1
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
2
|
Ye Z, Pan J, Yin Z, Wang S, Li Y, Cai X, Zheng H, Cao Z. Dendritic cells infected with recombinant adenoviral vector encoding mouse fibroblast activation protein-α and human livin α exert an antitumor effect against Lewis lung carcinoma in mice. Immun Inflamm Dis 2023; 11:e1011. [PMID: 37773704 PMCID: PMC10523997 DOI: 10.1002/iid3.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Fibroblast activation protein-α (FAP) and livin α are considered as cancer-associated fibroblasts (CAFs) and tumor-specific targets, respectively, for immunogenic tumor vaccines. This study is designed to decipher the antitumor effect of double-gene modified dendritic cells (DCs) on Lewis lung carcinoma (LLC). METHODS By encoding mouse FAP cDNA and human livin α (i.e., hlivin α) cDNA into recombinant adenoviral vector (rAd), rAd-FAP, rAd-hlivin α, and rAd-FAP/hlivin α were constructed, which were then transduced into mouse DCs. LLC-bearinig mice were immunized with the infected DCs (5 × 105 cells/mouse), followed by calculation of tumor volume and survival rate. The identification of CAFs from mouse LLC as well as the determination on expressions of FAP and livin α, was accomplished by western blot. Cytotoxic T lymphocyte assay was harnessed to assess the effect of the infected DCs on inducing splenic lymphocytes to lyse CAFs. RESULTS DCs were successfully transduced with rAd-FAP/hlivin α in vitro. FAP was highly expressed in CAFs. CAFs were positive for α-SMA and negative for CD45 and CD31. Livin α level was upregulated in mouse LLC. Immunization with rAd-FAP/hlivin α-transduced DCs suppressed LLC volume and improved the survival of tumor-bearing mice. Immunization with rAd-FAP/hlivin α-transduced DCs enhanced the cytotoxic effect of splenic lymphocytes on LLC tumor-derived CAFs. CONCLUSION Injection with rAd-FAP/hlivin α-transduced DCs promotes immune-enhanced tumor microenvironment by decreasing CAFs and suppresses tumor growth in LLC mouse models.
Collapse
Affiliation(s)
- Zaiting Ye
- Department of RadiologyThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Jiongwei Pan
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Zhangyong Yin
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Shuanghu Wang
- Department of MedicineLishui People's HospitalLishuiZhejiangChina
| | - Yuling Li
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Xiaoping Cai
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Hao Zheng
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| | - Zhuo Cao
- Department of RespiratoryThe Sixth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangChina
| |
Collapse
|
3
|
Xie J, Yuan S, Peng L, Li H, Niu L, Xu H, Guo X, Yang M, Duan F. Antitumor immunity targeting fibroblast activation protein-α in a mouse Lewis lung carcinoma model. Oncol Lett 2020; 20:868-876. [PMID: 32566014 PMCID: PMC7285819 DOI: 10.3892/ol.2020.11637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor stromal microenvironment is an integral part of the occurrence and development of tumor. Cancer-associated fibroblasts (CAFs) are a key component of most tumor stromal microenvironments. The present study aimed to investigate the use of CAFs-targeted immunotherapy to fibroblast activation protein-α (FAP-α) expressed in CAFs. Recombinant adenoviral vectors containing the mouse FAP-α cDNA (rAd-FAP-α) were constructed. C57BL/6 mice were immunized with rAd-FAP-α infected dendritic cells (DCs) against FAP-α, which is overexpress in CAFs. The results demonstrated that mice vaccinated with rAd-FAP-α DCs gave rise to potent FAP-α-specific cytotoxic T lymphocytes capable of lysing Lewis lung cancer (LLC) CAFs. Furthermore, mice vaccinated with rAd-FAP-α-transduced DCs induced an effective therapeutic or protective antitumor immunity to LLC in a subcutaneous model, and prolonged overall survival time compared with mice vaccinated with the control recombinant adenovirus-transduced DCs (rAd-c DCs) or DCs alone. The results of the present study suggested that FAP-α, which is preferentially expressed in CAFs, may be considered as a potential target for killing or destroying CAFs within the tumor stromal microenvironment, and may be exploited to develop immunogenic tumor vaccines.
Collapse
Affiliation(s)
- Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shiyang Yuan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Laishui Peng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huanyu Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxia Niu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolin Guo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengying Duan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Zeng D, Lin J, He H, Tan G, Lan Y, Jiang F, Sheng S. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma. Oncol Lett 2018; 15:2555-2561. [PMID: 29434973 DOI: 10.3892/ol.2017.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.
Collapse
Affiliation(s)
- Dingyuan Zeng
- Department of Oncology, Maternity and Children's Hospital Affiliated to the Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Jiajing Lin
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Hongying He
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Guangping Tan
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Ying Lan
- Department of Gynecology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Fuyan Jiang
- Liuzhou Tumor Hospital, Liuzhou, Guangxi 545005, P.R. China
| | - Shuting Sheng
- Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, P.R. China
| |
Collapse
|
5
|
Markov OV, Mironova NL, Shmendel EV, Maslov MA, Zenkova MA. Systemic delivery of complexes of melanoma RNA with mannosylated liposomes activates highly efficient murine melanoma-specific cytotoxic T cells in vivo. Mol Biol 2017. [DOI: 10.1134/s0026893317010137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors. Oncol Rep 2015; 34:2289-95. [PMID: 26323510 PMCID: PMC4583529 DOI: 10.3892/or.2015.4231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Abstract
Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy.
Collapse
|
7
|
Markov OV, Mironova NL, Sennikov SV, Vlassov VV, Zenkova MA. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma. PLoS One 2015; 10:e0136911. [PMID: 26325576 PMCID: PMC4556596 DOI: 10.1371/journal.pone.0136911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless the antimetastatic effect was less effective in comparison with prophylactic DC vaccine.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Federal State Budgetary Institution "Research Institute of Clinical Immunology", Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
8
|
Xie J, Guo X, Liu F, Luo J, Duan F, Tao X. In vitro antitumor immune response induced by dendritic cells transduced with human livin α recombinant adenovirus. Cell Immunol 2015; 297:46-52. [PMID: 26140980 DOI: 10.1016/j.cellimm.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/14/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022]
Abstract
Transduction with recombinant, replication-defective adenoviral (rAd) vectors encoding a transgene is an efficient method for gene transfer into human dendritic cells (DCs). Livin is a good candidate for cancer immunotherapy since it is overexpressed in most common human cancers, poorly expressed in most normal adult tissues. Two splicing variants of livin, designated livin α and livin β, have been identified. In this study, we used human livin α recombinant adenovirus (rAd-hlivin α) to transduced DCs. We found that DCs transduced with rAd-hlivin α (rAd-hlivin α DCs) could effectively induce human livin α specific cytotoxic T lymphocytes (CTL) in vitro against various tumor cell lines.
Collapse
Affiliation(s)
- Junping Xie
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Xiaolin Guo
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; The Key Laboratory of Molecular Medicine of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fangfang Liu
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; The Key Laboratory of Molecular Medicine of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junming Luo
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fengying Duan
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaonan Tao
- Department of Respiratory Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
9
|
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14:1427-42. [DOI: 10.1517/14712598.2014.927433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Liu GH, Wang C, Ding ZY. Overexpression of the truncated form of Livin reveals a complex interaction with caspase-3. Int J Oncol 2013; 42:2037-45. [PMID: 23563149 DOI: 10.3892/ijo.2013.1883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/21/2013] [Indexed: 02/05/2023] Open
Abstract
Disruption in apoptosis are involved in cancer development and progression. Livin-β, has been identified as a critical modulator for cell death in several tumor cell lines. It was demonstrated that a truncated fragment of Livin-β (tLivin) without its N-terminal 52 amino acids is produced in cells through protein cleavage. However, the biological consequence of the cleavage remains largely ignored. In the present study, we report that tLivin exerted a pro-apoptotic effect on cells. The subcellular localization of tLivin was mainly restricted to the cytoplasm. To explore the underlying mechanism, we observed an elevated caspase-3 activity which may account for the apoptosis. Furthermore, we observed that tLivin was further cleaved into a smaller fragment in cells. This second cleavage was possibly related to activated caspase-3. The resulted C-terminal fragment (livC) was an anti-apoptotic factor. Our study may help to deepen our understanding of the role of Livin in the regulation of cell death.
Collapse
Affiliation(s)
- Gui-Hong Liu
- Division of Thoracic Cancer, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | | | | |
Collapse
|
11
|
CHEN HAO, JIN YANG, CHEN TING, ZHANG MINGQIANG, MA WANLI, XIONG XIANZHI, TAO XIAONAN. The antitumor effect of human cord blood-derived dendritic cells modified by the livin α gene in lung cancer cell lines. Oncol Rep 2012; 29:619-27. [DOI: 10.3892/or.2012.2133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/16/2012] [Indexed: 11/05/2022] Open
|
12
|
Lemke CD, Graham JB, Geary SM, Zamba G, Lubaroff DM, Salem AK. Chitosan is a surprising negative modulator of cytotoxic CD8+ T cell responses elicited by adenovirus cancer vaccines. Mol Pharm 2011; 8:1652-61. [PMID: 21780831 DOI: 10.1021/mp100464y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adjuvants modulate protective CD8(+) T cell responses generated by cancer vaccines. We have previously shown that immunostimulatory cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotide (ODN) significantly augments tumor protection in mice given adenovirus cancer vaccines. Here, we examined the impact of chitosan, another candidate vaccine adjuvant, on protection conferred by adenovirus cancer vaccines. Unexpectedly, immunization of mice with adenovirus cancer vaccines in combination with chitosan provided little protection against tumor challenge. This directly correlated with the reduced detection of Ag-specific CD8(+) T cells, interferon-γ (IFN-γ) production, and cytotoxic T cell activity. We ruled out immunosuppressive regulatory T cells since the frequency did not change regardless of whether chitosan was delivered. In mammalian cell lines, chitosan did not interfere with adenovirus transgene expression. However, infection of primary murine bone marrow-derived dendritic cells with adenovirus complexed with chitosan significantly reduced viability, transgene expression, and upregulation of major histocompatability (MHC) class I and CD86. Our in vitro observations indicate that chitosan dramatically inhibits adenovirus-mediated transgene expression and antigen presenting cell activation, which could prevent CD8(+) T cell activation from occurring in vivo. These surprising data demonstrate for the first time that chitosan vaccine formulations can negatively impact the induction of CD8(+) T cell responses via its effect on dendritic cells, which is clinically important since consideration of chitosan as an adjuvant for vaccine formulations is growing.
Collapse
Affiliation(s)
- Caitlin D Lemke
- College of Pharmacy, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | | | | | | | | | | |
Collapse
|
13
|
Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol 2010; 2010:565643. [PMID: 21197274 PMCID: PMC3010860 DOI: 10.1155/2010/565643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/28/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. They play a vital role in the initiation of immune response by presenting antigens to T cells and followed by induction of T-cell response. Reported research in animal studies indicated that vaccine immunity could be a promising alternative therapy for cancer patients. However, broad clinical utility has not been achieved yet, owing to the low transfection efficiency of DCs. Therefore, it is essential to improve the transfection efficiency of DC-based vaccination in immunotherapy. In several studies, DCs were genetically engineered by tumor-associated antigens or by immune molecules such as costimulatory molecules, cytokines, and chemokines. Encouraging results have been achieved in cancer treatment using various animal models. This paper describes the recent progress in gene delivery systems including viral vectors and nonviral carriers for DC-based genetically engineered vaccines. The reverse and three-dimensional transfection systems developed in DCs are also discussed.
Collapse
|