1
|
Chen P, Zheng X, Li C, Li J, Yang C, Feng Y, Cheng B, Liang H, Liu Z, Zhao Y, Xiong S, Li F, Zhong R, Zhan S, Wang H, Xiang Y, Fu W, Ye W, Jiang B, Fan X, Liu J, He J, Liang W. Association of pre-existing conditions with major driver mutations and PD-L1 expression in NSCLC. BMJ Open Respir Res 2024; 11:e002571. [PMID: 39632102 PMCID: PMC11624786 DOI: 10.1136/bmjresp-2024-002571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES This study aims to explore how pre-existing conditions such as blood types, family history of cancer and comorbid diseases correlate with the genetic and programmed death-ligand 1 (PD-L1) expression that contributes to the heterogeneous biological behaviours of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A cohort of 5507 NSCLC patients who underwent surgical resection between January 2014 and July 2018 was studied. Targeted next-generation sequencing was used to detect mutations in nine pivotal cancer-related genes, and immunohistochemical staining was applied to assess PD-L1 expression. Logistic regression analysis was employed to identify significant correlations. RESULTS All patients underwent NGS, with 1839 were also evaluated for PD-L1 expression. Several significant findings were found: ROS1 mutations were closely associated with a family history of lung cancer (OR 7.499, 95% CI 1.094 to 30.940, p=0.013). Epidermal growth factor receptor (EGFR) L858R mutations were common among patients with a family history of non-lung cancers and those with hypertension (OR 2.089, 95% CI 1.029 to 4.135, p=0.037 and OR 1.252, 95% CI 1.001 to 1.562, p=0.048, respectively). Pre-existing conditions such as diabetes and hepatitis B surface antigen positivity (OR 1.468, 95% CI 1.042 to 2.047, p=0.026 and OR 1.373, 95% CI 1.012 to 1.847, p=0.038, respectively) were correlated with EGFR exon 19 deletions. RhD negativity showed potential ties to BRAF mutations (OR 0.010, 95% CI 0.001 to 0.252, p=0.001). A history of tuberculosis linked to increased PD-L1 expression in immune cells (OR 3.597, 95% CI 1.295 to 14.957, p=0.034). CONCLUSION This large-scale, cross-sectional study reveals a complex interplay between genetic mutations, immunological features and pre-existing conditions in NSCLC patients, offering insights that could inform personalised treatment strategies.
Collapse
Affiliation(s)
- Peiling Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Xin Zheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Chen Yang
- Department of Mathematical Sciences, University of Southampton, Southampton, UK
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Bo Cheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Institute of Thoracic Oncology, Shanghai, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Feng Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Huiting Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Yang Xiang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Wenhai Fu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Wenjun Ye
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Bo’ao Jiang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Xianzhe Fan
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Damare R, Engle K, Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res 2024; 38:2406-2447. [PMID: 38433568 DOI: 10.1002/ptr.8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase (RTK) that maintains normal tissues and cell signaling pathways. EGFR is overactivated and overexpressed in many malignancies, including breast, lung, pancreatic, and kidney. Further, the EGFR gene mutations and protein overexpression activate downstream signaling pathways in cancerous cells, stimulating the growth, survival, resistance to apoptosis, and progression of tumors. Anti-EGFR therapy is the potential approach for treating malignancies and has demonstrated clinical success in treating specific cancers. The recent report suggests most of the clinically used EGFR tyrosine kinase inhibitors developed resistance to the cancer cells. This perspective provides a brief overview of EGFR and its implications in cancer. We have summarized natural products-derived anticancer compounds with the mechanistic basis of tumor inhibition via the EGFR pathway. We propose that developing natural lead molecules into new anticancer agents has a bright future after clinical investigation.
Collapse
Affiliation(s)
- Rutuja Damare
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
4
|
Mahfoudhi E, Ricordel C, Lecuyer G, Mouric C, Lena H, Pedeux R. Preclinical Models for Acquired Resistance to Third-Generation EGFR Inhibitors in NSCLC: Functional Studies and Drug Combinations Used to Overcome Resistance. Front Oncol 2022; 12:853501. [PMID: 35463360 PMCID: PMC9023070 DOI: 10.3389/fonc.2022.853501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are currently recommended as first-line treatment for advanced non-small-cell lung cancer (NSCLC) with EGFR-activating mutations. Third-generation (3rd G) EGFR-TKIs, including osimertinib, offer an effective treatment option for patients with NSCLC resistant 1st and 2nd EGFR-TKIs. However, the efficacy of 3rd G EGFR-TKIs is limited by acquired resistance that has become a growing clinical challenge. Several clinical and preclinical studies are being carried out to better understand the mechanisms of resistance to 3rd G EGFR-TKIs and have revealed various genetic aberrations associated with molecular heterogeneity of cancer cells. Studies focusing on epigenetic events are limited despite several indications of their involvement in the development of resistance. Preclinical models, established in most cases in a similar manner, have shown different prevalence of resistance mechanisms from clinical samples. Clinically identified mechanisms include EGFR mutations that were not identified in preclinical models. Thus, NRAS genetic alterations were not observed in patients but have been described in cell lines resistant to 3rd G EGFR-TKI. Mainly, resistance to 3rd G EGFR-TKI in preclinical models is related to the activation of alternative signaling pathways through tyrosine kinase receptor (TKR) activation or to histological and phenotypic transformations. Yet, preclinical models have provided some insight into the complex network between dominant drivers and associated events that lead to the emergence of resistance and consequently have identified new therapeutic targets. This review provides an overview of preclinical studies developed to investigate the mechanisms of acquired resistance to 3rd G EGFR-TKIs, including osimertinib and rociletinib, across all lines of therapy. In fact, some of the models described were first generated to be resistant to first- and second-generation EGFR-TKIs and often carried the T790M mutation, while others had never been exposed to TKIs. The review further describes the therapeutic opportunities to overcome resistance, based on preclinical studies.
Collapse
Affiliation(s)
- Emna Mahfoudhi
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Charles Ricordel
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Gwendoline Lecuyer
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Cécile Mouric
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| | - Hervé Lena
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Service de Pneumologie, Université de Rennes 1, Rennes, France
| | - Rémy Pedeux
- Univ Rennes, Institut Nationale de la Santé et de la Recherche Médicale (INSERM), COSS (Chemistry Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte Contre le Cancer (CLOC) Eugène Marquis, Rennes, France
| |
Collapse
|
5
|
Oh YJ, Dent MW, Freels AR, Zhou Q, Lebrilla CB, Merchant ML, Matoba N. Antitumor activity of a lectibody targeting cancer-associated high-mannose glycans. Mol Ther 2022; 30:1523-1535. [PMID: 35077861 PMCID: PMC9077314 DOI: 10.1016/j.ymthe.2022.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
Abstract
Aberrant protein glycosylation is a hallmark of cancer, but few drugs targeting cancer glycobiomarkers are currently available. Here, we showed that a lectibody consisting of the high-mannose glycan-binding lectin Avaren and human immunoglobulin G1 (IgG1) Fc (AvFc) selectively recognizes a range of cell lines derived from lung, breast, colon, and blood cancers at nanomolar concentrations. Binding of AvFc to the non-small cell lung cancer (NSCLC) cell lines A549 and H460 was characterized in detail. Co-immunoprecipitation proteomics analysis revealed that epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) are among the lectibody's common targets in these cells. AvFc blocked the activation of EGFR and IGF1R by their respective ligands in A549 cells and inhibited the migration of A549 and H460 cells upon stimulation with EGF and IGF1. Furthermore, AvFc induced potent Fc-mediated cytotoxic effects and significantly restricted A549 and H460 tumor growth in severe combined immunodeficiency (SCID) mice. Immunohistochemistry analysis of primary lung tissues from NSCLC patients demonstrated that AvFc preferentially binds to tumors over adjacent non-tumor tissues. Our findings provide evidence that increased abundance of high-mannose glycans in the glycocalyx of cancer cells can be a druggable target, and AvFc may provide a new tool to probe and target this tumor-associated glycobiomarker.
Collapse
Affiliation(s)
- Young Jun Oh
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Matthew W Dent
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Angela R Freels
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, KY, USA
| | - Nobuyuki Matoba
- UofL Health - Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock Street, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
6
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Deng Y, Xue R, Patel N, Xu W, Zhang H. Serum Extracellular Nano-Vesicles miR-153-3p to Identify Micronodular Lung Cancer from Sub-Centimeter Lung Nodules. J Biomed Nanotechnol 2022; 18:705-717. [PMID: 35715903 DOI: 10.1166/jbn.2022.3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of malignancy from sub-centimeter lung nodules (LNs, <1 cm) is core for prevention and treatment of primary phases of lung cancer (LC). The study's purpose was to predict micro-nodular lung cancer (mnLC), such as adenocarcinoma in situ (AIS), micro-invasive adenocarcinoma (MIA), and invasive adenocarcinoma stage 1 (IA1) based on serum extracellular nano-vesicles (sEVs) miR-153-3p. sEVs-miR-153-3p was selected in this study and then used to investigate the expression and efficacy by RT-qPCR in the validation phase, followed by sEVs derived from patients of mnLC, benign lung nodule (BLN), and healthy people groups comprised of 135 recruiters. Further, the study established the prediction model which combined sEVs-miR-153-3p expression with multiple clinical-radiomics features by Logistic algorithms and was authenticated by the area under curve (AUC) phenomenon. Then, a simple-to-use nomogram was developed by Cox proportional-hazards regression modeling for predicting mnLC. Besides, in vitro analyses were performed to demonstrate miR-153-3p/ROCK1 axis in regulating biological mechanisms using LC cell lines. Results demonstrated that sEVs-miR-153-5p's expression values were higher in mnLC patients compared to BLN and healthy people. The prediction model for mnLC was successfully established, utilizing sEVs-miR-153-5p biomarker with significant clinical-radiomics features and yielding an AUC = 0.943 (95%CI: 0.898~0.989, P <0.0001). Moreover, the miR-153-3p and its targeted gene ROCK1 were confirmed as down-regulated in NSCLC cell lines and up-regulated expression respectively. Moreover, the miR-153-3p/ROCK1 axis took part in promoting the epithelial-mesenchymal transition (EMT) signaling pathway and regulated certain biological functions, such as proliferation, migration and invasion of LC cells. Therefore, the sEVs-miR-153-3p associated with radiomics-clinical features showed enormous potential to non-invasively identify malignancy from subcentimeter LNs. miR-153-3p could promote the genesis and progress of LC via EMT signaling pathway, which may serve as a therapeutic target.
Collapse
Affiliation(s)
- Yuxia Deng
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Rongyu Xue
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Nishant Patel
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, P. R. China
| | - Wenwen Xu
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
8
|
Yuan R, Fan Q, Liang X, Han S, He J, Wang QQ, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways. Chin Med 2022; 17:24. [PMID: 35183200 PMCID: PMC8858510 DOI: 10.1186/s13020-022-00581-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality worldwide, and most of the patients after treatment with EGF-TKIs develop drug resistance, which is closely correlated with EMT. Cucurbitacin B (CuB) is a natural product of the Chinese herb Cucurbitaceae plant, which has a favorable role in anti-inflammation and anti-cancer activities. However, the effect of CuB on EMT is still far from fully explored. In this study, the inhibition effect of CuB on EMT was investigated. METHODS In this study, TGF-β1 was used to induce EMT in A549 cells. MTS assay was used to detect the cell viability of CuB co-treated with TGF-β1. Wound healing assay and transwell assay were used to determine the migration and invasion capacity of cells. Flow cytometry and fluorescence microscope were used to detect the ROS level in cells. Western blotting assay and immunofluorescence assay were used to detect the proteins expression. Gefitinib was used to establish EGF-TKI resistant NSCLC cells. B16-F10 intravenous injection mice model was used to evaluate the effect of CuB on lung cancer metastasis in vivo. Caliper IVIS Lumina and HE staining were used to detect the lung cancer metastasis of mice. RESULTS In this study, the results indicated that CuB inhibited TGF-β1-induced EMT in A549 cells through reversing the cell morphology changes of EMT, increasing the protein expression of E-cadherin, decreasing the proteins expression of N-cadherin and Vimentin, suppressing the migration and invasion ability. CuB also decreased the ROS production and p-PI3K, p-Akt and p-mTOR expression in TGF-β1-induced EMT in A549 cells. Furthermore, Gefitinib resistant A549 cells (A549-GR) were well established, which has the EMT characteristics, and CuB could inhibit the EMT in A549-GR cells through ROS and PI3K/Akt/mTOR pathways. In vivo study showed that CuB inhibited the lung cancer metastasis effectively through intratracheal administration. CONCLUSION CuB inhibits EMT in TGF-β1-induced A549 cells and Gefitinib resistant A549 cells through decreasing ROS production and PI3K/Akt/mTOR signaling pathway. In vivo study validated that CuB inhibits lung cancer metastasis in mice. The study may be supporting CuB as a promising therapeutic agent for NSCLC and Gefitinib resistant NSCLC.
Collapse
Affiliation(s)
- Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shan Han
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jia He
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- South China Branch of National Engineering Research Center for Manufacturing Technology of Solid Preparation of Traditional Chinese Medicine, Nanning, 530020, China.
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Shilin Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
9
|
Bie C, Chen Y, Tang H, Li Q, Zhong L, Peng X, Shi Y, Lin J, Lai J, Wu S, Tang S. Insulin-Like Growth Factor 1 Receptor Drives Hepatocellular Carcinoma Growth and Invasion by Activating Stat3-Midkine-Stat3 Loop. Dig Dis Sci 2022; 67:569-584. [PMID: 33559791 DOI: 10.1007/s10620-021-06862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Activation of the insulin-like growth factor 1 receptor (IGF-1R)-mediated Janus kinase (JAK)1/2-Stat3 pathway contributes to hepatocarcinogenesis. Specifically, a previous study showed that IGF-1R inhibition downregulated Midkine expression in hepatocellular carcinoma (HCC). AIMS The present study investigated the role of IGF-1R-JAK1/2-Stat3 and Midkine signaling in HCC, in addition to the molecular link between the IGF-1R-Stat3 pathway and Midkine. METHODS The expression levels of IGF-1R, Stat3, and Midkine were measured using reverse transcription-quantitative PCR, following which the association of IGF-1R with Stat3 and Midkine expression was evaluated in HCC. The molecular link between the IGF-1R-Stat3 pathway and Midkine was then investigated in vitro before the effect of IGF-1R-Stat3 and Midkine signaling on HCC growth and invasion was studied in vitro and in vivo. RESULTS IGF-1R, Stat3, and Midkine mRNA overexpressions were all found in HCC, where the levels of Stat3 and Midkine mRNA correlated positively with those of IGF-1R. In addition, Midkine mRNA level also correlated positively with Stat3 mRNA expression in HCC tissues. IGF-1R promoted Stat3 activation, which in turn led to the upregulation of Midkine expression in Huh7 cells. Similarly, Midkine also promoted Stat3 activation through potentiating JAK1/2 phosphorylation. Persistent activation of this Stat3-Midkine-Stat3 positive feedback signal loop promoted HCC growth and invasion, the inhibition of which resulted in significant antitumor activities both in vitro and in vivo. CONCLUSIONS Constitutive activation of the IGF-1R-mediated Stat3-Midkine-Stat3 positive feedback loop is present in HCC, the inhibition of which can serve as a potential therapeutic intervention strategy for HCC.
Collapse
Affiliation(s)
- Caiqun Bie
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Huijun Tang
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Qing Li
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Lu Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiaojuan Peng
- Department of Endocrinology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junqin Lin
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Junlong Lai
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shenglan Wu
- Department of Gastroenterology, The Affiliated Shenzhen Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, Guangdong, People's Republic of China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Liu Y, Kan Y, Zhang J, Li N, Wang Y. Characteristics of contrast-enhanced ultrasound for diagnosis of solid clear cell renal cell carcinomas ≤4 cm: A meta-analysis. Cancer Med 2021; 10:8288-8299. [PMID: 34725960 PMCID: PMC8633224 DOI: 10.1002/cam4.4365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Now solid renal tumors ≤4 cm is the most common, especially the subtype of clear cell renal cell carcinoma (ccRCC) of malignant kidney tumors in clinical. However, there is not specific characteristics of contrast‐enhanced ultrasound (CEUS) be recommended by the EFSUMB Guidelines in distinguish the essence of the kidney tumor with different sizes. Therefore, this meta‐analysis aimed to assess the ability of CEUS to diagnose solid ccRCC (sccRCC) ≤4 cm. We comprehensively searched the Cochrane Library, Embase, PubMed, and Web of Science databases from their inception to 28 July 2020, for studies reporting the CEUS features of sccRCC lesions ≤4 cm. Additional articles were identified through the Chinese National Knowledge Infrastructure database. Studies were selected independently by two investigators and the relevant data were extracted. Discrepancies were resolved via discussion with the senior author. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies‐2 tool, and the sensitivity and specificity of each study were determined and plotted as a receiver operating characteristic curve. Ten studies were included in this meta‐analysis. Hyperenhancement showed medium sensitivity (67%–89%) and specificity (42%–75%) for diagnosing sccRCC ≤4 cm, fast‐in contrast agent and heterogeneous enhancement showed high diagnostic abilities (area under curve (AUC) 0.74–0.84), but the presence of a pseudocapsule and fast‐out contrast agent had poor diagnostic ability (AUC <0.70). The combination of hyperenhancement and iso‐enhancement showed high sensitivity (98%) for diagnosing sccRCC ≤4 cm. Hyperenhancement, fast‐in contrast agent, and heterogeneous enhancement may be specific features that could help to identify sccRCC ≤4 cm, while the presence of a pseudocapsule and fast‐out of contrast agent may have low diagnostic values. The combination of multiple indexes may improve the diagnostic value of CEUS for sccRCC ≤4 cm.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ultrasound, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yanmin Kan
- Department of Ultrasound, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, P.R. China.,Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, P.R. China
| | - Jincun Zhang
- Department of Urological Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Ning Li
- Department of Ultrasound, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yihua Wang
- Department of Ultrasound, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
11
|
Yang Y, Wang Y, Che X, Hou K, Wu J, Zheng C, Cheng Y, Liu Y, Hu X, Zhang J. Integrin α5 promotes migration and invasion through the FAK/STAT3/AKT signaling pathway in icotinib-resistant non-small cell lung cancer cells. Oncol Lett 2021; 22:556. [PMID: 34084223 PMCID: PMC8161469 DOI: 10.3892/ol.2021.12817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) treated with EGFR-tyrosine kinase inhibitors (TKIs) ultimately develop drug resistance and metastasis. Therefore, there is a need to identify the underlying mechanisms of resistance to EGFR-TKIs. In the present study, colony formation and MTT assays were performed to investigate cell viability following treatment with icotinib. Gene Expression Omnibus datasets were used to identify genes associated with resistance. Wound healing and Transwell assays were used to detect cell migration and invasion with icotinib treatment and integrin α5-knockdown. The expression levels of integrin α5 and downstream genes were detected using western blotting. Stable icotinib-resistant (IcoR) cell lines (827/IcoR and PC9/IcoR) were established that showed enhanced malignant properties compared with parental cells (HCC827 and PC9). Furthermore, the resistant cell lines were resistant to icotinib in terms of proliferation, migration and invasion. The enrichment of function and signaling pathways analysis showed that integrin α5-upregulation was associated with the development of icotinib resistance. The knockdown of integrin α5 attenuated the migration and invasion capability of the resistant cells. Moreover, a combination of icotinib and integrin α5 siRNA significantly inhibited migration and partly restored icotinib sensitivity in IcoR cells. The expression levels of phosphorylated (p)-focal adhesion kinase (FAK), p-STAT3 and p-AKT decreased after knockdown of integrin α5, suggesting that FAK/STAT3/AKT signaling had a notable effect on the resistant cells. The present study revealed that the integrin α5/FAK/STAT3/AKT signaling pathway promoted icotinib resistance and malignancy in IcoR NSCLC cells. This signaling pathway may provide promising targets against acquired resistance to EGFR-TKI in patients with NSCLC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jie Wu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunlei Zheng
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jingdong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
13
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
14
|
Qian J, Chen R, Zhao R, Han Y, Yu Y. Comprehensive Molecular Characterizations of Chinese Patients With Different Subtypes of Lung Squamous Cell Carcinoma. Front Oncol 2020; 10:607130. [PMID: 33363036 PMCID: PMC7758445 DOI: 10.3389/fonc.2020.607130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to profile integrative genomic spectra of Chinese patients with different subtypes of lung squamous cell carcinoma (LUSC) and explore potential molecular prognosis factors. Methods We retrospectively identified 204 surgically resected LUSC patients in Shanghai Chest Hospital who underwent capture-based targeted next-generation sequencing (NGS) with a panel of 68 lung cancer‐related genes from September 2017 to January 2019. NGS was used to profile comprehensive molecular characterizations. Results Of 204 cases, 114 (55.9%) were keratinizing squamous cell carcinoma (KSCC), 77 (37.7%) were non-keratinizing squamous cell carcinoma (NKSCC), 13 (6.4%) were basaloid squamous cell carcinoma (BSCC), respectively. All subtypes presented similarly high proportions of mutations, including TP53, CDKN2A, and NOTCH1. A comparable prevalence of FGFR1 amplifications was identified between KSCC and NKSCC (11.4 versus 26.9%, p = 0.007). Compared with NKSCC, IGF1R amplifications were more frequent in BSCC (0 versus 15.4%, p = 0.019). We found cases with TP53 alterations had less EGFR alterations in KSCC (P = 0.013, OR = 0.158). Compared with TCGA cohorts, our Chinese cohorts exhibited statistic differences in both somatic mutations and signaling pathways. We found that STK 11 alterations and TOP2A alterations were significantly associated with higher risk of recurrence in patients with LUSC. Conclusions Significant differences exist among three subtypes of LUSC in molecular characterizations.
Collapse
Affiliation(s)
- Jie Qian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Chen
- Department of Internal medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Marcu LG. Imaging Biomarkers of Tumour Proliferation and Invasion for Personalised Lung Cancer Therapy. J Pers Med 2020; 10:jpm10040222. [PMID: 33198090 PMCID: PMC7711676 DOI: 10.3390/jpm10040222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Personalised treatment in oncology has seen great developments over the last decade, due to both technological advances and more in-depth knowledge of radiobiological processes occurring in tumours. Lung cancer therapy is no exception, as new molecular targets have been identified to further increase treatment specificity and sensitivity. Yet, tumour resistance to treatment is still one of the main reasons for treatment failure. This is due to a number of factors, among which tumour proliferation, the presence of cancer stem cells and the metastatic potential of the primary tumour are key features that require better controlling to further improve cancer management in general, and lung cancer treatment in particular. Imaging biomarkers play a key role in the identification of biological particularities within tumours and therefore are an important component of treatment personalisation in radiotherapy. Imaging techniques such as PET, SPECT, MRI that employ tumour-specific biomarkers already play a critical role in patient stratification towards individualized treatment. The aim of the current paper is to describe the radiobiological challenges of lung cancer treatment in relation to the latest imaging biomarkers that can aid in the identification of hostile cellular features for further treatment adaptation and tailoring to the individual patient’s needs.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 410087 Oradea, Romania;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
16
|
Chiu HY, Chiang CM, Yeh SP, Jong DS, Wu LS, Liu HC, Chiu CH. Effects of hyperinsulinemia on acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor via the PI3K/AKT pathway in non-small cell lung cancer cells in vitro. Oncol Lett 2020; 20:206. [PMID: 32963612 PMCID: PMC7491043 DOI: 10.3892/ol.2020.12069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
Patients with lung cancer harboring activating epidermal growth factor (EGFR) mutations and pre-existing diabetes have been demonstrated to exhibit poor responses to first-line EGFR-tyrosine kinase inhibitor (TKI) therapy. Strategies for the management of acquired resistance to EGFR-TKIs in patients with advanced non-small cell lung cancer (NSCLC) are urgently required. Only a limited number of studies have been published to date on the effects of insulin on EGFR-TKI resistance in NSCLC. Hence, the aim of the present study was to investigate the roles of hyperinsulinemia and hyperglycemia in mediating gefitinib resistance in NSCLC cells with activating EGFR mutations. In the present study, the HCC4006 cell line, which harbors EGFR mutations, was co-treated with gefitinib and long-acting insulin glargine. Whether hyperinsulinemia is able to mediate EGFR-TKI resistance in the NSCLC cell line harboring activating EGFR mutations was also investigated, and the possible underlying mechanisms responsible for these actions were explored. The inhibition of cell proliferation, and the potential mechanism of gefitinib resistance, were examined using an MTS proliferation assay and western blot analysis, and through the transfection of siRNAs. Whether the inhibition of AKT is able to overcome EGFR-TKI resistance induced by long-acting insulin was also investigated. The results obtained suggested that hyperinsulinemia induced by glargine upregulated NSCLC cell proliferation and survival, and induced gefitinib resistance. By contrast, the morphology and proliferation of the cells in a medium containing a 2-fold concentration of glucose were not significantly affected. Gefitinib resistance induced by hyperinsulinemia may have been mediated via the phosphoinositide 3-kinase (PI3K)/AKT pathway rather than the mitogen-activated protein kinase extracellular signal regulated kinase (MAPK/ERK) pathway. AKT serine/threonine kinase 1 knockdown by siRNA rescued the gefitinib resistance that was induced by hyperinsulinemia. In conclusion, hyperinsulinemia, but not hyperglycemia, was identified to cause the development of gefitinib resistance in NSCLC cells with activating EGFR mutations. However, additional studies are required to investigate strategies, such as co targeting hyperinsulinemia and the PI3K/AKT pathway, for overcoming EGFR-TKI resistance in patients with NSCLC.
Collapse
Affiliation(s)
- Hsin-Yi Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C.,Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C.,Department of Medical Education, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C.,Department of Education and Humanities in Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C.,Department of Surgery, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chi-Ming Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C.,Department of Orthopedics Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan, R.O.C
| | - Szu-Peng Yeh
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| | - Hung-Chang Liu
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital (Tamsui Branch), New Taipei City 251, Taiwan, R.O.C
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan, R.O.C
| |
Collapse
|
17
|
Kurlawala Z, Saurabh K, Dunaway R, Shah PP, Siskind LJ, Beverly LJ. Ubiquilin proteins regulate EGFR levels and activity in lung adenocarcinoma cells. J Cell Biochem 2020; 122:43-52. [PMID: 32720736 DOI: 10.1002/jcb.29830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Ubiquilin (UBQLN) proteins are involved in diverse cellular processes like endoplasmic reticulum-associated degradation, autophagy, apoptosis, and epithelial-to-mesenchymal transition. UBQLNs interact with a variety of substrates, including cell surface receptors, transcription factor regulators, proteasomal machinery proteins, and transmembrane proteins. In addition, previous work from our lab shows that UBQLN1 interacts with insulin-like growth factor receptor family members (IGF1R, IGF2R, and INSR) and this interaction regulates the activity and proteostasis of IGFR family members. We wondered whether UBQLN proteins could also bind and regulate additional receptor tyrosine kinases. Thus, we investigated a link between UBQLN and the oncogene epidermal growth factor receptor (EGFR) in lung adenocarcinoma cells. Loss of UBQLN1 occurs at high frequency in human lung cancer patient samples and we have shown that the loss of UBQLN1 is capable of altering processes involved in cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition in lung adenocarcinoma cell lines. Here, we present data that loss of UBQLN1 resulted in increased turnover of total EGFR while increasing the relative amount of phosphorylated EGFR in lung adenocarcinoma cells, especially in the presence of its ligand EGF. Furthermore, the loss of UBQLN1 led to a more invasive cell phenotype as manifested by increased proliferation, migration, and speed of movement of these lung adenocarcinoma cells. Taken together, UBQLN1 regulates the expression and stability of EGFR in lung cancer cells.
Collapse
Affiliation(s)
- Zimple Kurlawala
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Kumar Saurabh
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Rain Dunaway
- School of Medicine, University of Louisville, Louisville, Kentucky
| | - Parag P Shah
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Leah J Siskind
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Levi J Beverly
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Division of Hematology and Oncology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
18
|
Jen HW, Gu DL, Lang YD, Jou YS. PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility. Cells 2020; 9:cells9061490. [PMID: 32570949 PMCID: PMC7349238 DOI: 10.3390/cells9061490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023] Open
Abstract
Paraspeckle protein 1 (PSPC1) overexpression in cancers is known to be the pro-metastatic switch of tumor progression associated with poor prognosis of cancer patients. However, the detail molecular mechanisms to facilitate cancer cell migration remain elusive. Here, we conducted integrated analysis of human phospho-kinase antibody array, transcriptome analysis with RNA-seq, and proteomic analysis of protein pulldown to study the molecular detail of PSPC1-potentiated phenotypical transformation, adhesion, and motility in human hepatocellular carcinoma (HCC) cells. We found that PSPC1 overexpression re-assembles and augments stress fiber formations to promote recruitment of focal adhesion contacts at the protruding edge to facilitate cell migration. PSPC1 activated focal adhesion-associated kinases especially FAK/Src signaling to enhance cell adhesion and motility toward extracellular matrix (ECM). Integrated transcriptome and gene set enrichment analysis indicated that PSPC1 modulated receptor tyrosine kinase IGF1R involved in the focal adhesion pathway and induction of diverse integrins expression. Knockdown IGF1R expression and treatment of IGF1R inhibitor suppressed PSPC1-induced cell motility. Interestingly, knockdown PSPC1-interacted paraspeckle components including NONO, FUS, and the lncRNA Neat1 abolished PSPC1-activated IGF1R expression. Together, PSPC1 overexpression induced focal adhesion formation and facilitated cell motility via activation of IGF1R signaling. PSPC1 overexpression in tumors could be a potential biomarker of target therapy with IGF1R inhibitor for improvement of HCC therapy.
Collapse
Affiliation(s)
- Hsin-Wei Jen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - Yuh-Shan Jou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
- Correspondence:
| |
Collapse
|
19
|
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: Thematic Review Series: Biology of Lipid Rafts. J Lipid Res 2020; 61:611-635. [PMID: 33715811 PMCID: PMC7193951 DOI: 10.1194/jlr.tr119000439] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain. mailto:
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), E-28040 Madrid, Spain
| |
Collapse
|
20
|
A Cohort Study of Exposure to Antihyperglycemic Therapy and Survival in Patients with Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051747. [PMID: 32156062 PMCID: PMC7084663 DOI: 10.3390/ijerph17051747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
We evaluated the effect of antihyperglycemic therapy on the survival of patients with lung cancer (LC). The analysis included patients with LC and concomitant type 2 diabetes. 15,929 patients were classified into five groups: metformin users, insulin users, metformin and insulin users, sulphonylurea users and non-diabetic group. A multivariate analysis showed that exposure to either metformin or to insulin was associated with a lower risk of LC-specific mortality, and this approached statistical significance (HR 0.82, 95% CI 0.72–92 for metformin and HR 0.65, 95% CI 0.44–95 for insulin). When deaths from all causes were considered, only metformin exposure was associated with a significantly lower risk of death (HR 0.82, 95% CI 0.73–0.92). Users of sulphonylurea were at a higher risk of LC-specific and overall mortality (HRs 1.19, 95% CI 0.99–1.43 and 1.22, 95% CI 1.03–1.45). Our study shows a positive effect of metformin on the survival of patients with LC. Moreover, our results show that exposure to insulin was associated with a lower risk of LC-specific mortality, but not with deaths from all causes. The study results suggested that users of sulphonylurea may be at a higher risk of LC-specific and overall mortality.
Collapse
|
21
|
Wang F, Meng F, Wong SCC, Cho WC, Yang S, Chan LW. Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther Adv Respir Dis 2020; 14:1753466620915156. [PMID: 32552611 PMCID: PMC7303773 DOI: 10.1177/1753466620915156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with an epidermal growth factor receptor (EGFR) mutation often initially respond to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment but may acquire drug resistance due to multiple factors. MicroRNAs are a class of small noncoding and endogenous RNA molecules that may play a role in overcoming the resistance. MATERIALS AND METHODS In this study, we explored and validated, through in vitro experiments and in vivo models, the ability of a combination treatment of EGFR-TKI, namely gefitinib, and a microRNA mimic, miR-30a-5p, to overcome drug resistance through regulation of the insulin-like growth factor receptor-1 (IGF1R) and hepatocyte growth factor receptor signaling pathways, which all converge on phosphatidylinositol 3 kinase (PI3K), in NSCLC. First, we examined the hypothesized mechanisms of drug resistance in H1650, H1650-acquired gefitinib-resistance (H1650GR), H1975, and H460 cell lines. Next, we investigated a potential combination treatment approach to overcome acquired drug resistance in the H1650GR cell line and an H1650GR cell implanted mouse model. RESULTS Dual inhibitors of EGFR and IGF1R significantly lowered the expression levels of phosphorylated protein kinase B (p-AKT) and phosphorylated mitogen-activated protein kinase (p-ERK) compared with the control group in all cell lines. With the ability to repress PI3K expression, miR-30a-5p mimics induced cell apoptosis, and inhibited cell invasion and migration in the treated H1650GR cell line. CONCLUSION Gefitinib, combined with miR-30a-5p mimics, effectively suppressed the growth of H1650GR-induced tumor in xenografts. Hence, a combination therapy of gefitinib and miR-30a-5p may play a critical role in overcoming acquired resistance to EGFR-TKIs. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Fengfeng Wang
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Fei Meng
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Hong Kong, P.R. China
| | - William C.S. Cho
- Department of Clinical Oncology, Queen Elizabeth
Hospital, Hong Kong, P.R. China
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal
Experiment and Institute of Animal Model for Human Disease, Wuhan University
School of Medicine, Wuhan, P.R. China
| | - Lawrence W.C. Chan
- Department of Health Technology and Informatics,
The Hong Kong Polytechnic University, Y902, 9/F, Lee Shau Kee Building,
Kowloon, Hong Kong, P.R. China
| |
Collapse
|
22
|
Liu WJ, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 2019; 206:107438. [PMID: 31715289 DOI: 10.1016/j.pharmthera.2019.107438] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted therapy, including mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), the receptor tyrosine kinase ROS proto-oncogene 1 (ROS1), and the serine/threonine-protein kinase BRAF (v-Raf murine sarcoma viral oncogene homolog B). We also discuss the mechanism of action of less common oncoproteins, as in-depth understanding of these molecular mechanisms is important for optimizing treatment strategies.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Wen
- Department of Medicine, Stanford University School of Medicine, California, USA
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China.
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
23
|
Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front Oncol 2019; 9:1044. [PMID: 31681582 PMCID: PMC6798878 DOI: 10.3389/fonc.2019.01044] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Acquired resistance inevitably limits the curative effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to break such a bottleneck becomes a pressing problem in cancer treatment. The epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological changes in various aspects of malignancies, notably drug resistance. Progress in delineating the nature of this process offers an opportunity to develop clinical therapeutics to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance, with a focus on NSCLC, and raise the question of what therapeutic strategies along this line should be pursued to optimize the efficacy in clinical practice.
Collapse
Affiliation(s)
- Xuan Zhu
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, China
| | - Ling Liu
- Department of College of Stomatology, China Medical University, Shenyang, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
24
|
Piper AJ, Clark JL, Mercado-Matos J, Matthew-Onabanjo AN, Hsieh CC, Akalin A, Shaw LM. Insulin Receptor Substrate-1 (IRS-1) and IRS-2 expression levels are associated with prognosis in non-small cell lung cancer (NSCLC). PLoS One 2019; 14:e0220567. [PMID: 31393907 PMCID: PMC6687170 DOI: 10.1371/journal.pone.0220567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022] Open
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway has been implicated in non-small cell lung cancer (NSCLC) outcomes and resistance to targeted therapies. However, little is known regarding the molecular mechanisms by which this pathway contributes to the biology of NSCLC. The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor proteins that signal downstream of the IGF-1R and determine the functional outcomes of this signaling pathway. In this study, we assessed the expression patterns of IRS-1 and IRS-2 in NSCLC to identify associations between IRS-1 and IRS-2 expression levels and survival outcomes in the two major histological subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC). High IRS-2 expression was significantly associated with decreased overall survival in adenocarcinoma (ADC) patients, whereas low IRS-1 cytoplasmic expression showed a trend toward association with decreased overall survival in squamous cell carcinoma (SCC) patients. Tumors with low IRS-1 and high IRS-2 expression were found to be associated with poor outcomes in ADC and SCC, indicating a potential role for IRS-2 in the aggressive behavior of NSCLC. Our results suggest distinct contributions of IRS-1 and IRS-2 to the biology of ADC and SCC that impact disease progression.
Collapse
Affiliation(s)
- Andrew J. Piper
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer L. Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jose Mercado-Matos
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Asia N. Matthew-Onabanjo
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chung-Cheng Hsieh
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ali Akalin
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Leslie M. Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
25
|
Xi JJ, He RY, Zhang JK, Cai ZB, Zhuang RX, Zhao YM, Shao YD, Pan XW, Shi TT, Dong ZJ, Liu SR, Kong LM. Design, synthesis, and biological evaluation of novel 3-(thiophen-2-ylthio)pyridine derivatives as potential multitarget anticancer agents. Arch Pharm (Weinheim) 2019; 352:e1900024. [PMID: 31338897 DOI: 10.1002/ardp.201900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
A series of novel 3-(thiophen-2-ylthio)pyridine derivatives as insulin-like growth factor 1 receptor (IGF-1R) inhibitors was designed and synthesized. IGF-1R kinase inhibitory activities and cytotoxicities against HepG2 and WSU-DLCL2 cell lines were tested. For all of these compounds, potent cancer cell proliferation inhibitory activities were observed, but not through the inhibition of IGR-1R. Selected compounds were further screened against various kinases. Typical compound 22 (50% inhibitory concentration [IC50 ] values, HepG2: 2.98 ± 1.11 μM and WSU-DLCL2: 4.34 ± 0.84 μM) exhibited good inhibitory activities against fibroblast growth factor receptor-2 (FGFR2), FGFR3, epidermal growth factor receptor, Janus kinase, and RON (receptor originated from Nantes), with IC50 values ranging from 2.14 to 12.20 μM. Additionally, the cell-cycle analysis showed that compound 22 could arrest HepG2 cells in the G1/G0 phase. Taken together, all the experiments confirmed that the compounds in this series were multitarget anticancer agents worth further optimizing.
Collapse
Affiliation(s)
- Jian-Jun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Ruo-Yu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Jian-Kang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Zhao-Bin Cai
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Rang-Xiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Yan-Mei Zhao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Yi-Dan Shao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Xu-Wang Pan
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Ting-Ting Shi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Zuo-Jun Dong
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Shou-Rong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Li-Min Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Zhang J, Xi J, He R, Zhuang R, Kong L, Fu L, Zhao Y, Zhang C, Zeng L, Lu J, Tao R, Liu Z, Zhu H, Liu S. Discovery of 3-(thiophen/thiazole-2-ylthio)pyridine derivatives as multitarget anticancer agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Roos JF, Qudsi M, Samara A, Rahim MM, Al-Bayedh SA, Ahmed H. Metformin for lung cancer prevention and improved survival: a novel approach. Eur J Cancer Prev 2019; 28:311-315. [PMID: 29481337 DOI: 10.1097/cej.0000000000000442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus has been associated with increased risk for the development of many types of cancer. Metformin, an oral medication and first-line treatment for type 2 diabetes mellitus, has been suggested to reduce cancer risk and mortality in various types of cancer. This study focuses on assessing metformin association with lung cancer as reported in the literature. Recent studies and reviews investigating metformin effects on lung cancer incidence and patient survival are critically and systematically discussed.
Collapse
Affiliation(s)
- Juliana F Roos
- Department of Clinical Pharmacy and Pharmacy Practice, Dubai Pharmacy College
| | - Mariam Qudsi
- Department of Clinical Pharmacy and Pharmacy Practice, Dubai Pharmacy College
| | - Arwa Samara
- Department of Clinical Pharmacy and Pharmacy Practice, Dubai Pharmacy College
| | - Madina M Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Dubai Pharmacy College
| | - Samar A Al-Bayedh
- Department of Clinical Pharmacy and Pharmacy Practice, Dubai Pharmacy College
| | - Hafez Ahmed
- Department of Biochemistry, Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
28
|
Kang N, Choi SY, Kim BN, Yeo CD, Park CK, Kim YK, Kim TJ, Lee SB, Lee SH, Park JY, Park MS, Yim HW, Kim SJ. Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation. BMC Cancer 2019; 19:148. [PMID: 30760238 PMCID: PMC6375212 DOI: 10.1186/s12885-019-5360-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 02/07/2019] [Indexed: 01/17/2023] Open
Abstract
Background A hypoxic microenvironment leads to an increase in the invasiveness and the metastatic potential of cancer cells within tumors via the epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. However, hypoxia-induced changes in the expression and function of candidate stem cell markers and their possible molecular mechanism is still not understood. Methods Lung cell lines were analyzed in normoxic or hypoxic conditions. For screening among the stem cell markers, a transcriptome analysis using next-generation sequencing was performed. For validation, the EMT and stem cell characteristics were analyzed. To determine whether an epigenetic mechanism was involved, the cell lines were treated with a DNA methyltransferase inhibitor (AZA), and methylation-specific PCR and bisulfite sequencing were performed. Results Next-generation sequencing revealed that the CXCR4 expression was significantly higher after the hypoxic condition, which functionally resulted in the EMT and cancer stemness acquisition. The acquisition of the EMT and stemness properties was inhibited by treatment with CXCR4 siRNA. The CXCR4 was activated by either the hypoxic condition or treatment with AZA. The methylation-specific PCR and bisulfite sequencing displayed a decreased CXCR4 promoter methylation in the hypoxic condition. Conclusions These results suggest that hypoxia-induced acquisition of cancer stem cell characteristics was associated with CXCR4 activation by its aberrant promoter demethylation.
Collapse
Affiliation(s)
- Nahyeon Kang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Su Yeon Choi
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Bit Na Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Young Kyoon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mi Sun Park
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Woo Yim
- Department of Biostatistics, Clinical Research Coordinating Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,The Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
29
|
Lee J, Park CK, Yoon HK, Sa YJ, Woo IS, Kim HR, Kim SY, Kim TJ. PD-L1 expression in ROS1-rearranged non-small cell lung cancer: A study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thorac Cancer 2018; 10:103-110. [PMID: 30475455 PMCID: PMC6312846 DOI: 10.1111/1759-7714.12917] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background The aim of the current study was to investigate the prevalence and clinicopathologic characteristics of ROS1‐rearranged non‐small cell lung cancer (NSCLC) in routine genotypic screening in conjunction with the study of PD‐L1 expression, a biomarker for first‐line treatment decisions. Methods Reflex simultaneous genotypic screening for EGFR by peptide nucleic acid clamping, and ALK and ROS1 by fluorescence in situ hybridization (FISH) was performed on consecutive NSCLC cases at the time of initial pathologic diagnosis. We evaluated genetic aberrations, clinicopathologic characteristics, and PD‐L1 tumor proportion score (TPS) using a PD‐L1 22C3 assay kit. Results In 407 consecutive NSCLC patients, simultaneous genotyping identified 14 (3.4%) ROS1 and 19 (4.7%) ALK rearrangements, as well as 106 (26%) EGFR mutations. These mutations were mutually exclusive and were found in patients with similar clinical features, including younger age, a prevalence in women, adenocarcinoma, and advanced stage. The PD‐L1 assay was performed on 130 consecutive NSCLC samples. High PD‐L1 expression (TPS ≥ 50%) was observed in 29 (22.3%) tumors. PD‐L1 expression (TPS ≥ 1%) was significantly associated with wild type EGFR, while ROS1 rearrangement was associated with high PD‐L1 expression. Of the 14 cases with ROS1 rearrangement, 12 (85.7%) showed PD‐L1 expression and 5 (35.7%) showed high PD‐L1 expression. Conclusion In the largest consecutive routine Asian NSCLC cohort analyzed to date, we found that high PD‐L1 expression frequently overlapped with ROS1 rearrangement, while it negatively correlated with EGFR mutations.
Collapse
Affiliation(s)
- Jongmin Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung-Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Jo Sa
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Sook Woo
- Division of Hematology-Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyo Rim Kim
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sue Youn Kim
- Department of Hospital Pathology, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
30
|
Abstract
The important role of insulin-like growth factor 1 receptor (IGF-1R) in malignant tumors has been well established. Increased IGF-1R activity promotes cancer cell proliferation, migration, and invasion and is associated with tumor metastasis, treatment resistance, poor prognosis, and shortened survival in patients with cancer. However, while IGF-1R has become a promising target for cancer therapy, IGF-1R-targeted therapy is ineffective in unselected patients. It is therefore essential to evaluate IGF-1R expression before treatment in order to identify responsive patients, monitor therapy efficacy, and estimate prognosis. Insulin-like growth factor 1 receptor molecular imaging is an optimal method for assessing the expression of IGF-1R in vivo accurately and noninvasively. In this review, we will summarize the current status of IGF-1R molecular imaging in cancer, in which 5 major classes of ligands that have been developed for noninvasive IGF-1R molecular imaging will be discussed: natural ligands, monoclonal antibodies, antibody fragments, affibodies, and small molecules. For decades, IGF-1R molecular imaging is studied in full swing and more effort is needed in the future.
Collapse
Affiliation(s)
- Yingying Sun
- 1 Molecular Imaging Research Center, Harbin Medical University, Harbin, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- 1 Molecular Imaging Research Center, Harbin Medical University, Harbin, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,3 Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Baozhong Shen
- 1 Molecular Imaging Research Center, Harbin Medical University, Harbin, Heilongjiang, China.,2 TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Guo XF, Zhu XF, Cao HY, Zhong GS, Li L, Deng BG, Chen P, Wang PZ, Miao QF, Zhen YS. A bispecific enediyne-energized fusion protein targeting both epidermal growth factor receptor and insulin-like growth factor 1 receptor showing enhanced antitumor efficacy against non-small cell lung cancer. Oncotarget 2018; 8:27286-27299. [PMID: 28460483 PMCID: PMC5432335 DOI: 10.18632/oncotarget.15933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) both overexpressed on non-small cell lung cancer (NSCLC) and are known cooperatively to promote tumor progression and drug resistance. This study was to construct a novel bispecific fusion protein EGF-IGF-LDP-AE consisting of EGFR and IGF-IR specific ligands (EGF and IGF-1) and lidamycin, an enediyne antibiotic with potent antitumor activity, and investigate its antitumor efficacy against NSCLC. Binding and internalization assays showed that EGF-IGF-LDP protein could bind to NSCLC cells with high affinity and then internalized into cells with higher efficiency than that of monospecific proteins. In vitro, the enediyne-energized analogue of bispecific fusion protein (EGF-IGF-LDP-AE) displayed extremely potent cytotoxicity to NSCLC cell lines with IC50<10−11 mol/L. Moreover, the bispecific protein EGF-IGF-LDP-AE was more cytotoxic than monospecific proteins (EGF-LDP-AE and LDP-IGF-AE) and lidamycin. In vivo, EGF-IGF-LDP-AE markedly inhibited the growth of A549 xenografts, and the efficacy was more potent than that of lidamycin and monospecific counterparts. EGF-IGF-LDP-AE caused significant cell cycle arrest and it also induced cell apoptosis in a dosage-dependent manner. Pretreatment with EGF-IGF-LDP-AE inhibited EGF-, IGF-stimulated EGFR and IGF-1R phosphorylation, and blocked two main downstream signaling molecules AKT and ERK activation. These data suggested that EGF-LDP-IGF-AE protein would be a promising targeted agent for NSCLC patients with EGFR and/or IGF-1R overexpression.
Collapse
Affiliation(s)
- Xiao-Fang Guo
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Fei Zhu
- Department of Clinical Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
| | - Hai-Ying Cao
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gen-Shen Zhong
- Laboratory of Cancer Biotherapy, Institute of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Liang Li
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, China
| | - Bao-Guo Deng
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ping Chen
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pei-Zhen Wang
- Department of Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qing-Fang Miao
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Perking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Hussmann D, Madsen AT, Jakobsen KR, Luo Y, Sorensen BS, Nielsen AL. IGF1R depletion facilitates MET-amplification as mechanism of acquired resistance to erlotinib in HCC827 NSCLC cells. Oncotarget 2018; 8:33300-33315. [PMID: 28418902 PMCID: PMC5464869 DOI: 10.18632/oncotarget.16350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
EGFR-mutated non-small cell lung cancer patients experience relapse within 1-2 years of treatment with EGFR-inhibitors, such as erlotinib. Multiple resistance mechanisms have been identified including secondary EGFR-mutations, MET-amplification, and epithelial-mesenchymal transition (EMT). Previous studies have indicated a role of Insulin-like growth factor 1 receptor (IGF1R) in acquired resistance to EGFR-directed drugs as well as in EMT. In the present study, we have investigated the involvement of IGF1R in acquired high-dose erlotinib resistance in the EGFR-mutated lung adenocarcinoma cell line HCC827. We observed that IGF1R was upregulated in the immediate response to erlotinib and hyperactivated in erlotinib resistant HCC827 cells. Resistant cells additionally acquired features of EMT, whereas MET-amplification and secondary EGFR-mutations were absent. Using CRISPR/Cas9, we generated a HCC827(IGFR1-/-) cell line and subsequently investigated resistance development in response to high-dose erlotinib. Interestingly, HCC827(IGFR1-/-) cells were now observed to specifically amplify the MET gene. Additionally, we observed a reduced level of mesenchymal markers in HCC827(IGFR1-/-) indicating an intrinsic enhanced epithelial signature compared to HCC827 cells. In conclusion, our data show that IGF1R have an important role in defining selected resistance mechanisms in response to high doses of erlotinib.
Collapse
Affiliation(s)
- Dianna Hussmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Tranberg Madsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
33
|
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17:53. [PMID: 29455669 PMCID: PMC5817859 DOI: 10.1186/s12943-018-0793-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/01/2018] [Indexed: 01/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Tu C, Wang F, Wan J. MicroRNA-381 inhibits cell proliferation and invasion in endometrial carcinoma by targeting the IGF-1R. Mol Med Rep 2017; 17:4090-4098. [PMID: 29257334 DOI: 10.3892/mmr.2017.8288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma (EC) is the sixth most common type of malignant tumor occurring in females. MicroRNAs (miRNAs) serve as oncogenes or tumor suppressors in human cancer and play important roles in tumorigenesis, and tumor development by regulating various processes. Thus, further investigation into miRNAs involved in EC formation and progression may aid in developing effective therapeutic strategies for patients with this disease. miRNA‑381 (miR‑381) is aberrantly expressed in multiple types of human cancer. However, the expression pattern, biological roles and underlying mechanisms of miR‑381 in EC are poorly understood. In the present study, the results showed that miR‑381 was downregulated in EC tissues and cell lines. Decreased miR‑381 expression correlated with the International Federation of Gynecology and Obstetrics stage, lymph nodes metastasis and myometrial invasion of EC. The ectopic expression of miR‑381 significantly inhibited the proliferation and invasion of EC cells. Through a series of experiments, the insulin‑like growth factor receptor 1 (IGF‑1R) was identified as a novel direct target of miR‑381 in EC. Furthermore, IGF‑1R was highly expressed in EC tissues and inversely correlated with miR‑381 levels. IGF‑1R overexpression partially abrogated the tumor‑suppressive effects of miR‑381 on the proliferation and invasion of EC cells. miR‑381 targeted IGF‑1R to inactivate the protein kinase B (AKT) and extracellular signal‑regulated kinase (ERK) signaling pathways in EC. These results suggest that miR‑381 acts as a tumor suppressor in EC by directly targeting IGF‑1R, and indirectly regulating the AKT and ERK signaling pathways. Thus, miR‑381 should be investigated as a prognostic biomarker and novel therapeutic target for the treatment of patients with EC.
Collapse
Affiliation(s)
- Chunhua Tu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junhui Wan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
35
|
The preoperative HbA1c level is an independent prognostic factor for the postoperative survival after resection of non-small cell lung cancer in elderly patients. Surg Today 2017; 48:517-524. [DOI: 10.1007/s00595-017-1612-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
|
36
|
van der Wekken AJ, Kuiper JL, Saber A, Terpstra MM, Wei J, Hiltermann TJN, Thunnissen E, Heideman DAM, Timens W, Schuuring E, Kok K, Smit EF, van den Berg A, Groen HJM. Overall survival in EGFR mutated non-small-cell lung cancer patients treated with afatinib after EGFR TKI and resistant mechanisms upon disease progression. PLoS One 2017; 12:e0182885. [PMID: 28854272 PMCID: PMC5576694 DOI: 10.1371/journal.pone.0182885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine survival in afatinib-treated patients after treatment with first-generation EGFR tyrosine kinase inhibitors (TKIs) and to study resistance mechanisms in afatinib-resistant tumors. METHODS Characteristics and survival of patients treated with afatinib after resistance to erlotinib or gefitinib in two large Dutch centers were collected. Whole exome sequencing (WES) and pathway analysis was performed on available pre- and post-afatinib tumor biopsies and normal tissue. RESULTS A total of 38 patients were treated with afatinib. T790M mutations were identified in 22/29 (76%) pre-afatinib treatment tumor samples. No difference in median progression-free-survival (2.8 months (95% CI 2.3-3.3) and 2.7 months (95% CI 0.9-4.6), p = 0.55) and median overall-survival (8.8 months (95% CI 4.2-13.4) and 3.6 months (95% CI 2.3-5.0), p = 0.14) were observed in T790M+ patients compared to T790M- mutations. Somatic mutations in TP53, ADAMTS2, CNN2 and multiple genes in the Wnt and PI3K-AKT pathway were observed in post-afatinib tumors of six afatinib-responding and in one non-responding patient. No new EGFR mutations were found in the post-afatinib samples of the six responding patients. Further analyses of post-afatinib progressive tumors revealed 28 resistant specific mutations in six genes (HLA-DRB1, AQP7, FAM198A, SEC31A, CNTLN, and ESX1) in three afatinib responding patients. No known EGFR-TKI resistant-associated copy number gains were acquired in the post-afatinib samples. CONCLUSION No differences in survival were observed in patients with EGFR-T790M treated with afatinib compared to those without T790M. Tumors from patients who had progressive disease during afatinib treatment were enriched for mutations in genes involved in Wnt and PI3K-AKT pathways.
Collapse
Affiliation(s)
- A. J. van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - J. L. Kuiper
- Department of Pulmonary Diseases, VU University Medical Centre, Amsterdam, Netherlands
| | - A. Saber
- Department of Pathology and Medical Biology, Groningen, University of Groningen, Groningen, Netherlands
| | - M. M. Terpstra
- University of Groningen, Department of Genetics, Groningen, Netherlands
| | - J. Wei
- University of Groningen, Department of Genetics, Groningen, Netherlands
| | - T. J. N. Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - E. Thunnissen
- Department of Pathology, VU University Medical Centre, Amsterdam, Netherlands
| | - D. A. M. Heideman
- Department of Pathology, VU University Medical Centre, Amsterdam, Netherlands
| | - W. Timens
- Department of Pathology and Medical Biology, Groningen, University of Groningen, Groningen, Netherlands
| | - E. Schuuring
- Department of Pathology and Medical Biology, Groningen, University of Groningen, Groningen, Netherlands
| | - K. Kok
- University of Groningen, Department of Genetics, Groningen, Netherlands
| | - E. F. Smit
- Department of Pulmonary Diseases, VU University Medical Centre, Amsterdam, Netherlands
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - A. van den Berg
- Department of Pathology and Medical Biology, Groningen, University of Groningen, Groningen, Netherlands
| | - H. J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): The road to a success, paved with failures. Pharmacol Ther 2017; 174:1-21. [DOI: 10.1016/j.pharmthera.2017.02.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Humar M, Kern I, Vlacic G, Hadzic V, Cufer T. Insulin-like Growth Factor 1 Receptor Expression in Advanced Non-small-cell Lung Cancer and its Impact on Overall Survival. Radiol Oncol 2017; 51:195-202. [PMID: 28740455 PMCID: PMC5514660 DOI: 10.1515/raon-2017-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The insulin-like growth factor 1 receptor (IGF1R) expression has been addressed as a potential prognostic marker in non-small-cell lung cancer (NSCLC) in various studies; however, the associations between IGF1R expression and prognosis of advanced NSCLC patients is still controversial. The aim of our observational, cohort study was to evaluate the expression of IGF1R in advanced NSCLC and its prognostic role. A subgroup analysis was performed to address the influence of pre-existing type 2 diabetes mellitus (T2DM) status on IGF1R expression and overall survival (OS). PATIENTS AND METHODS IGF1R expression was evaluated in 167 consecutive advanced NSCLC patients (stage IIIB and IV), diagnosed and treated at one university institution, between 2005 and 2010. All patients received at least one line of standard cytotoxic therapy and 18 of them had pre-existing T2DM. IGF1R expression was determined by immunohistochemical (IHC) staining, with score ≥ 1+ considered as positive. Information on baseline characteristics, as well as patients' follow-up data, were obtained from the hospital registry. Associations of IGF1R expression with clinical characteristics and overall survival were compared. RESULTS IGF1R expression was positive in 79.6% of patients, significantly more often in squamous-cell carcinoma (SCC) compared to non-squamous-cell (NSCC) histology (88.7% vs. 74.3%; P = 0.03). IGF1R positivity did not correlate with T2DM status or with other clinical features (sex, smoking status, performance status). Median OS was similar between IGF1R positive and IGF1R negative group (10.2 vs. 8.5 months, P = 0.168) and between patients with or without T2DM (8.7 vs. 9.8 months, P = 0.575). Neither IGF1R expression nor T2DM were significant predictors of OS. CONCLUSIONS IGF1R or T2DM status were not significantly prognostic in described above collective of advanced NSCLC treated with at least one line of chemotherapy. In addition, no association between T2DM status and IGF1R expression was found. Further studies on IGF1R expression and its prognostic as well as therapeutic consequences in a larger collective of advanced NSCLC patients, with or without T2DM, are needed.
Collapse
Affiliation(s)
- Mojca Humar
- General hospital of Nova Gorica, Ulica padlih borcev 13a, 5290 Šempeter Pri Gorici, Slovenia
| | | | | | - Vedran Hadzic
- Faculty of Sport, University of Ljubljana, Slovenia, Ljubljana, Slovenia
| | | |
Collapse
|
39
|
Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer 2017; 16:6. [PMID: 28137302 PMCID: PMC5282886 DOI: 10.1186/s12943-016-0576-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.
Collapse
Affiliation(s)
- Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Izhar Singh Batth
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
40
|
Meng F, Wang F, Wang L, Wong SCC, Cho WCS, Chan LWC. MiR-30a-5p Overexpression May Overcome EGFR-Inhibitor Resistance through Regulating PI3K/AKT Signaling Pathway in Non-small Cell Lung Cancer Cell Lines. Front Genet 2016; 7:197. [PMID: 27895663 PMCID: PMC5108768 DOI: 10.3389/fgene.2016.00197] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is one of the most common deadly diseases worldwide, most of which is non-small cell lung cancer (NSCLC). The epidermal growth factor receptor (EGFR) mutant NSCLCs frequently respond to the EGFR tyrosine kinase inhibitors (EGFR-TKIs) treatment, such as Gefitinib and Erlotinib, but the development of acquired resistance limits the utility. Multiple resistance mechanisms have been explored, e.g., the activation of alternative tyrosine kinase receptors (TKRs) sharing similar downstream pathways to EGFR. MicroRNAs (miRNAs) are short, endogenous and non-coding RNA molecules, regulating the target gene expression. In this study, we explored the potential of miR-30a-5p in targeting the EGFR and insulin-like growth factor receptor-1 (IGF-1R) signaling pathways to overcome the drug resistance. IGF-1R is one of the tyrosine kinase receptors that share the same EGFR downstream molecules, including phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT). In this work, an in vitro study was designed using EGFR inhibitor (Gefitinib), IGF-1R inhibitor (NVP-AEW541), and miRNA mimics in two Gefitinib-resistant NSCLC cell lines, H460 and H1975. We found that the combination of EGFR and IGF-1R inhibitors significantly decreased the phosphorylated AKT (p-AKT) expression levels compared to the control group in these two cell lines. Knockdown of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) had the same effect with the dual inhibition of EGFR and IGF-1R to reduce the expression of p-AKT in the signaling pathway. Overexpression of miR-30a-5p significantly reduced the expression of the PI3K regulatory subunit (PIK3R2) to further induce cell apoptosis, and inhibit cell invasion and migration properties. Hence, miR-30a-5p may play vital roles in overcoming the acquired resistance to EGFR-TKIs, and provide useful information for establishing novel cancer treatment.
Collapse
Affiliation(s)
- Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - Fengfeng Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - Lili Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| |
Collapse
|
41
|
Zhou J, Wang J, Zeng Y, Zhang X, Hu Q, Zheng J, Chen B, Xie B, Zhang WM. Implication of epithelial-mesenchymal transition in IGF1R-induced resistance to EGFR-TKIs in advanced non-small cell lung cancer. Oncotarget 2016; 6:44332-45. [PMID: 26554308 PMCID: PMC4792560 DOI: 10.18632/oncotarget.6293] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms for acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in about 30%-40% of non-small cell lung cancer (NSCLC) patients remain elusive. Recent studies have suggested that activation of epithelial-mesenchymal transition (EMT) and type 1 insulin-like growth factor receptor (IGF1R) is associated with acquired EGFR-TKIs resistance in NSCLC. Our study aims to further explore the mechanism of EMT and IGF1R in acquired EGFR-TKIs resistance in NSCLC cell lines with mutant (PC-9) or wild-type EGFR (H460). Compared to parental cells, EGFR-TKIs-resistant PC-9/GR and H460/ER cells displayed an EMT phenotype and showed overexpression of IGF1R. SiIGF1R in PC-9/GR and H460/ER cells reversed EMT-related morphologies and reversed their resistance to EGFR-TKIs. Exogenous IGF-1 alone induced EMT in EGFR-TKIs-naïve PC-9 and H460 cells and increased their resistance against EGFR-TKIs. Inducing EMT by TGF-β1 in PC-9 and H460 cells decreased their sensitivity to EGFR-TKIs, whereas reversing EMT by E-cadherin overexpression in PC-9/GR and H460/ER cells restored their sensitivity to EGFR-TKIs. These data suggest that IGF1R plays an important role in acquired drug resistance against EGFR-TKIs by inducing EMT. Targeting IGF1R and EMT may be a potential therapeutic strategy for advanced NSCLC with acquired EGFR-TKIs resistance.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Oncology, Guangzhou Clinical College of The Second Military Medical University, Guangzhou, Guangdong 510010, China.,Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Jinjing Wang
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Yunyun Zeng
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Xi Zhang
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Qiaoting Hu
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Jihua Zheng
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Bei Chen
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Bo Xie
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| | - Wei-Min Zhang
- Department of Oncology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, China
| |
Collapse
|
42
|
Insulin-like growth factor (IGF) axis in cancerogenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:78-104. [PMID: 28528692 DOI: 10.1016/j.mrrev.2016.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
Abstract
Determination of the role of insulin-like growth factor (IGF) family components in carcinogenesis of several human tumors is based on numerous epidemiological and pre-clinical studies, experiments in vivo and in vitro and on attempts at application of drugs affecting the IGF axis. Investigative hypotheses in original studies were based on biological functions manifested by the entire family of IGF (ligands, receptors, linking proteins, adaptor molecules). In the context of carcinogenesis the most important functions of IGF family involve intensification of proliferation and inhibition of cell apoptosis and effect on cell transformation through synthesis of several regulatory proteins. IGF axis controls survival and influences on metastases of cells. Interactions of IGF axis components may be of a direct or indirect nature. The direct effects are linked to activation of PI3K/Akt signaling pathway, in which the initiating role is first of all played by IGF-1 and IGF-1R. Activity of this signaling pathway leads to an increased mitogenesis, cell cycle progression, and protection against different apoptotic stresses. Indirect effects of the axis depend on interactions between IGF and other molecules important for cancer etiology (e.g. sex hormones, products of suppressor genes, viruses, and other GFs) and the style of life (nutrition, physical activity). From the clinical point of view, components of IGF system are first of all considered as diagnostic serous and/or tissue biomarkers of a given cancer, prognostic factors and attractive target of modern anti-tumor therapies. Several mechanisms in which IGF system components act in the process of carcinogenesis need to be clarified, mainly due to multifactorial etiology of the neoplasms. Pin-pointing of the role played in carcinogenesis by any single signaling pathway remains particularly difficult. The aim of this review is to summarize the current data of several epidemiological studies, experiments in vitro and on animal models, to increase our understanding of the complex role of IGF family components in the most common human cancers.
Collapse
|
43
|
Arrieta O, Varela-Santoyo E, Soto-Perez-de-Celis E, Sánchez-Reyes R, De la Torre-Vallejo M, Muñiz-Hernández S, Cardona AF. Metformin use and its effect on survival in diabetic patients with advanced non-small cell lung cancer. BMC Cancer 2016; 16:633. [PMID: 27519177 PMCID: PMC4983059 DOI: 10.1186/s12885-016-2658-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
Background Previous population-based studies have demonstrated an association between metformin use and improved survival among diabetic patients with cancer. We sought to analyze the effects of diabetes and its treatment in terms of the survival of patients with lung cancer. Methods Overall, 1106 patients with non-small cell lung cancer (94.3 % with stage IV disease) were included. The outcomes were compared between the patients with (n = 186) and without diabetes (n = 920). The characteristics associated with antidiabetic treatment and proper glycemic control (defined as a mean plasma glucose <130 mg/dL) were examined at diagnosis. The overall survivals (OSs) of the different patient populations were analyzed using Kaplan-Meier curves, and a multivariate Cox proportional hazard model was used to determine the influences of the patient and tumor characteristics on survival. Results The OS for the entire population was 18.3 months (95 % CI 16.1-20.4). There was no difference in the OSs of the diabetic and non-diabetic patients (18.5 vs 16.4 months, p = 0.62). The diabetic patients taking metformin exhibited a superior OS than did those on other antidiabetic treatments (25.6 vs 13.2 months, p = 0.017). Those with proper glycemic control had a better OS than did those without proper glycemic control and the non-diabetics (40.5 vs 13.2 and 18.5 months, respectively, p < 0.001). Both the use of metformin (HR 0.53, p < 0.0001 and HR 0.57, p = 0.017, respectively) and proper glycemic control (HR 0.49, p < 0.0001 and HR 0.40, p = 0.002, respectively) were significant protective factors in all and only diabetic patients, respectively. Conclusions The diabetic patients with proper glycemic control exhibited a better OS than did those without proper glycemic control and even exhibited a better OS than did the patients without diabetes mellitus. Metformin use was independently associated with a better OS. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2658-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22 Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| | - Edgar Varela-Santoyo
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22 Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Enrique Soto-Perez-de-Celis
- Cancer Care in the Elderly Clinic, Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberto Sánchez-Reyes
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22 Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Martha De la Torre-Vallejo
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22 Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Saé Muñiz-Hernández
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22 Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Andrés F Cardona
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| |
Collapse
|
44
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
45
|
Park E, Park SY, Kim H, Sun PL, Jin Y, Cho SK, Kim K, Lee CT, Chung JH. Membranous Insulin-like Growth Factor-1 Receptor (IGF1R) Expression Is Predictive of Poor Prognosis in Patients with Epidermal Growth Factor Receptor (EGFR)-Mutant Lung Adenocarcinoma. J Pathol Transl Med 2015; 49:382-8. [PMID: 26265685 PMCID: PMC4579278 DOI: 10.4132/jptm.2015.07.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Insulin-like growth factor-1 receptor (IGF1R) is a membrane receptor-type tyrosine kinase that has attracted considerable attention as a potential therapeutic target, although its clinical significance in non-small cell lung cancer (NSCLC) is controversial. This study aimed to clarify the clinical significance of IGF1R expression in human NSCLC. METHODS IGF1R protein expression was evaluated using immunohistochemistry in 372 patients with NSCLC who underwent curative surgical resection (146 squamous cell carcinomas [SqCCs] and 226 adenocarcinomas [ADCs]). We then analyzed correlations between expression of IGF1R and clinicopathological and molecular features and prognostic significance. RESULTS Membranous and cytoplasmic IGF1R expression were significantly higher in SqCCs than in ADCs. In patients with SqCC, membranous IGF1R expression was associated with absence of vascular, lymphatic, and perineural invasion; lower stage; and better progression-free survival (PFS) (hazard ratio [HR], 0.586; p = .040). In patients with ADC, IGF1R expression did not have a significant prognostic value; however, in the subgroup of epidermal growth factor receptor (EGFR)-mutant ADC, membranous IGF1R expression was associated with lymphatic and perineural invasion, solid predominant histology, and higher cancer stage and was significantly associated with worse PFS (HR, 2.582; p = .009). CONCLUSIONS Lung ADC and SqCC showed distinct IGF1R expression profiles that demonstrated prognostic significance. High membranous IGF1R expression was predictive of poor PFS in EGFR-mutant lung ADC, while it was predictive of better PFS in SqCC. These findings will help improve study design for subsequent investigations and select patients for future anti-IGF1R therapy.
Collapse
Affiliation(s)
- Eunhyang Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Young Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Ping-Li Sun
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yan Jin
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Suk Ki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Choon-Taek Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea ; Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|