. Neither the histological features nor the genetic alterations observed in these tumors have been shown to be specific fingerprints of an exposure to radiation. The aim of our work is to define ionizing radiation-related molecular specificities in a series of secondary thyroid tumors developed in the radiation field of patients treated by radiotherapy. To identify molecular markers that could represent a radiation-induction signature, we compared 25K microarray transcriptome profiles of a learning set of 28 thyroid tumors, which comprised 14 follicular thyroid adenomas (FTA) and 14 papillary thyroid carcinomas (PTC), either sporadic or consecutive to external radiotherapy in childhood. We identified a signature composed of 322 genes which discriminates radiation-induced tumors (FTA and PTC) from their sporadic counterparts. The robustness of this signature was further confirmed by blind case-by-case classification of an independent set of 29 tumors (16 FTA and 13 PTC). After the histology code break by the clinicians, 26/29 tumors were well classified regarding tumor etiology, 1 was undetermined, and 2 were misclassified. Our results help shed light on radiation-induced thyroid carcinogenesis, since specific molecular pathways are deregulated in radiation-induced tumors.
Collapse
MESH Headings
- Adenoma/diagnosis
- Adenoma/etiology
- Adenoma/genetics
- Adolescent
- Adult
- Age Factors
- Carcinoma, Papillary/diagnosis
- Carcinoma, Papillary/etiology
- Carcinoma, Papillary/genetics
- Child
- Child, Preschool
- Diagnosis, Differential
- Dose-Response Relationship, Radiation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Radiation-Induced/diagnosis
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Oligonucleotide Array Sequence Analysis
- Radiotherapy/adverse effects
- Radiotherapy Dosage
- Single-Blind Method
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/etiology
- Thyroid Neoplasms/genetics
- Young Adult
Collapse
Affiliation(s)
- Catherine Ory
- CEA, DSV, IRCM, LCE, BP6, Fontenay-aux-Roses F-92265, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Biala A, Tauriainen E, Siltanen A, Shi J, Merasto S, Louhelainen M, Martonen E, Finckenberg P, Muller DN, Mervaala E. Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes. Blood Press 2010; 19:196-205. [PMID: 20429690 DOI: 10.3109/08037051.2010.481808] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is compelling evidence to indicate an important role for increased local renin-angiotensin system activity in the pathogenesis of cardiac hypertrophy and heart failure. Resveratrol is a natural polyphenol that activates SIRT1, a novel cardioprotective and longevity factor having NAD(+)-dependent histone deacetylase activity. We tested the hypothesis whether resveratrol could prevent from angiotensin II (Ang II)-induced cardiovascular damage. Four-week-old double transgenic rats harboring human renin and human angiotensinogen genes (dTGR) were treated for 4 weeks either with SIRT1 activator resveratrol or SIRT1 inhibitor nicotinamide. Untreated dTGR and their normotensive Sprague-Dawley control rats (SD) received vehicle. Untreated dTGR developed severe hypertension as well as cardiac hypertrophy, and showed pronounced cardiovascular mortality compared with normotensive SD rats. Resveratrol slightly but significantly decreased blood pressure, ameliorated cardiac hypertrophy and prevented completely Ang II-induced mortality, whereas nicotinamide increased blood pressure without significantly influencing cardiac hypertrophy or survival. Resveratrol decreased cardiac ANP mRNA expression and induced cardiac mRNA expressions of mitochondrial biogenesis markers peroxisome proliferator-activated receptor-gamma coactivator (PGC-1alpha), mitochondrial transcription factor (Tfam), nuclear respiratory factor 1 (NRF-1) and cytochrome c oxidase subunit 4 (cox4). Resveratrol dose-dependently increased SIRT1 activity in vitro. Our findings suggest that the beneficial effects of SIRT1 activator resveratrol on Ang II-induced cardiac remodeling are mediated by blood pressure-dependent pathways and are linked to increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Agnieszka Biala
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Louhelainen M, Merasto S, Finckenberg P, Vahtola E, Kaheinen P, Levijoki J, Mervaala E. Effects of the calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic Goto-Kakizaki rats. Br J Pharmacol 2010; 160:142-52. [PMID: 20412071 DOI: 10.1111/j.1476-5381.2010.00680.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan is a novel, short half-life calcium sensitizer used as pharmacological inotropic support in acute decompensated heart failure. After oral administration, levosimendan is metabolized to OR-1855, which, in rats, is further metabolized into OR-1896. OR-1896 is a long-lasting metabolite of levosimendan sharing the pharmacological properties of the parent compound. EXPERIMENTAL APPROACH Effects of oral OR-1896 treatment on post-infarct heart failure and cardiac remodelling were assessed in diabetic Goto-Kakizaki (GK) rats, an animal model of type II diabetes. Myocardial infarction (MI) was produced to GK rats by coronary ligation. Twenty-four hours after MI or sham operation, the rats were randomized into four groups: (i) MI; (ii) MI + OR-1896 treatment; (iii) sham; and (iv) sham + OR-1896. Cardiac function and markers of cardiac remodelling were assessed 1, 4 and 12 weeks after MI. KEY RESULTS OR-1896 increased ejection fraction and fractional shortening in GK rats with MI. OR-1896 ameliorated post-infarct cardiac hypertrophy, and prevented the MI-induced increase in cardiac mRNA for atrial natriuretic peptide, monocyte chemoattractant protein-1 and connective tissue growth factor, markers of pressure/volume overload, inflammation and fibrosis respectively. OR-1896 also suppressed mRNA for senescence-associated p16(INK4A) and p19(ARF). The beneficial effects of OR-1896 were more prominent at week 12 than at week 4. OR-1896 did not influence systolic blood pressure, blood glucose level, myocardial infarct size or cardiovascular mortality. CONCLUSIONS AND IMPLICATIONS Oral treatment with calcium sensitizer OR-1896 protects against post-infarct heart failure and cardiac remodelling in experimental model of type II diabetes.
Collapse
Affiliation(s)
- Marjut Louhelainen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Oral levosimendan prevents postinfarct heart failure and cardiac remodeling in diabetic Goto-Kakizaki rats. J Hypertens 2010; 27:2094-107. [PMID: 19730126 DOI: 10.1097/hjh.0b013e32832f0ce4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes increases the risk for fatal myocardial infarction and development of heart failure. Levosimendan, an inodilator acting both via calcium sensitization and opening of ATP-dependent potassium channels, is used intravenously for acute decompensated heart failure. The long-term effects of oral levosimendan on postinfarct heart failure are largely unknown. OBJECTIVE To examine whether oral treatment with levosimendan could improve cardiac functions and prevent cardiac remodeling after myocardial infarction in a rodent model of type 2 diabetes, the Goto-Kakizaki rat. METHODS Myocardial infarction (MI) was induced to diabetic Goto-Kakizaki and nondiabetic Wistar rats by coronary ligation. Twenty-four hours after surgery, Goto-Kakizaki and Wistar rats were randomized into four groups: MI group without treatment, MI group with levosimendan for 12 weeks (1 mg/kg per day), sham-operated group, sham-operated group with levosimendan. Blood pressure, cardiac functions as wells as markers of cardiac remodeling were determined. RESULTS In Goto-Kakizaki rats, MI induced systolic heart failure, pronounced cardiac hypertrophy in the remote area, and sustained cardiomyocyte apoptosis. Postinfarct cardiac remodeling was associated with increased atrial natriuretic peptide, interleukin-6 and connective tissue growth factor mRNA expressions, as well as three-fold increased cardiomyocyte senescence, measured as cardiac p16 mRNA expression. Levosimendan improved cardiac function and prevented postinfarct cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and cellular senescence. Levosimendan also ameliorated MI-induced atrial natriuretic peptide, IL-6, and connective tissue growth factor overexpression as well as MI-induced disturbances in calcium-handling proteins (SERCA2, Na-Ca exchanger) without changes in diabetic status or systemic blood pressure. In nondiabetic Wistar rats, MI induced systolic heart failure; however, the postinfarct cardiac remodeling was associated with less pronounced cardiac hypertrophy, cardiomyocyte apoptosis, inflammatory reaction, and induction of cellular senescence. Levosimendan only partially prevented postinfarct heart failure and cardiac remodeling in Wistar rats. CONCLUSION Our findings suggest a therapeutic role for oral levosimendan in prevention of postinfarct heart failure and cardiac remodeling in type 2 diabetes and underscore the importance of sustained cardiomyocyte apoptosis and induction of cellular senescence in the pathogenesis.
Collapse
|
25
|
Desaulniers D, Xiao GH, Lian H, Feng YL, Zhu J, Nakai J, Bowers WJ. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol 2010; 28:294-307. [PMID: 19636072 DOI: 10.1177/1091581809337918] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA methylation is one of the epigenetic mechanisms that regulates gene expression, chromosome structure, and stability. Our objective was to determine whether the DNA methylation system could be a target following in utero and postnatal exposure to human blood contaminants. Pregnant rats were dosed daily from gestation day 1 until postnatal day 21 with 2 dose levels of either organochlorine pesticides (OCP; 0.019 or 1.9 mg/kg/day), methylmercury chloride (MeHg; 0.02 or 2 mg/kg/day), polychlorinated biphenyls (PCBs; 0.011 or 1.1 mg/kg/day), or a mixture (Mix; 0.05, or 5 mg/kg/day) including all 3 groups of chemicals. Livers from 1 female offspring per litter were collected at postnatal day 29. Hepatic analysis revealed that the mRNA abundance for DNA methyltransferase (DNMT)-1, -3a, and -3b were significantly reduced by the high dose of PCB, that the high dose of MeHg also reduced mRNA levels for DNMT-1, and -3b, but that OCP had no significant effects compared with control. The high dose of PCB and Mix reduced the abundance of the universal methyl donor S-adenosylmethionine, and Mix also reduced global genome DNA methylation (5-methyl-deoxycytidine/5-methyl-deoxycytidine + deoxycytidine). The latter is consistent with pyrosequencing methylation analysis, revealing that the high-dose groups (except OCP) generally decreased the methylation of CpG sites (position -63 to -29) in the promoter of the tumor suppressor gene p16(INK4a). Overall, these hepatic results suggest that the DNA methylation system can be affected by exposure to high doses of blood contaminants, and that OCP is the least potent chemical group from the investigated mixtures.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Health Canada, Healthy Environments and Consumer Safety Branch, Environmental Health Science and Research Bureau, Hazard Identification Division, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ruano-Ravina A, Faraldo-Vallés MJ, Barros-Dios JM. Is there a specific mutation of p53 gene due to radon exposure? A systematic review. Int J Radiat Biol 2009; 85:614-21. [DOI: 10.1080/09553000902954504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|