1
|
Huang Q, Zhu L, Liu Y, Zhang Y. Thymic epithelial tumor medical treatment: A narrative review. Biochim Biophys Acta Rev Cancer 2024; 1879:189167. [PMID: 39117091 DOI: 10.1016/j.bbcan.2024.189167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial tumors, a malignancy originating in the thymus, are the commonest primary neoplasm of the anterior mediastinum; however, among thoracic tumors, they have a relatively low incidence rare. Thymic epithelial tumors can be broadly classified into thymic carcinoma and thymoma. As the cornerstone of thymic tumor treatment, surgery is the preferred treatment for early-stage patients, whereas, for advanced unresectable thymic tumors, the treatment is chemoradiotherapy. Targeted therapy is less effective for thymic tumors. Moreover, the use of immune checkpoint inhibitors as another effective treatment option for advanced unresectable thymic tumors, particularly thymomas, is limited owing to immune-related adverse effects. Here, we have summarized all pertinent information regarding chemotherapy, especially preoperative neoadjuvant chemotherapy, and chemotherapy in combination with other treatments, and reviewed the effectiveness of these procedures and recent advances in targeted therapy. In addition, we analyzed the efficacy and safety of immune checkpoint inhibitors in thymic epithelial tumors, to provide a holistic treatment view.
Collapse
Affiliation(s)
- Qian Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yang Y, Yu Y, Fan Y, Li H. Evolving treatment landscape in thymic epithelial tumors: From mechanism to therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189145. [PMID: 38942215 DOI: 10.1016/j.bbcan.2024.189145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Thymic epithelial tumors (TETs) are rare neoplasms of the anterior mediastinum that arise from thymic epithelial cells. Although surgery is the preferred treatment for resectable TETs, the options for unresectable or recurrent advanced-stage TETs are limited beyond platinum-based chemotherapy. The evolving landscape of TET treatments is marked by significant advancements in targeted therapies and immunotherapies, particularly with anti-angiogenic agents and immune checkpoint inhibitors (ICIs). While monotherapies demonstrated certain efficacy, the development of combination strategies is vital for improving patient outcomes. This review consolidates progress in anti-angiogenic therapies and ICIs, emphasizing the evolution of combination therapies of TETs. Furtherly, we particularly discuss new first-line strategies based on these advancements and emphasizes exploring novel treatments like antibody-drug conjugates, immunomodulatory drugs and cytokine-based agents for TETs. Mechanistically, the molecular features of TETs integrated with clinical diagnosis and targeted therapy, and immunophenotyping of TETs along with its impact on the efficacy and safety of immunotherapy are discussed. Thus, this review systemizes the development in the treatment landscape of TETs, integrating the corresponding molecular and immune mechanisms, aiming to provide new references for the treatment of TETs.
Collapse
Affiliation(s)
- Yehao Yang
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yun Fan
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Hui Li
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
3
|
Zhang B, Liu Y, Chen Z, Chen J, Yu H, Li M, Ma S, Cheng C, Chen L. Chemotherapy versus chemotherapy plus immune checkpoint inhibitors for the first-line treatment of unresectable thymic carcinoma: A multicenter retrospective study. Int J Cancer 2024; 155:710-718. [PMID: 38608177 DOI: 10.1002/ijc.34948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Thymic carcinoma (TC) is a rare malignant tumor with a poor prognosis, and there is currently limited data on the use of immunotherapy in patients with unresectable TC. In this study, data of patients with unresectable TC diagnosed from January 2017 were retrospectively collected from multiple centers. Treatment response, progression-free survival (PFS), overall survival (OS), survival-independent prognostic factor, and adverse events (AEs) were further analyzed. As a result, a total of 93 patients with unresectable TC were enrolled, of which 54 received first-line chemotherapy, and 39 received chemotherapy plus immune checkpoint inhibitors (ICIs). The objective response rate was 50% (27/54) in the chemotherapy group and 76.9% (30/39) in the chemotherapy plus ICIs group. The chemotherapy plus ICIs group achieved significant median PFS benefit (8.8 vs. 34.9 months, p < .001) and median OS benefit (41.8 months vs. not reached, p = .025). Multivariate analysis showed that ICIs and local therapy were independent prognostic factors for PFS. In addition, 17 patients developed immune-related AEs (IRAEs), of which 15 (38.5%) had Grade 1 or 2 IRAEs and 2 (5.1%) had Grade 3 IRAEs in the chemotherapy plus ICIs group. In conclusion, the efficacy of chemotherapy plus ICIs is superior to chemotherapy, and the adverse effects are manageable in patients with unresectable TC.
Collapse
Affiliation(s)
- Baishen Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Yao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiting Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Hui Yu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Meichen Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| |
Collapse
|
4
|
Vasilev P, Popovska S, Petrova Kraevska E, Karamanliev M, Dimitrov D, Yordanova I. Relationship Between PD-L1, PD-1, CD8 and Clinicopathological Factors in Primary SCCs. Dermatol Pract Concept 2024; 14:dpc.1403a176. [PMID: 39122531 PMCID: PMC11313957 DOI: 10.5826/dpc.1403a176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Squamous cell carcinoma of the skin (SCCs) is the second most common skin cancer, with continuously increasing incidence. Programmed cell death ligand 1 (PD-L1), programmed cell death 1 receptor (PD-1), and CD8 expression in primary SCCs have not been described in many studies. OBJECTIVE We investigated the association between PD-L1, PD-1, CD8, and clinicopathological prognostic factors for recurrence, metastasis, and mortality of SCCs. PATIENTS AND METHODS Immunohistochemically stained sections of 100 primary SCCs divided into two groups according to diameter of the tumors (<20 mm and >20 mm) were assessed. Recombinant rabbit anti-PD-L1 antibody [SP142] - C-terminal, rabbit monoclonal anti-PD1 antibody [NAT105], and FLEX Mono Mo A-Hu CD8, cl C8/144B, RTU were used. RESULTS We did not establish statistically significant differences between PD-L1, PD-1, CD8 expression, and high-risk clinicopathological features - tumor size >20 mm, depth >6 mm, poor tumor cell differentiation, perineural/lymphovascular invasion, low/absent lymphocyte stromal reaction. CONCLUSIONS In primary SCCs, the expression of PD-L1, PD-1, and CD8 are not associated with high-risk clinicopathological factors. We suggest that these immunohistochemical markers are more significant in advanced cases and metastatic tissues.
Collapse
Affiliation(s)
- Preslav Vasilev
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University-Pleven, Bulgaria
| | - Savelina Popovska
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University-Pleven, Bulgaria
| | - Elitsa Petrova Kraevska
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University-Pleven, Bulgaria
| | - Martin Karamanliev
- Surgical Oncology Department, University Hospital “Dr. Georgi Stranski”, Faculty of Medicine, Medical University-Pleven, Bulgaria
| | - Dobromir Dimitrov
- Surgical Oncology Department, University Hospital “Dr. Georgi Stranski”, Faculty of Medicine, Medical University-Pleven, Bulgaria
| | - Ivelina Yordanova
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University-Pleven, Bulgaria
| |
Collapse
|
5
|
Okuma Y, Nomura S, Sakakibara-Konishi J, Tsukita Y, Murakami S, Hosomi Y, Tambo Y, Kogure Y, Yoshioka H, Tamiya M, Ninomiya K, Iwama E. Artemis: A Multicenter, Open-Label, Single-Arm, Phase II Study to Evaluate the Efficacy and Safety of First-Line Carboplatin/Paclitaxel/Lenvatinib/Pembrolizumab Combination for Previously Untreated Advanced or Recurrent Thymic Carcinomas. Clin Lung Cancer 2024; 25:389-394. [PMID: 38413246 DOI: 10.1016/j.cllc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Thymic carcinoma is a rare cancer with an aggressive clinical presentation and no organotypic symptoms. Despite using platinum-based chemotherapy as first-line treatment, the prognosis remains poor, necessitating a novel therapeutic strategy. METHODS The artemis trial is a Phase II, single-arm, multicenter study designed to evaluate the efficacy and safety of carboplatin, paclitaxel, lenvatinib, and pembrolizumab as first-line chemotherapy for patients with advanced or recurrent thymic carcinoma. A total of 35 patients will be enrolled in this study and will receive induction therapy every 3 weeks for up to 4 cycles, followed by pembrolizumab every 3 weeks, and daily lenvatinib as maintenance therapy for up to 31 cycles (for 2 years). Lenvatinib will be continued until disease progression or unacceptable toxicity based on the discretion of the attending physician. CONCLUSION The primary endpoint of the study is the objective response rate, with secondary endpoints including progression-free survival, overall survival, duration of response, disease control rate, and safety profile. TRIAL REGISTRATION ClinicalTrials.gov NCT05832827 Registered on April 27, 2023, https://classic. CLINICALTRIALS gov/ct2/show/NCT05832827. Japan Registry of Clinical Trials (jRCT), jRCT2031230114. Registered on May 22, 2023, https://jrct.niph.go.jp/latest-detail/jRCT2031230114.
Collapse
Affiliation(s)
- Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Japan.
| | - Shogo Nomura
- Department of Biostatistics and Bioinformatics, The University of Tokyo, Tokyo, Japan
| | - Jun Sakakibara-Konishi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yuichi Tambo
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Yoshihito Kogure
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroshige Yoshioka
- Department of Thoracic Oncology, Kansai Medical University Hospital, Hirakata, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kiichiro Ninomiya
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Lucà S, Accardo M, Campione S, Franco R. Immunotherapy in thymic epithelial tumors: tissue predictive biomarkers for immune checkpoint inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:465-476. [PMID: 38966177 PMCID: PMC11220306 DOI: 10.37349/etat.2024.00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 07/06/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare malignant neoplasms arising in the thymus gland. Nevertheless, TETs, including thymomas (TMs), thymic carcinomas (TCs), and thymic neuroendocrine neoplasms (TNENs), are the most common mediastinal malignancies overall. A multidisciplinary approach is required for the appropriate diagnostic and therapeutic management of TETs. To date, the main therapeutic strategies are largely depended on the stage of the tumor and they include surgery with or without neoadjuvant or adjuvant therapy, represented by platinum-based chemotherapy, radiotherapy or chemoradiotherapy. Immune checkpoint inhibitors (ICIs) are ongoing under evaluation in the advanced or metastatic diseases despite the challenges related to the very low tumor mutation burden (TMB) and the high incidence of immune-related adverse events in TETs. In this regard, predictive impact of tissue biomarkers expression such as programmed cell death ligand-1 (PD-L1), and other emerging biomarkers, as well as their optimal and shared interpretation are currently under evaluation in order to predict response rates to ICIs in TETs.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Severo Campione
- Department of Advanced Diagnostic-Therapeutic Technologies and Health Services Section of Anatomic Pathology, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
7
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Ho IW, Pan YL, Lai JI, Liu CY. Characteristics and outcome of systemic treatment for metastatic or unresectable thymic carcinoma: A single institution experience. Thorac Cancer 2024; 15:339-346. [PMID: 38149471 PMCID: PMC10834203 DOI: 10.1111/1759-7714.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Thymic carcinoma is a rare disease with an incidence of around 0.5 cases per million with a poor prognosis. The aim of this study was to assess patient outcomes with advanced thymic carcinoma receiving first-line chemotherapy. METHODS In our retrospective cohort study, we included patients who underwent treatment for metastatic thymic carcinoma between January 2013 to December 2019 in our hospital. Overall survival, progression-free survival (PFS), objective response rates (ORR) and chemotherapy regimens were assessed and analyzed. RESULTS A total of 27 patients were retrospectively analyzed. All patients received a platinum (cisplatin or carboplatin) based regimen as first-line chemotherapy (29.6% received ADOC, 11.1% received PE, 40.7% received CP, 14.8% received CAP). The median PFS on first-line chemotherapy was 199 days. The response rate was 40.7%. Median overall survival (OS) was 585 days. Positive CD5 staining was associated with better PFS. CONCLUSION We highlight the critical role of platinum-based chemotherapy agents as a primary treatment modality in advanced thymic carcinoma, underscoring the efficacy of platinum as a first-line option for recurrent disease, even in cases previously treated with platinum. Additionally, our findings indicate that CD5 positivity could be associated with improved PFS, suggesting its potential as a prognostic marker.
Collapse
Affiliation(s)
- I-Wei Ho
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Internal Medicine, En Chu Kong hospital, New Taipei city, Taiwan
| | - Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Transfusion Medicine, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Ying J, Huang Y, Ye X, Zhang Y, Yao Q, Wang J, Yang X, Yu C, Guo Y, Zhang X, Lv Q, Wang C, Mao W, Zhao A. Comprehensive study of clinicopathological and immune cell infiltration and lactate dehydrogenase expression in patients with thymic epithelial tumours. Int Immunopharmacol 2024; 126:111205. [PMID: 38029550 DOI: 10.1016/j.intimp.2023.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) has emerged as a promising biomarker for cancer. However, the current understanding of LDH and circulating LDH expression in thymic epithelial tumour (TET) is lacking. METHODS A comprehensive literature review and meta-analysis were performed to evaluate the clinical significance of circulating LDH levels in patients with TET. Circulating LDH levels were measured using a laboratory analyser (Cobas8000, Roche, Basel, Switzerland). The maximum standardised uptake value (SUVmax) was determined in patients who underwent whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Multiplex immunohistochemistry (IHC) was performed using a commercially available kit (Opal 6-plex Detection Kit, Akoya Biosciences, Marlborough, MA, USA) and slide scanner (Slideview VS200, Olympus, Tokyo, Japan). All statistical analyses were performed using SPSS (IBM Corp., Armonk, NY, USA) and Prism version 9.0 (GraphPad Inc., San Diego, CA, USA). Differences with p < 0.05 were considered to be statistically significant. RESULTS Meta-analysis revealed that elevated circulating serum levels of LDH predicted poor prognosis in patients with TET. Circulating levels of LDH were analysed in the serum of 313 patients with TET and 87 with benign mediastinal mass. The mean circulating LDH level in patients with thymic carcinoma (TC) was significantly higher than that in those with thymoma (TM) and the benign group (p < 0.001). Expression levels of circulating LDH were significantly reduced in postoperative samples compared with that in preoperative samples (p < 0.05). Receiver operating characteristic (ROC) curve analysis for diagnosing TC yielded an area under the curve of 0.74, with a sensitivity of 54 % and specificity of 86 %. Furthermore, patients with TC exhibited higher 18F-FDG PET/CT SUVmax values compared to those with TM. Correlation analysis demonstrated a positive association between SUVmax values and circulating LDH levels. In addition, the percentages of LDH-positive cells in TC and type B1 TM tissues were higher than those in other subtypes of TM, and a significant positive correlation between the percentages of LDH-positive and CD20-positive cells was detected in patients with TET (p < 0.05). CONCLUSION Circulating serum LDH level may serve as a non-invasive biomarker for the diagnosis and prognosis of TET. The relationship between LDH expression and immune cell infiltration merits further regarding its application in companion diagnosis for immunotherapy.
Collapse
Affiliation(s)
- Jianghua Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Yueyu Huang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China; The Second Clinical Medical College, Zhejiang Traditional Chinese Medicine University, Hangzhou 310000, Zhejiang, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Yimin Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Qifeng Yao
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Jiahui Wang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Xuping Yang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Chang Yu
- Department of Pathology, Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China
| | - Yangzhong Guo
- Thoracic Oncology Laboratory, Jiangxi Cancer Hospital, Nanchang 330006, Jiangxi, China
| | - Xiaofang Zhang
- Thoracic Oncology Laboratory, Jiangxi Cancer Hospital, Nanchang 330006, Jiangxi, China
| | - Qiaoli Lv
- Thoracic Oncology Laboratory, Jiangxi Cancer Hospital, Nanchang 330006, Jiangxi, China
| | - Changchun Wang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou 310000, Zhejiang, China
| | - Weimin Mao
- Thoracic Oncology Laboratory, Jiangxi Cancer Hospital, Nanchang 330006, Jiangxi, China; Department of Thoracic Surgery, Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou 310000, Zhejiang, China.
| | - An Zhao
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang, China; Thoracic Oncology Laboratory, Jiangxi Cancer Hospital, Nanchang 330006, Jiangxi, China; Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
10
|
Barachini S, Pardini E, Burzi IS, Sardo Infirri G, Montali M, Petrini I. Molecular and Functional Key Features and Oncogenic Drivers in Thymic Carcinomas. Cancers (Basel) 2023; 16:166. [PMID: 38201593 PMCID: PMC10778094 DOI: 10.3390/cancers16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Thymic epithelial tumors, comprising thymic carcinomas and thymomas, are rare neoplasms. They differ in histology, prognosis, and association with autoimmune diseases such as myasthenia gravis. Thymomas, but not thymic carcinomas, often harbor GTF2I mutations. Mutations of CDKN2A, TP53, and CDKN2B are the most common thymic carcinomas. The acquisition of mutations in genes that control chromatin modifications and epigenetic regulation occurs in the advanced stages of thymic carcinomas. Anti-angiogenic drugs and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have shown promising results for the treatment of unresectable tumors. Since thymic carcinomas are frankly aggressive tumors, this report presents insights into their oncogenic drivers, categorized under the established hallmarks of cancer.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Pardini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Sofia Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marina Montali
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
11
|
Perrino M, Cordua N, De Vincenzo F, Borea F, Aliprandi M, Cecchi LG, Fazio R, Airoldi M, Santoro A, Zucali PA. Thymic Epithelial Tumor and Immune System: The Role of Immunotherapy. Cancers (Basel) 2023; 15:5574. [PMID: 38067278 PMCID: PMC10705681 DOI: 10.3390/cancers15235574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 10/16/2024] Open
Abstract
Thymic epithelial tumors (TETs) comprise a rare group of thoracic cancers, classified as thymomas and thymic carcinomas (TC). To date, chemotherapy is still the standard treatment for advanced disease. Unfortunately, few therapeutic options are available for relapsed/refractory tumors. Unlike other solid cancers, the development of targeted biologic and/or immunologic therapies in TETs remains in its nascent stages. Moreover, since the thymus plays a key role in the development of immune tolerance, thymic tumors have a unique biology, which can confer susceptibility to autoimmune diseases and ultimately influence the risk-benefit balance of immunotherapy, especially for patients with thymoma. Indeed, early results from single-arm studies have shown interesting clinical activity, albeit at a cost of a higher incidence of immune-related side effects. The lack of knowledge of the immune mechanisms associated with TETs and the absence of biomarkers predictive of response or toxicity to immunotherapy risk limiting the evolution of immunotherapeutic strategies for managing these rare tumors. The aim of this review is to summarize the existing literature about the thymus's immune biology and its association with autoimmune paraneoplastic diseases, as well as the results of the available studies with immune checkpoint inhibitors and cancer vaccines.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Nadia Cordua
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Fabio De Vincenzo
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Marta Aliprandi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Luigi Giovanni Cecchi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Roberta Fazio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Marco Airoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Armando Santoro
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Paolo Andrea Zucali
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| |
Collapse
|
12
|
Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, Tang H. Unraveling molecular networks in thymic epithelial tumors: deciphering the unique signatures. Front Immunol 2023; 14:1264325. [PMID: 37849766 PMCID: PMC10577431 DOI: 10.3389/fimmu.2023.1264325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a rare and diverse group of neoplasms characterized by distinct molecular signatures. This review delves into the complex molecular networks of TETs, highlighting key aspects such as chromosomal abnormalities, molecular subtypes, aberrant gene mutations and expressions, structural gene rearrangements, and epigenetic changes. Additionally, the influence of the dynamic tumor microenvironment on TET behavior and therapeutic responses is examined. A thorough understanding of these facets elucidates TET pathogenesis, offering avenues for enhancing diagnostic accuracy, refining prognostic assessments, and tailoring targeted therapeutic strategies. Our review underscores the importance of deciphering TETs' unique molecular signatures to advance personalized treatment paradigms and improve patient outcomes. We also discuss future research directions and anticipated challenges in this intriguing field.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ansheng Cong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Kurokawa K, Shukuya T, Greenstein RA, Kaplan BG, Wakelee H, Ross JS, Miura K, Furuta K, Kato S, Suh J, Sivakumar S, Sokol ES, Carbone DP, Takahashi K. Genomic characterization of thymic epithelial tumors in a real-world dataset. ESMO Open 2023; 8:101627. [PMID: 37703595 PMCID: PMC10594028 DOI: 10.1016/j.esmoop.2023.101627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Thymic epithelial tumors (TETs) are rare neoplasms arising in the mediastinum, including thymic carcinomas and thymomas. Due to their rarity, little is known about the genomic profiles of TETs. Herein, we investigated the genomic characteristics of TETs evaluated in a large comprehensive genomic profiling database in a real-world setting. METHODS We included data from two different cohorts: Foundation Medicine Inc. (FMI) in the United States and the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) in Japan. Samples profiled were examined for all classes of alterations in 253 genes targeted across all assays. Tumor mutational burden (TMB) and microsatellite instability (MSI) were also evaluated. RESULTS A total of 794 patients were collected in our study, including 722 cases from FMI and 72 cases from C-CAT. In the FMI data, CDKN2A (39.9%), TP53 (30.2%) and CDKN2B (24.6%) were frequently altered in thymic carcinoma, versus TP53 (7.8%), DNMT3A (6.8%), and CDKN2A (5.8%) in thymoma. TMB-high (≥10 mutations/Mb) and MSI were present in 7.0% and 2.3% of thymic carcinomas, and 1.6% and 0.3% of thymomas, respectively. Within C-CAT data, CDKN2A (38.5%), TP53 (36.5%) and CDKN2B (30.8%) were also frequently altered in thymic carcinoma, while alterations of TSC1, SETD2 and LTK (20.0% each) were found in thymoma. CONCLUSIONS To the best of our knowledge, this is the largest cohort in which genomic alterations, TMB and MSI status of TETs were investigated. Potential targets for treatment previously unbeknownst in TETs are identified in this study, entailing newfound opportunities to advance therapeutic development.
Collapse
Affiliation(s)
- K Kurokawa
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - T Shukuya
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan.
| | | | - B G Kaplan
- Foundation Medicine, Inc., Cambridge, USA
| | - H Wakelee
- Department of Medicine, Division of Oncology, Stanford University, Stanford, USA
| | - J S Ross
- Foundation Medicine, Inc., Cambridge, USA; Departments of Pathology and Urology, Upstate Medical University, Syracuse, USA
| | - K Miura
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - K Furuta
- Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - S Kato
- Department of Medical Oncology, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - J Suh
- Genentech, South San Francisco, USA
| | | | - E S Sokol
- Foundation Medicine, Inc., Cambridge, USA
| | - D P Carbone
- Comprehensive Cancer Center, Division of Medical Oncology, The Ohio State University, Columbus, USA
| | - K Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Ikeda H, Nagasaki J, Shimizu D, Katsuya Y, Horinouchi H, Hosomi Y, Tanji E, Iwata T, Itami M, Kawazu M, Ohe Y, Suzuki T, Togashi Y. Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors. JTO Clin Res Rep 2023; 4:100573. [PMID: 37799325 PMCID: PMC10550405 DOI: 10.1016/j.jtocrr.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs). Methods We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II-expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo. Results We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti-programmed cell death protein 1 monoclonal antibody. Conclusions Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs.
Collapse
Affiliation(s)
- Hideki Ikeda
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Joji Nagasaki
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Shimizu
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yuki Katsuya
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Etsuko Tanji
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Takekazu Iwata
- Division of Thoracic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Makiko Itami
- Department of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | | | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Furuya T, Ishihara S, Ogi H, Masuda K, Shibata S, Nakazono C, Okada S, Shimomura M, Tando S, Yaoi T, Maeda Y, Yamagishi M, Kawamoto H, Itoh K, Inoue M. Characteristic differences in the abundance of tumor-infiltrating lymphocytes and intratumoral developing T cells in thymoma, with special reference to PD-1 expression. Cancer Immunol Immunother 2023; 72:2585-2596. [PMID: 37060363 DOI: 10.1007/s00262-023-03431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Though programmed cell death-1 (PD-1) inhibitors mainly target tumor-infiltrating lymphocytes (TILs) expressing PD-1, developing T cells in thymus also express PD-1 in their process of maturation. To predict the therapeutic effect of PD-1 inhibitors for thymoma, it is necessary to clarify the proportions of TILs and intratumoral developing T cells. METHODS The expressions of CD4, CD8, and PD-1 on T cells were analyzed by flow cytometry in 31 thymomas. The amount of T cell receptor excision circles (TRECs), which can be detected in newly formed naïve T cells in the thymus, was evaluated using sorted lymphocytes from thymomas by quantitative PCR. The expressions of granzyme B (GZMB) and lymphocyte activation gene-3 (LAG-3) in PD-1 + CD8 T cells were analyzed by image cytometry using multiplex immunohistochemistry. RESULTS The PD-1 + rate in both CD4 and CD8 T cells was significantly higher in type AB/B1/B2 than in type A/B3 thymomas. The amounts of TRECs in CD4 and CD8 T cells were significantly higher in type AB/B1/B2 than in type A/B3 thymomas and comparable to normal thymus. PD-1 expression at each stage of T cell development of type AB/B1/B2 thymomas was comparable to that of normal thymus. Both the percentages and cell densities of PD-1 + CD8 T cells expressing GZMB or LAG-3, which are known to contain tumor-reactive T cells, were significantly lower in type AB/B1/B2 thymomas. CONCLUSION Most PD-1 + T cells in type AB/B1/B2 thymomas are intratumoral developing T cells and are not TILs.
Collapse
Affiliation(s)
- Tatsuo Furuya
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
- Lab of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shunta Ishihara
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd, Kyoto, Japan
| | - Kyoko Masuda
- Lab of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Chiaki Nakazono
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Satoru Okada
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masanori Shimomura
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - So Tando
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinobu Maeda
- Department of Pediatric Cardiovascular Surgery, Children's Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaaki Yamagishi
- Department of Pediatric Cardiovascular Surgery, Children's Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Kawamoto
- Lab of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masayoshi Inoue
- Division of Thoracic Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
16
|
Asghar K, Bashir S, Ali Rana I, Abu Bakar M, Farooq A, Hassan M, Asif Z, Afzal M, Masood I, Ishaq M, Tahseen M, Bilal S, Mehmood S, Kanwal N, Ud Din I, Loya A. PD-L1 is Fascinating but IDO Needs Attention in Non-HCV and Non-HBV-Associated Hepatocellular Carcinoma Patients. J Hepatocell Carcinoma 2023; 10:921-934. [PMID: 37350801 PMCID: PMC10284167 DOI: 10.2147/jhc.s409741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023] Open
Abstract
Background/Aim Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer that is modulated by the immune system. Programmed cell death ligand-1 (PD-L1) has emerged as a novel therapeutic target in various cancers. Indoleamine 2,3-dioxygenase (IDO) is an immunosuppressive enzyme that is associated with poor prognoses in various cancer types. The aim of this study was to investigate the PD-L1 expression, and clinicopathological features of non-HCV and non-HBV-associated HCC patients, including IDO expression. Patients and Methods In this study, immunohistochemical analysis was performed to analyze the expression of PD-L1 and IDO. Formalin-fixed paraffin-embedded HCC tumor tissues (n=50) were obtained from the pathology department, at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan between 2005 and 2022. All the patients were HBV and HCV negative. Furthermore, it was a rare group of patients with no previous history of any viral hepatitis. In addition, for categorical and continuous variables chi-square or Fisher exact test and Mann-Whitney U-test was performed. Results Of 50 tissue specimens, PD-L1+ was observed in 21 [high: 12 (24%), low: 9 (18%)] and PD-L1- was observed in 29 HCC patients. IDO+ was observed in all 50 specimens [high: 42 (84%), low: 8 (16%)]. Additionally, both PD-L1 and IDO had high expression in 11 (22%) patients. While both PD-L1 and IDO had low expression in 2 (4%) patients. Furthermore, in IDO+/PD-L1- group, 20 (69%) out of 29 patients died while in the IDO+/PD-L1+ group, 9 (43%) out of 21 patients died. Conclusion Evaluation of IDO and PD-L1 expression may add therapeutic advantage in non-HCV and non-HBV-associated HCC patients that overexpress IDO. Further validation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shaarif Bashir
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asim Farooq
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Hassan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Zukhruf Asif
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Mahnoor Afzal
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Iqra Masood
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Ishaq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Sundus Bilal
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Shafqat Mehmood
- Department of Internal Medicine (Gastroenterology), Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Nosheen Kanwal
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Islah Ud Din
- Department of Radiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab, Pakistan
| |
Collapse
|
17
|
Maniar R, Loehrer PJ. Understanding the landscape of immunotherapy in thymic epithelial tumors. Cancer 2023; 129:1162-1172. [PMID: 36808725 DOI: 10.1002/cncr.34678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
Thymic epithelial tumors (TETs) are a rare group of malignancies arising from the thymus. Surgery remains the foundation of treatment for patients with early-stage disease. Limited treatment options are available for the treatment of unresectable, metastatic, or recurrent TETs and are associated with modest clinical efficacy. The emergence of immunotherapies in the treatment of solid tumors has generated significant interest in understanding their role in TET treatment. However, the high rates of comorbid paraneoplastic autoimmune disorders, particularly in thymoma, have tempered expectations regarding the role of immune-based therapies. Clinical studies of immune checkpoint blockade (ICB) in thymoma and thymic carcinoma have revealed higher frequencies of immune-related adverse events (IRAEs) and limited efficacy. Despite these setbacks, the growing understanding of the thymic tumor microenvironment and systemic immune system has advanced the understanding of these diseases and provided opportunities for novel immunotherapy modalities. Ongoing studies are evaluating numerous immune-based treatments in TETs with the goal of improving clinical efficacy and mitigating IRAE risk. This review will provide insight into the current understanding of the thymic immune microenvironment, outcomes of previous ICB studies, and review treatments currently being explored for the management of TET.
Collapse
Affiliation(s)
- Rohan Maniar
- Department of Medicine, Division of Hematology & Oncology, Indiana University School of Medicine, Indiana Cancer Pavilion, Indianapolis, Indiana, USA
| | - Patrick J Loehrer
- Department of Medicine, Division of Hematology & Oncology, Indiana University School of Medicine, Indiana Cancer Pavilion, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, Xu B, Ding JY. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives. Mol Cancer 2023; 22:70. [PMID: 37055838 PMCID: PMC10099901 DOI: 10.1186/s12943-023-01772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has emerged to play a rapidly expanding role in the treatment of cancers. Currently, many clinical trials of therapeutic agents are on ongoing with majority of immune checkpoint inhibitors (ICIs) especially programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) inhibitors. PD-1 and PD-L1, two main immune checkpoints, are expressed at high levels in thymic epithelial tumors (TETs) and could be predictors of the progression and immunotherapeutic efficacy of TETs. However, despite inspiring efficacy reported in clinical trials and clinical practice, significantly higher incidence of immune-related adverse events (irAEs) than other tumors bring challenges to the administration of ICIs in TETs. To develop safe and effective immunotherapeutic patterns in TETs, understanding the clinical properties of patients, the cellular and molecular mechanisms of immunotherapy and irAEs occurrence are crucial. In this review, the progress of both basic and clinical research on immune checkpoints in TETs, the evidence of therapeutic efficacy and irAEs based on PD-1 /PD-L1 inhibitors in TETs treatment are discussed. Additionally, we highlighted the possible mechanisms underlying irAEs, prevention and management strategies, the insufficiency of current research and some worthy research insights. High PD-1/PD-L1 expression in TETs provides a rationale for ICI use. Completed clinical trials have shown an encouraging efficacy of ICIs, despite the high rate of irAEs. A deeper mechanism understanding at molecular level how ICIs function in TETs and why irAEs occur will help maximize the immunotherapeutic efficacy while minimizing irAEs risks in TET treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bei Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Zhang Y, Lin D, Aramini B, Yang F, Chen X, Wang X, Wu L, Huang W, Fan J. Thymoma and Thymic Carcinoma: Surgical Resection and Multidisciplinary Treatment. Cancers (Basel) 2023; 15:cancers15071953. [PMID: 37046614 PMCID: PMC10093507 DOI: 10.3390/cancers15071953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Thymoma and thymic carcinoma are the most common tumors of the anterior mediastinum and a relatively rare type of thoracic cancer. The prerequisite for surgery is clinical staging and operative evaluation, both of which are based on medical imaging. The best strategy for treating a thymic epithelial tumor is surgical resection of the organ and surrounding tissue. Thymectomy modalities vary, including open surgery and minimally invasive surgery, and surgeons have used various innovations to better meet the needs of the procedure; therefore, it is critical to select the appropriate procedure based on the patient's characteristics. Evaluation of resectability is the first step of surgical resection for thymic tumors without distant metastasis. The decision regarding unresectability should be made carefully. During subsequent chemotherapy or chemoradiotherapy, reevaluation of whether an area is resectable or not remains essential. Despite numerous technological advances in the surgical treatment of thymic tumors, several contentious issues remain, including the selection of surgical approaches for difficult cases, the selection of video-assisted thoracoscopic approaches, the evaluation of resectability, minimally invasive surgery for locally advanced thymic tumors, lymphadenectomy in thymic tumors, neoadjuvant therapy for thymic tumors, debulking surgery, and salvage surgery. In solving these problems, the surgeon's judgment, surgical experience, and surgical skills are especially important.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dong Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Fu Yang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Chen
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Huang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
20
|
Agrafiotis AC, Siozopoulou V, Hendriks JMH, Pauwels P, Koljenovic S, Van Schil PE. Tumor Microenvironment in Thymic Epithelial Tumors: A Narrative Review. Cancers (Basel) 2022; 14:cancers14246082. [PMID: 36551568 PMCID: PMC9775621 DOI: 10.3390/cancers14246082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing entity. The TME consists of stromal cells, fibroblasts, endothelial cells, and innate and adaptive immune cells. Cancer development and progression occurs through this interplay between the tumor and the adjacent stroma. Cancer cells are capable of modifying their microenvironment by secreting various message-carrying molecules, such as cytokines, chemokines, and other factors. This action causes a reprogramming of the neighboring cells, which are enabled to play a crucial role in tumor survival and progression. The study of TME has many clinical implications in terms of cancer therapeutics because many new drugs, such as antibodies, kinase inhibitors, and liposome formulations that can encapsulate anti-cancer drugs, can be developed. Although chemotherapy is considered the standard of treatment for advanced disease, recent research has brought to light immunotherapy as a possible systemic alternative. However, the complex structure and function of the thymus hinders its routine use in clinical practice. The aim of this review paper is to discuss the recent advances in the investigation of the unique characteristics of the TME of thymic epithelial tumors that could possibly lead to the development of novel promising therapies.
Collapse
Affiliation(s)
- Apostolos C. Agrafiotis
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Vasiliki Siozopoulou
- Laboratory of Pathology, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Jeroen M. H. Hendriks
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Patrick Pauwels
- Laboratory of Pathology, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Senada Koljenovic
- Laboratory of Pathology, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Paul E. Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
21
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
22
|
Jing X, Zhu H, Li Y, Jia W, Zhai X, Li J, Yu J. Fatal toxicity induced by anti-PD-1 immune checkpoint inhibitor in thymic epithelial tumor. Immunotherapy 2022; 14:1097-1107. [PMID: 36093721 DOI: 10.2217/imt-2021-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A standard treatment for advanced thymic epithelial tumors (TETs) after initial treatment remains unavailable to date. Targeted immune checkpoint inhibitors (ICIs) of the programmed cell death-1 (PD-1) pathway may produce objective responses in TETs, notably thymic carcinoma. Findings of clinical trials suggested ICIs are a practical choice. However, the risk of severe immuno-related adverse events is higher in TETs. Concerning histologic subtypes, thymomas are more frequently associated with autoimmune disorders than carcinomas, so close monitoring is needed for thymomas. In this article, we describe four cases of fatal toxicity caused by anti-PD-1 therapy in TETs. Four patients with metastatic thymomas or carcinoma difficult to treat with first-line standard chemotherapy were treated with the anti-PD-1 drug pembrolizumab or sintilimab. The association of PD-1 inhibitors with a high proportion of severe immuno-related adverse events in TETs necessitates attentive monitoring during treatment.
Collapse
Affiliation(s)
- Xuquan Jing
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuying Li
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Shandong University Cancer Center, Shandong University, Jinan, Shandong, 250117, China.,Department of Radiation Oncology, Shandong Cancer Hospital & Institute Affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
23
|
Li YJ, Li YW, Cui GH, Li SH, Deng YW, Lu D. Advanced thymic lymphoepithelioma-like carcinoma with bone marrow metastases treated by immunotherapy combined with antiangiogenesis therapy: a case report. Anticancer Drugs 2022; 33:686-690. [PMID: 35324515 DOI: 10.1097/cad.0000000000001293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thymic lymphoepithelioma-like carcinoma (LELC) is a rare primary malignant neoplasm originating from the thymus. Thymic LELC diagnosis is often terminal when diagnosed, some patients have lost the opportunity for surgery. Platinum- and anthracycline-based systemic chemotherapy are the first-line treatment plan; however, there is no clear consensus on therapy when first-line treatment fails because of the lack of cases of advanced thymic LELC. Here was a rare case of advanced thymic LELC with bone marrow metastasis at relapse, which is reported in a patient who responded well to toripalimab combined with anlotinib therapy. The treatment showed tolerable toxicity with good antitumor activity in the patient. As far as we know, this is the first case that the combination of toripalimab with anlotinib is effective in controlling advanced thymic LELC with bone marrow metastasis. The case reports represent an essential means by which an effective therapy for advanced thymic LELC may not be practical given the low frequency of a thymic LELC with multiple metastases.
Collapse
Affiliation(s)
- Ying-Jue Li
- Department of Medical Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Ma J, Xing N, Ji Z, Li J, Zhang S, Guo Z. Interferon-γ predicts the treatment efficiency of immune checkpoint inhibitors in cancer patients. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04201-z. [DOI: 10.1007/s00432-022-04201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
|
25
|
Nishii Y, Furuhashi K, Ito K, Sakaguchi T, Suzuki Y, Fujiwara K, Yasuma T, Kobayashi T, D’Alessandro-Gabazza CN, Gabazza EC, Taguchi O, Hataji O. Good Response of Advanced Thymic Carcinoma with Low PD-L1 Expression to Chemotherapy plus Pembrolizumab as First-Line Therapy and to Pembrolizumab as Maintenance Therapy: A Case Report. Pharmaceuticals (Basel) 2022; 15:ph15070889. [PMID: 35890187 PMCID: PMC9319623 DOI: 10.3390/ph15070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Thymic carcinoma is a rare malignant tumor with a poor prognosis. No standard treatment is currently available. The present case was a 64-year-old male smoker with no symptoms referred to our hospital because of abnormal chest radiological findings. The CT study showed a tumor between the anterior mediastinum and the right lung upper lobe, multiple nodular shadows along the right pleura, and pleural effusion. A CT-guided needle biopsy revealed squamous cell carcinoma. However, the differential diagnosis between thymic carcinoma and primary lung cancer was difficult. Treatment with carboplatin, nanoparticle albumin-bound paclitaxel, and pembrolizumab was initiated. The CT scan showed tumor shrinkage and good clinical response after four treatment cycles. Therapy was switched to maintenance therapy with pembrolizumab alone. Imaging studies showed further tumor shrinkage after twelve cycles of maintenance therapy with pembrolizumab. Sixteen cycles of maintenance therapy were continued without performance status deterioration. An abnormal radiological finding was detected after a twelve-month exacerbation-free period. The diagnosis was thymic carcinoma. Treatment with lenvatinib was initiated, and tumor-size reduction was observed. This is the first report of a case showing a successful maintenance therapy with pembrolizumab after effective first-line therapy with a combination of carboplatin-based chemotherapy plus pembrolizumab in advanced thymic carcinoma.
Collapse
Affiliation(s)
- Yoichi Nishii
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Kazuki Furuhashi
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Kentaro Ito
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Tadashi Sakaguchi
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Yuta Suzuki
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Kentaro Fujiwara
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (T.Y.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Japan;
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (T.Y.); (C.N.D.-G.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (T.Y.); (C.N.D.-G.)
- Correspondence:
| | - Osamu Taguchi
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| | - Osamu Hataji
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka 515-0073, Japan; (Y.N.); (K.F.); (K.I.); (T.S.); (Y.S.); (K.F.); (O.T.); (O.H.)
| |
Collapse
|
26
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Roden AC, Rakshit S, Johnson GB, Jenkins SM, Mansfield AS. Correlation of Somatostatin Receptor 2 Expression, 68Ga-DOTATATE PET Scan and Octreotide Treatment in Thymic Epithelial Tumors. Front Oncol 2022; 12:823667. [PMID: 35198446 PMCID: PMC8859934 DOI: 10.3389/fonc.2022.823667] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) has been shown to be expressed in a subset of neuroendocrine tumors and carcinomas and plays a role in imaging studies and guiding therapy. Patients with tumors expressing SSTR2 may be successfully treated with somatostatin inhibitors or radiolabeled somatostatin analogues. We studied SSTR2 expression in TET and correlated it with 68Ga-DOTATATE PET/CT or 68Ga-DOTATATE PET/MR results and treatment outcome. An institutional database of TET was searched for thymoma, thymic carcinoma, and thymic neuroendocrine tumor (TNET) with available resection specimens. Cases were subtyped (2021 WHO classification) and staged (8th AJCC/UICC staging). A section was stained with anti-SSTR2 antibody (clone UMB1). Percent tumor cells with membranous staining was recorded if present in ≥1% of tumor cells. Medical records were searched for 68Ga-DOTATATE PET scans and treatment. Statistical analysis was performed. Eighty patients (1969-2021) with a median age of 61.3 years (range, 19.1-87.3) (37 males, 46.3%) had thymic carcinoma (N=33), TNET (N=7), or thymoma (N=40). SSTR2 expression was identified in 29 (of 80, 36.3%) TET including 2/2 (100%) small cell carcinomas, 2/5 (40.0%) atypical carcinoid tumors, 16/23 (69.6%) squamous cell carcinomas, 2/2 (100%) lymphoepithelial carcinomas, 1/1 (100%) adenosquamous carcinoma, and 6/40 (15.0%) thymomas. SSTR2 expression in ≥50% of tumor cells (vs 1-49%) was associated with younger age (p=0.023) and shorter recurrence/metastasis-free survival (p=0.007). 68Ga-DOTATATE PET scans (N=9) revealed a Krenning score of 3 in patients with atypical carcinoid tumor, small cell carcinoma, and squamous cell carcinoma (N=1 each) with SSTR2 expression in 95, 100, and 5% of tumor cells, respectively. Scans with Krenning scores of ≤2 (N=5) were seen in tumors with no SSTR2 expression in 80% of cases and a single atypical carcinoid tumor with SSTR2 expression in 10% of tumor cells. One scan resulted as "increased uptake" was in a patient with no SSTR2 expression. In conclusion, 68Ga-DOTATATE PET scans correlated with SSTR2 expression in TET in most patients and appeared to be useful to identify patients with TET who may be amenable to treatment with somatostatin analogues. Larger studies including more patients with 68Ga-DOTATATE PET scans are necessary to independently and prospectively validate our findings.
Collapse
Affiliation(s)
- Anja C. Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Sagar Rakshit
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Geoffrey B. Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Sarah M. Jenkins
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
28
|
Kashima J, Hishima T, Okuma Y, Horio H, Ogawa M, Hayashi Y, Horiguchi SI, Motoi T, Ushiku T, Fukayama M. CD70 in Thymic Squamous Cell Carcinoma: Potential Diagnostic Markers and Immunotherapeutic Targets. Front Oncol 2022; 11:808396. [PMID: 35145909 PMCID: PMC8821901 DOI: 10.3389/fonc.2021.808396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
CD70 – a ligand protein of CD27 on lymphocytes – is expressed in a large spectrum of malignancies. It is an attractive target for antibody-based therapy and several clinical trials are currently being conducted. However, there is no evidence regarding the expression of CD70 and its relationship with expression of programmed death ligand-1 (PD-L1) and CD27+ tumor-infiltrating lymphocytes (TIL) in formalin-fixed paraffin-embedded (FFPE) tissues of thymic tumors. FFPE tissues of thymic squamous cell carcinoma (TSCC) (operative specimens, n = 31; biopsy specimens, n = 11), thymoma (n = 60), thymic carcinoid (n = 3), and lung squamous cell carcinoma (LSCC) (n = 30) were analyzed immunohistochemically. Immunoreactivity for CD70 was semi-quantitatively scored according to the proportion of positive tumor cells. Moreover, the densities of CD27-positive intratumoral TIL (iTIL) and stromal TIL of TSCC were assessed and survival was compared. Most TSCC cases (87%; 27/31) were CD70-positive. In contrast, all thymoma and thymic carcinoid cases were CD70-negative. In LSCC cases, CD70-positivity was significantly lower than TSCC cases (20%; 6/30). Biopsy and resected specimens obtained from the same patients demonstrated a consistent staining pattern (6/6 patients). The proportion of CD70-positive TSCC was comparable with those of CD5 (87%) and CD117 (90%). Correlation between CD70 and PD-L1 expression score was observed. There was no significant difference in survival between the CD70-high and CD70-low expression groups. Meanwhile, patients with CD27-positive iTIL-high tumors exhibited better survival than those with iTIL-low tumors. This tendency was weaker in the CD70-high subset. CD70 immunohistochemistry is useful in diagnosing TSCC. CD70 may prevent anti-tumor immunity via CD27. Immunotherapy targeting the CD70–CD27 axis may be a promising option for the treatment of TSCC.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
- *Correspondence: Tsunekazu Hishima,
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, National Cancer Center, Tokyo, Japan
| | - Hirotoshi Horio
- Department of Thoracic Surgery, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Masumi Ogawa
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Shin-ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Toru Motoi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Yang W, Chen S, Cheng X, Xu B, Zeng H, Zou J, Su C, Chen Z. Characteristics of genomic mutations and signaling pathway alterations in thymic epithelial tumors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1659. [PMID: 34988168 PMCID: PMC8667121 DOI: 10.21037/atm-21-5182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND To elucidate the mechanisms of thymic epithelial tumor (TET) canceration by characterizing genomic mutations and signaling pathway alterations. METHODS Primary tumor and blood samples were collected from 21 patients diagnosed with TETs (thymoma and thymic cancer), 15 of whom were screened by nucleic acid extraction and whole exon sequencing. Bioinformatics was used to comprehensively analyze the sequencing data for these samples, including gene mutation information and the difference of tumor mutation burden (TMB) between thymoma and thymic carcinoma groups. We performed signaling pathway and functional enrichment analysis using the WebGestalt 2017 toolkit. RESULTS ZNF429 (36%) was the gene with the highest mutation frequency in thymic carcinoma. Mutations in BAP1 (14%), ABI1 (7%), BCL9L (7%), and CHEK2 (7%) were exclusively detected in thymic carcinoma, whereas ZNF721 mutations (14%) and PABPC1 (14%) were found exclusively in thymoma. The mean TMB values for thymic carcinoma and thymoma were 0.722 and 0.663 mutations per megabase (Mb), respectively, and these differences were not statistically significant. The ErbB signaling pathway was enriched in the thymoma and intersection groups, and pathways of central carbon metabolism in cancer, longevity regulating and MAPK signaling were only found in the thymoma group, while pathways in cancer (hsa05200) was found in the thymoma and thymic carcinoma groups. CONCLUSIONS Multiple differences in somatic genes and pathways have been identified. Our findings provide insights into differences between thymoma and thymic carcinoma that could aid in designing personalized clinical therapeutic strategies.
Collapse
Affiliation(s)
- Weilin Yang
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sai Chen
- Center for Private Medical Service & Healthcare, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Cheng
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Xu
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huilan Zeng
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenguang Chen
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Future Perspective of Chemotherapy and Pharmacotherapy in Thymic Carcinoma. Cancers (Basel) 2021; 13:cancers13205239. [PMID: 34680386 PMCID: PMC8533972 DOI: 10.3390/cancers13205239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Thymic carcinoma is a rare cancer, and its biology remains largely unknown. Although complete surgical resection is a standard treatment for thymic carcinoma, systemic chemotherapy is frequently administered in metastatic or recurrent cases. Given the rarity, therapeutic agents are often confirmed on the basis of the results of phase II trials or retrospective studies. Platinum-based combination chemotherapy has long been employed for treating thymic carcinoma. Recently, biomarkers have been explored, and molecular profiles and major oncogenic pathways have gradually been revealed by next-generation sequencing, resulting in the development of targeted therapies. Moreover, clinical trials assessing combination therapy with immune checkpoint inhibitors are ongoing and are expected to be efficacious for treating thymic epithelial tumors. We reviewed the current role of systemic chemotherapy, including targeted therapies and immune checkpoint inhibitors, considering recent findings regarding its biology. Abstract Thymic carcinoma is a rare cancer that arises from thymic epithelial cells. Its nature and pathology differ from that of benign thymoma, presenting a poorer prognosis. If surgically resectable, surgery alone or surgery followed by chemoradiotherapy or radiotherapy is recommended by the National Comprehensive Cancer Network Guidelines. Metastatic and refractory thymic carcinomas require systemic pharmacotherapy. Combined carboplatin and paclitaxel, and cisplatin and anthracycline-based regimens have been shown a fair response rate and survival to provide a de facto standard of care when compared with other drugs employed as first-line chemotherapy. Cytotoxic agents have been pivotal for treating thymic carcinoma, as little is known regarding its tumorigenesis. In addition, genetic alterations, including driver mutations, which play an important role in treatments, have not yet been discovered. However, molecular pathways and biomarker studies assessing thymic epithelial tumors have been reported recently, resulting in the development of new agents, such as molecular targeted agents and immune checkpoint inhibitors. As treatment options are currently limited and the prognosis remains poor in metastases and recurrent thymic carcinoma, genetic alterations need to be assessed. In the present review, we focused on the current role of targeted therapies and immune checkpoint inhibitors in treating thymic carcinoma.
Collapse
|
31
|
He Y, Ramesh A, Gusev Y, Bhuvaneshwar K, Giaccone G. Molecular predictors of response to pembrolizumab in thymic carcinoma. Cell Rep Med 2021; 2:100392. [PMID: 34622229 PMCID: PMC8484507 DOI: 10.1016/j.xcrm.2021.100392] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/21/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Thymic carcinoma is rare and has a poorer prognosis than thymomas. The treatment options are limited after failure of platinum-based chemotherapy. We previously performed a single-center phase II study of pembrolizumab in patients with advanced thymic carcinoma, showing a 22.5% response rate. Here, we characterize the genomic and transcriptomic profile of thymic carcinoma samples from 10 patients (5 non-responders versus 5 responders) in this cohort, with the main aim of identifying potential predictors of response to immunotherapy. We find that expression of PDL1 and alterations in genes or pathways that correlated with PD-L1 expression (CYLD and BAP1) could be potential predictors for response or resistance to immunotherapy in patients with advanced thymic carcinoma. Our study provides insights into potential predictive markers/pathways to select patients with thymic carcinoma for anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Yongfeng He
- Meyer Cancer Center, Weill Cornel Medicine, New York, NY 10065, USA
| | - Archana Ramesh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Yuriy Gusev
- Innovation Center of Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Krithika Bhuvaneshwar
- Innovation Center of Biomedical Informatics (ICBI), Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Giuseppe Giaccone
- Meyer Cancer Center, Weill Cornel Medicine, New York, NY 10065, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
32
|
Imai H, Kaira K, Hashimoto K, Nitanda H, Taguchi R, Yanagihara A, Umesaki T, Yamaguchi O, Mouri A, Kawasaki T, Yasuda M, Kobayashi K, Sakaguchi H, Kuji I, Kagamu H. Tumor immunity is related to 18 F-FDG uptake in thymic epithelial tumor. Cancer Med 2021; 10:6317-6326. [PMID: 34363337 PMCID: PMC8446555 DOI: 10.1002/cam4.4176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background 2‐deoxy‐2‐[fluorine‐18] fluoro‐d‐glucose (18F‐FDG) positron emission tomography (18F‐FDG‐PET) is a convenient modality to assess the metabolic activity within tumor cells. However, there is no consensus regarding the relationship between 18F‐FDG uptake and the immune environment in thymic epithelial tumors (TETs). We conducted a clinicopathological study to elucidate the relationship between 18F‐FDG uptake and programmed death ligands 1 and 2 (PD‐L1/PD‐L2) expression in patients with TETs. Methods: A total of 108 patients with histologically confirmed TETs classified as thymomas or thymic carcinomas who underwent surgical resection or biopsy or needle biopsy and 18F‐FDG PET before any treatment between August 2007 and March 2020 were enrolled in this study. Tumor specimens underwent immunohistochemical staining for PD‐L1, PD‐L2, GLUT1, HIF‐1α, VEGFR2, VEGF‐C, and β2 adrenergic receptor. Results: High uptakes of SUVmax, SUVmean, MTV, and TLG were identified in 28 (25.9%), 61 (56.5%), 55 (50.9%), and 55 (50.9%) of 108 patients, respectively. High uptake of SUVmax significantly correlated with PS (performance status) of 1–2, thymic carcinoma, and advanced stage, and SUVmax on 18F‐FDG uptake displayed a close association with PD‐L1 and PD‐L2 expressions, but not with MTV and TLG. Our analysis revealed that SUVmax was identified as being significant relationship for positive PD‐L1/PD‐L2 expression. GLUT1, HIF‐1α, and VEGFR2 were significantly associated with the expression of PD‐L1/PD‐L2 from the biological viewpoint. Conclusion 18F‐FDG accumulation was closely associated with the expression of PD‐L1/PD‐L2, which, in turn, was correlated with glucose metabolism and hypoxia. PD‐L1/PD‐L2 could affect the glucose metabolism and hypoxia in thymic tumor cells.
Collapse
Affiliation(s)
- Hisao Imai
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Kosuke Hashimoto
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Hiroyuki Nitanda
- Department of General Thoracic Surgery, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Ryo Taguchi
- Department of General Thoracic Surgery, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Akitoshi Yanagihara
- Department of General Thoracic Surgery, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Tetsuya Umesaki
- Department of General Thoracic Surgery, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Ou Yamaguchi
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Atsuto Mouri
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Tomonori Kawasaki
- Department of Pathology, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Kunihiko Kobayashi
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Hirozo Sakaguchi
- Department of General Thoracic Surgery, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| | - Hiroshi Kagamu
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama University Hospital, Hidaka-City, Saitama, Japan
| |
Collapse
|
33
|
Zhang Y, Li Z, Chen Y, Tan L, Zeng Z, Ding J, Du S. Induction Strategy for Locally Advanced Thymoma. Front Oncol 2021; 11:704220. [PMID: 34367988 PMCID: PMC8339962 DOI: 10.3389/fonc.2021.704220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Surgery remains cornerstone for the management of thymoma. Complete surgical resection (R0), is recognized as the constant and significant factor for prognosis. However, in locally advanced (Masaoka-Koga stages III-IVa) thymomas, achieving R0 resection remains challenging due to local-regional invasion of the disease. Induction treatment, with the aim of reducing bulky tumor mass, offers new strategy to facilitate totally surgical resection. Herein, we reviewed recent progress and provided a comprehensive overview of induction strategy in locally advance thymoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongjuan Li
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Liu Z, Sun L, Cai L, Guo M, Xu G, Liu S, Zheng G, Wang Q, Lian X, Feng F, Zhang H. Clinicopathological and prognostic values of PD-L1 expression in oesophageal squamous cell carcinoma: a meta-analysis of 31 studies with 5368 patients. Postgrad Med J 2021; 98:948-957. [PMID: 34253568 DOI: 10.1136/postgradmedj-2021-140029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/03/2022]
Abstract
Several immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1)/programmed death 1 have successfully improved the prognosis of oesophageal squamous cell carcinoma (ESCC) with approval in certain countries. However, whether the expression of PD-L1 is associated with the degree of benefit is unclear yet and a unified standard of antibody and cut-off value of PD-L1 detection is also lacking. The current meta-analysis then aimed to explore the association between PD-L1 expression and clinicopathological features as well as prognosis in ESCC.A systematic search on PubMed, Embase, Cochrane Library and Web of Science databases was performed up to 30 March 2021. The correlation between PD-L1 expression and clinicopathological features, as well as prognosis in ESCC, was estimated with the random-effects model.A total of 5368 patients from 31 retrospective studies were enrolled. The overexpression of PD-L1 was significantly associated with lymph node metastasis (OR 1.342, 95% CI 0.995 to 1.809, p=0.050) and distant metastasis (OR 1.516, 95% CI 1.001 to 2.294, p=0.050). The pooled HR showed that PD-L1 overexpression was significantly correlated with poor overall survival (OS) of patients with ESCC (HR 1.306, 95% CI 1.108 to 1.539, p<0.010) but not disease-free survival (DFS) (HR 1.180, 95% CI 0.937 to 1.487, p=0.160). Heterogeneity decreased significantly in subgroup analyses. The overexpression of PD-L1 was associated with poor DFS at the cut-off point of ≥1% (HR 1.642, 95% CI 1.367 to 1.973, p<0.010; I2=0%) and worse OS at the cut-off point of ≥10% (HR 1.575, 95% CI 1.175 to 2.111, p<0.010; I2=0%).The overexpression of PD-L1 was correlated with lymph node and distant metastasis as well as poor survival of ESCC.
Collapse
Affiliation(s)
- Zhen Liu
- Ddepartment of General Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Lei Cai
- Department of Digestive Surgery, Xi'an International Medical Center, Xi'an, Shaanxi, People's Republic of China
| | - Man Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Guanghui Xu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shushang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Gaozan Zheng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Qiao Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Lian
- Department of Digestive Surgery, Xi'an International Medical Center, Xi'an, Shaanxi, People's Republic of China
| | - Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, The Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hongwei Zhang
- Digestive Diseases Center, Wuxi Mingci Hospital, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Zou W, Lu J, Hao Y. Myocarditis Induced by Immune Checkpoint Inhibitors: Mechanisms and Therapeutic Prospects. J Inflamm Res 2021; 14:3077-3088. [PMID: 34267536 PMCID: PMC8275200 DOI: 10.2147/jir.s311616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, immune checkpoint molecules downregulate the activation and effector function of myocardial antigen-reactive T cells through an immunosuppressive pathway, thus enabling myocardial T cells to maintain immune homeostasis under the action of central and peripheral tolerance mechanisms. The PD-1/PD-L1 signalling pathway is particularly important for limiting the ability of T cells to attack the heart. Immune checkpoint inhibitors (ICIs) specifically block this PD-1/PD-L1-mediated restriction of T cell activation and other immunosuppressive pathways by targeting immune checkpoints. In recent years, with the wide use of ICIs in cancer treatment, even though the incidence of immunomyocarditis is low, it has attracted increasing attention because of its complex clinical symptoms, rapid progression of disease and high mortality rates. The pathogenesis, genetic susceptibility factors and predictive biomarkers of immunomyocarditis still need to be understood, and multidisciplinary cooperation in the clinical treatment of this complication is necessary.
Collapse
Affiliation(s)
- Wenlu Zou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250021, People's Republic of China.,Department of Infectious Disease.,Department of Clinical Laboratory, Shandong University Qilu Hospital, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250117, Shandong Province, People's Republic of China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, People's Republic of China
| |
Collapse
|
36
|
Prays J, Ortiz-Villalón C. Molecular landscape of thymic epithelial tumors. Semin Diagn Pathol 2021; 39:131-136. [PMID: 34272124 DOI: 10.1053/j.semdp.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Thymic epithelial tumors (TETs) are extremely rare and represent the most frequent tumors of the anterior mediastinum originating from epithelial cells in the thymus. Thymic epithelial tumors include thymomas (TM), thymic carcinomas (TC) and thymic neuroendocrine neoplasms (TNEN). Thymomas are the most predominant and are associated with autoimmune diseases. The available data suggests that the different histological subtypes have specific molecular alterations. Thymic carcinoma shows recurrent gene mutations, but further investigations are needed to understand the role of those mutations in the pathogenetic of the TETs. Some of the new emerging identified molecular alterations have the potential to offer new targeted therapies opening new possibilities for the treatment of thymic epithelial tumors.
Collapse
Affiliation(s)
- Julia Prays
- Department of Pathology, Karolinska University Hospital, Sweden
| | - Cristian Ortiz-Villalón
- Department of Pathology, Karolinska University Hospital, Sweden; Department of Oncology and pathology (ONKPAT), Karolinska Institute, Sweden.
| |
Collapse
|
37
|
Wagner C, Wakeam E, Keshavjee S. The role of surgery in the management of locally advanced and metastatic thymoma: a narrative review. MEDIASTINUM (HONG KONG, CHINA) 2021; 5:14. [PMID: 35118320 PMCID: PMC8799929 DOI: 10.21037/med-20-34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/05/2021] [Indexed: 06/14/2023]
Abstract
Thymic epithelial tumors (TETs) are rare neoplasms. While treatment guidelines for early stage TETs are well established, treatment for advanced and locally invasive and metastatic TETs (Masaoka stage IVa/IVb) is varied. Many studies examining outcomes in this patient population are single institution, retrospective studies with small sample sizes. Further complicating study of advanced TETs is that Masaoka stage IVa/IVb describes a wide variety of disease heterogeneity, and includes both thymoma and thymic carcinoma. Thus, recommendations for treatment strategies vary widely. Surgical resection with an R0 resection is a key component of treatment for early stage TETs, however the utility of surgery and appropriate surgical approach for patients with locally invasive disease is debated and ranges from local metastasectomy to extrapleural pneumonectomy (EPP). The use of multimodal therapies, including adjuvant and neoadjuvant radiation and chemoradiation, are important for patients with locally advanced disease, however identifying patients who would most benefit from each strategy has been challenging. In this review we examined the literature to provide treatment strategies for advanced TETs. Surgery with an R0 resection should be attempted in all risk appropriate patients. Multimodal therapies are likely beneficial to patients particularly with locally advanced disease, and neoadjuvant therapies may increase likelihood of R0 resection. Further investigation is necessary to identify optimal treatment strategies for patients with locally advanced TETs.
Collapse
Affiliation(s)
- Catherine Wagner
- Section of Thoracic Surgery, University of Michigan Hospitals, Ann Arbor, PH, USA
| | - Elliot Wakeam
- Section of Thoracic Surgery, University of Michigan Hospitals, Ann Arbor, PH, USA
| | - Shaf Keshavjee
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
38
|
Benitez JC, Besse B. Narrative review of immunotherapy in thymic malignancies. Transl Lung Cancer Res 2021; 10:3001-3013. [PMID: 34295693 PMCID: PMC8264314 DOI: 10.21037/tlcr-20-1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Thymomas and thymic carcinomas (TCs) (also known as Thymic Epithelial Tumors or TETs) are rare cancers and the most frequent masses of the anterior mediastinum. These tumors appear in the epithelial component of the thymus, a primary lymphoid organ, and they have reported a high risk of auto-immunity due to a unique biology. Indeed, up to 30% of patients with TETs could present an autoimmune disorder (AID), the most frequent being Myasthenia Gravis (MG). Moreover, AIDs have been reported not only at tumor diagnosis but before and during the follow-up. These tumors have a lack of specific therapeutic targets for metastatic setting. Immune checkpoint inhibitors (ICI) may defeat cancer cells' capacity to evade the immune system and proliferate. The long-term benefit of ICIs in the metastatic setting in several tumors, such as melanoma or non-small cell lung cancer (NSCLC), let to evaluate ICI approaches in TETs. The high rate of AIDs and distribution of autoimmune events among TET's histological subtypes may have an influence on the decision regarding a treatment based on ICI due to the increased risk of toxicity. We summarize the current evidence for the efficacy of ICI in thymoma and TC and discuss several unresolved challenges and concerns for the use of this agents in TETs.
Collapse
Affiliation(s)
| | - Benjamin Besse
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.,Université Paris-Saclay, Orsay, France
| |
Collapse
|
39
|
Asselta R, Di Tommaso L, Perrino M, Destro A, Giordano L, Cardamone G, Rubino L, Santoro A, Duga S, Zucali PA. Mutation profile and immunoscore signature in thymic carcinomas: An exploratory study and review of the literature. Thorac Cancer 2021; 12:1271-1278. [PMID: 33704917 PMCID: PMC8088947 DOI: 10.1111/1759-7714.13765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
Background Significant efforts have been made to investigate the molecular pathways involved in thymic carcinogenesis. However, genetic findings have still not impacted clinical practice. The aim of this exploratory trial was to evaluate the immunoscore and molecular profile of a series of thymic carcinomas (TCs), correlating this data with clinical outcome. Methods Formalin‐fixed, paraffin‐embedded (FFPE) TC tissues were retrieved from our center archive. The immunoscore was evaluated according to Angell and Gallon. DNA was extracted from FFPE tumor samples and, when available, from adjacent histologically normal tissues. Next‐generation sequencing (NGS) was performed targeting hotspot regions of 50 oncogenes and tumor suppressor genes. Results A series of 15 TCs were analyzed. After a median follow‐up of 82.4 months, the median overall survival was 104.7 months. The immunoscore was >2 in 5/15 patients (33%). Among the investigated genes, absence of mutations was observed in 5/15 patients (33%), whereas three variants in 1/15 (6%) patient, two variants in 4/15 (26%) patients, and one variant in 5/15 patients (33%) were found. The most recurrently mutated genes were FGFR3 (five mutations) and CDKN2A (three mutations, two of which were nonsense). Patients with CDKN2A loss showed a statistically significantly worse survival (P = 0.0013), whereas patients with FGFR3 mutations showed a statistically significantly better survival (P = 0.048). Conclusions This study adds data to the few existing reports on the mutational landscape of TCs, providing the first comprehensive analysis to date. Here, we confirm the low rate of mutations in TCs and suggest FGFR3 and CDKN2A mutations as intriguing potential therapeutic targets.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Unit of Pathology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Matteo Perrino
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Annarita Destro
- Unit of Pathology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Laura Giordano
- Statistic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Rubino
- Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Oncology, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
40
|
Kaira K, Imai H, Kagamu H. Perspective of Immune Checkpoint Inhibitors in Thymic Carcinoma. Cancers (Basel) 2021; 13:cancers13051065. [PMID: 33802298 PMCID: PMC7959131 DOI: 10.3390/cancers13051065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Thymic carcinoma is a rare neoplasm with a poor outcome, and there are no established therapeutic regimens for metastatic or recurrent disease. Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies, are approved in several human cancers, however, ICIs are not approved in thymic carcinoma. Thus, several clinical trials have been undertaken to demonstrate if they are therapeutically effective for patients with thymic carcinoma. In our review, three prospective phase II studies and several case series were discussed in thymic carcinoma. We found that the objective response rate, disease control rate, and progression-free survival in PD-1 blockade monotherapy were approximately 20%, 73%, and four months, respectively. The therapeutic efficacy of PD-1 blockade monotherapy is still limited in patients with thymic carcinoma. Future perspectives focus on the therapeutic implication of tyrokinase inhibitors plus ICIs or new experimental agents plus ICIs alongside several ongoing experimental studies. Abstract Thymic carcinoma is a rare neoplasm with a dismal prognosis, and there are no established therapeutic regimens for metastatic or recurrent disease. Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies, are widely approved in several human cancers, contributing to prolonging survival in thoracic tumors. Thymic carcinoma exhibits histologic properties of squamous cell carcinoma (SQC), and resembles the SQC of the lung. ICIs are not approved in thymic carcinoma. Thus, several clinical trials have been undertaken to demonstrate if they are therapeutically effective for patients with thymic carcinoma. In our review, three prospective phase II studies and several case series were discussed in thymic carcinoma. We found that the objective response rate, disease control rate, and progression-free survival in PD-1 blockade monotherapy were approximately 20%, 73%, and four months, respectively. Two exploratory investigations indicated that PD-L1 within tumor cells exhibits a possibility of the therapeutic prediction of PD-1 blockade in thymic carcinoma. Several case reports, alongside their treatment content, have also been reviewed. The therapeutic efficacy of PD-1 blockade monotherapy is still limited in patients with thymic carcinoma. Future perspectives focus on the therapeutic implication of tyrokinase inhibitors plus ICIs or new experimental agents plus ICIs alongside several ongoing experimental studies.
Collapse
Affiliation(s)
- Kyoichi Kaira
- Correspondence: ; Tel.: +81-42-984-4111; Fax: +81-42-984-4741
| | | | | |
Collapse
|
41
|
Wu Y, Sang M, Liu F, Zhang J, Li W, Li Z, Gu L, Zheng Y, Li J, Shan B. Epigenetic modulation combined with PD-1/PD-L1 blockade enhances immunotherapy based on MAGE-A11 antigen-specific CD8+T cells against esophageal carcinoma. Carcinogenesis 2021; 41:894-903. [PMID: 32529260 DOI: 10.1093/carcin/bgaa057] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer testis antigens (CTAs) are promising targets for T cell-based immunotherapy and studies have shown that certain CT genes are epigenetically depressed in cancer cells through DNA demethylation. Melanoma-associated antigen A11 (MAGE-A11) is a CTA that is frequently expressed in esophageal cancer and is correlated with a poor esophageal cancer prognosis. Consequently, MAGE-A11 is a potential immunotherapy target. In this study, we evaluated MAGE-A11 expression in esophageal cancer cells and found that it was downregulated in several tumor cell lines, which restricted the effect of immunotherapy. Additionally, the specific recognition and lytic potential of cytotoxic T lymphocytes (CTLs) derived from the MAGE-A11 was determined. Specific CTLs could kill esophageal cancer cells expressing MAGE-A11 but rarely lysed MAGE-A11-negative tumor cells. Therefore, induction of MAGE-A11 expression is critical for CTLs recognition and lysis of esophageal cancer cells. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine increased MAGE-A11 expression in esophageal cancer cells and subsequently enhanced the cytotoxicity of MAGE-A11-specific CD8+T cells against cancer cell lines. Furthermore, we found that PD-L1 expression in esophageal cancer cells affected the antitumor function of CTLs. programmed death-1 (PD-1)/PD-L1 blockade could increase the specific CTL-induced lysis of HLA-A2+/MAGE-A11+ tumor cell lines treated with 5-aza-2'-deoxycytidine. These findings indicate that the treatment of tumor cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine augments MAGE-A11 expression in esophageal cancer cells. The combination of epigenetic modulation by 5-aza-2'-deoxycytidine and PD-1/PD-L1 blockade may be useful for T cell-based immunotherapy against esophageal cancer.
Collapse
Affiliation(s)
- Yunyan Wu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Meixiang Sang
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.,Institute of Tumor Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Fei Liu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jiandong Zhang
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Weijing Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Lina Gu
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yang Zheng
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Juan Li
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Baoen Shan
- Department of Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.,Institute of Tumor Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
42
|
Shen H, Liu J, Sun G, Yan L, Li Q, Wang Z, Xie L. The clinicopathological significance and prognostic value of programmed death-ligand 1 in prostate cancer: a meta-analysis of 3133 patients. Aging (Albany NY) 2020; 13:2279-2293. [PMID: 33318295 PMCID: PMC7880326 DOI: 10.18632/aging.202248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
Background: Programmed death-ligand 1 (PD-L1) is considered an adverse factor predicting poor prognosis in various cancers, but the significance of PD-L1 expression for the prognosis of prostate cancer (PCa) is still unclear. We aimed to investigate the clinicopathological significance and prognostic value of PD-L1 expression in PCa. Methods: Studies were retrieved from PubMed, Web of Science, Cochrane Library and Embase before March 23, 2020. Odds ratios (ORs) and hazard ratios (HRs) with 95% confidence intervals (CIs) were obtained to assess the results. Begg’s test was applied to evaluate publication bias. Results: Fourteen studies involving 3133 cases were analyzed. The pooled data showed that both PD-L1 protein expression and PD-L1 DNA methylation (mPD-L1) were negatively associated with biochemical recurrence-free survival, with HRs of 1.67 (95% CI = 1.38-2.06, p < 0.001) and 2.23 (95% CI = 1.51-3.29, p < 0.001), respectively. In addition, PD-L1 overexpression was significantly related to advanced tumor stage (OR = 1.40, 95% CI= 1.13-1.75, p = 0.003), positive surgical margin (OR = 1.36, 95% CI = 1.03-1.78, p = 0.028), higher Gleason score (OR = 1.81, 95% CI = 1.35-2.42, p < 0.001) and androgen receptor positivity (OR = 2.20, 95% CI = 1.61-3.01, p < 0.001), while no significant correlation with age (p = 0.122), preoperative PSA (p = 0.796) or nodal status (p = 0.113) was observed. Conclusions: The study revealed that high expression of PD-L1 was related to unfavorable prognosis and advanced clinicopathological factors in PCa patients.
Collapse
Affiliation(s)
- Haixiang Shen
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jin Liu
- Department of Surgical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Libin Yan
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qinchen Li
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhize Wang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
43
|
Jakopovic M, Bitar L, Seiwerth F, Marusic A, Krpina K, Samarzija M. Immunotherapy for thymoma. J Thorac Dis 2020; 12:7635-7641. [PMID: 33447455 PMCID: PMC7797835 DOI: 10.21037/jtd-2019-thym-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Thymic epithelial tumors (TETs) are rare thymic neoplasms. There are approximately 1.5 cases per million TETs per year. They are the most common anterior mediastinal tumors in adults. Due to limited activity of available treatment options novel strategies and treatment options are needed and treatment with immune checkpoint inhibitors is an attractive option. Thymic epithelial tumors have one of the lowest tumor mutational burden among all cancer in adults, but high expression of PD-L1 on tumor cells and abundant CD8+ lymphocytes provide a strong rational for implementing immune checkpoint inhibitors (ICIs) which target PD-1/PD-L1 pathway in the treatment of TETs. Few small early stage clinical trials were published so far evaluating efficacy of pembrolizumab and avelumab in thymoma and thymic carcinoma patients. Al trials showed reasonable response rates and progression-free survival. Higher PD-L1 expression was predictor of response in all trials. However, increased incidence of immune-related adverse events was seen in TET patients treated with immune checkpoint inhibitors compared to patients with other cancers. At the moment, ICIs are not standard of care for patients with TET and larger trials are needed to establish the right role of ICIs regarding efficacy and safety of these agents.
Collapse
Affiliation(s)
- Marko Jakopovic
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lela Bitar
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Fran Seiwerth
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ante Marusic
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kristina Krpina
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
44
|
Yokoyama S, Miyoshi H. Comparison of PD-L1 immunohistochemical assays and the significance of PD-L1 expression in thymoma. J Thorac Dis 2020; 12:7553-7560. [PMID: 33447446 PMCID: PMC7797863 DOI: 10.21037/jtd-19-3703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thymoma is a relatively rare malignancy, which is categorized as thymic epithelial tumor but known as the most common pathology that is developed in the anterior mediastinum. Complete resection is recommended for localized tumors and usually favorable prognosis can be obtained. However, poor survival period has been reported in unresectable cases exhibiting extensive invasion or distant metastasis, as effective chemotherapeutic regimens are restrained. We previously assessed expression of programmed death ligand 1 (PD-L1) and programmed death 1 (PD-1) and discussed their prospective application in the immunotherapy of thymic epithelial tumors. After our publication, additional studies using reliable PD-L1 antibodies, which are currently administered to predict efficacy of PD-1/PD-L1 blockade therapy were performed and further characterized PD-L1 in thymoma. Herein, recent knowledge in relation to the significance of PD-L1 expression in thymoma is reviewed based on recent findings using qualified PD-L1 clones. Most studies coherently found high expression of PD-L1 on the cell membrane and cytoplasm of tumor epithelial cells in accordance with previous reports, which is a predictive marker for effectiveness of anti-PD-1/PD-L1 drugs, even when approved PD-L1 antibodies were employed. On the other hand, PD-L1 expression on tumor infiltrating immune cells remains to be sufficiently determined. High PD-L1 expression can be expected in cases with high grade histological subtypes, such as type B2/B3 thymomas, or those with advanced stages III or IV of the disease. Interestingly, the level of PD-L1 expression was found to be upregulated after chemotherapy compared with that before, which could be explained by immunogenic cell death. The prognostic impact of PD-L1 expression in thymoma might be found only when thymic carcinoma patients were excluded. Furthermore, it also could be identified when we analyzed thymomas completely resected, distinct from biopsy and incompletely resected cases.
Collapse
Affiliation(s)
- Shintaro Yokoyama
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
45
|
Tateo V, Manuzzi L, De Giglio A, Parisi C, Lamberti G, Campana D, Pantaleo MA. Immunobiology of Thymic Epithelial Tumors: Implications for Immunotherapy with Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:E9056. [PMID: 33260538 PMCID: PMC7730788 DOI: 10.3390/ijms21239056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Thymic epithelial tumors (TETs) are a group of rare thoracic malignancies, including thymic carcinomas (TC) and thymomas (Tm). Autoimmune paraneoplastic diseases are often observed in TETs, especially Tms. To date, chemotherapy is still the standard treatment for advanced disease. Unfortunately, few therapeutic options are available for relapsed/refractory TETs. In the last few years, the deepening of knowledge on thymus' immunobiology and involved altered genetic pathways have laid the foundation for new treatment options in these rare neoplasms. Recently, the immunotherapy revolution has landed in TETs, showing both a dark and light side. Indeed, despite the survival benefit, the occurrence of severe autoimmune treatment-related adverse events has risen crescent uncertainty about the feasibility of immunotherapy in these patients, prone to autoimmunity for their cancer biology. In this review, after summarizing immunobiology and immunopathology of TETs, we discuss available data on immune-checkpoint inhibitors and future perspectives of this therapeutic strategy.
Collapse
Affiliation(s)
- Valentina Tateo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (A.D.G.); (C.P.)
| | - Lisa Manuzzi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (A.D.G.); (C.P.)
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (A.D.G.); (C.P.)
| | - Claudia Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (A.D.G.); (C.P.)
| | - Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico di Sant’Orsola University Hospital, Via P. Albertoni 15, 40138 Bologna, Italy; (V.T.); (L.M.); (A.D.G.); (C.P.)
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (D.C.); (M.A.P.)
| | - Davide Campana
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (D.C.); (M.A.P.)
| | - Maria Abbondanza Pantaleo
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy; (D.C.); (M.A.P.)
| |
Collapse
|
46
|
Bedekovics J, Beke L, Mokanszki A, Szilagyi S, Mehes G. Programmed Death-ligand 1 (PD-L1) Expression in Thymic Epithelial Tumors. Appl Immunohistochem Mol Morphol 2020; 28:1-9. [PMID: 30499814 DOI: 10.1097/pai.0000000000000699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thymic epithelial tumors (TETs) are uncommon neoplasms of the mediastinum. The gold standard treatment is complete surgical resection which can be followed by radio/chemotherapy in selected cases. Targeted tyrosine kinase inhibition can be considered in only a limited number of aggressive or metastatic tumors as EGFR, BRAF, or c-kit mutations are rare. However, previous studies have demonstrated the efficacy of immune checkpoint inhibitors in epithelial neoplasias, such as in programmed cell death ligand 1 (PD-L1) expressing nonsmall cell lung carcinoma. Because of their rare occurrence the data on PD-L1 distribution in thymic neoplasias are limited. PD-L1 and PD-1 expression in tumor cells and tumor infiltrating immune cells was determined in TETs according to criteria published for lung carcinomas. Comparison with major clinical, pathologic, and biological features was also done. In total, 36 TETs (29 thymomas and 7 thymic carcinomas) were analyzed. PD-L1 immunohistochemical staining (Ventana PD-L1 clone SP142) was performed in all cases. The percentage of the positive tumor cells (TC value), the percentage of tumor area occupied by positive immune cells (IC value) was evaluated. Evaluation of PD-L1 expression in tumor cells showed a good reproducibility (κ-value: 0.840; Spearman r=0.966; P<0.0001). About 69% of thymomas (20/29) and 43% of thymic carcinomas (3/7) showed high positivity rate (TC≥50% or IC ≥10%), which may indicate therapeutic advantage similar to nonsmall cell lung cancers defined by the same conditions. PD-L1 expression is common in different epithelial tumors of the thymus, which suggests the potential effectiveness of drugs targeting the PD-1/PD-L1 interactions in these neoplasms.
Collapse
Affiliation(s)
- Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
47
|
Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020; 11:575609. [PMID: 33304346 PMCID: PMC7693637 DOI: 10.3389/fimmu.2020.575609] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Innate immune surveillance of cancer involves multiple types of immune cells including the innate lymphoid cells (ILCs). Natural killer (NK) cells are considered the most active ILC subset for tumor elimination because of their ability to target infected and malignant cells without prior sensitization. NK cells are equipped with an array of activating and inhibitory receptors (IRs); hence NK cell activity is controlled by balanced signals between the activating and IRs. Multiple myeloma (MM) is a hematological malignancy that is known for its altered immune landscape. Despite improvements in therapeutic options for MM, this disease remains incurable. An emerging trend to improve clinical outcomes in MM involves harnessing the inherent ability of NK cells to kill malignant cells by recruiting NK cells and enhancing their cytotoxicity toward the malignant MM cells. Following the clinical success of blocking T cell IRs in multiple cancers, targeting NK cell IRs is drawing increasing attention. Relevant NK cell IRs that are attractive candidates for checkpoint blockades include KIRs, NKG2A, LAG-3, TIGIT, PD-1, and TIM-3 receptors. Investigating these NK cell IRs as pathogenic agents and therapeutic targets could lead to promising applications in MM therapy. This review describes the critical role of enhancing NK cell activity in MM and discusses the potential of blocking NK cell IRs as a future MM therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/adverse effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Molecular Targeted Therapy
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Receptors, Natural Killer Cell/antagonists & inhibitors
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Helmi Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
48
|
Jin W, Duan JC, Wang ZJ, Lin L, Bai H, Wang J, Feng L. The Effect and Safety of Anti-PD-1 Single/Combination Therapy in Refractory Thymic Carcinoma: A Case-Series Study. Cancer Manag Res 2020; 12:11351-11358. [PMID: 33192094 PMCID: PMC7654529 DOI: 10.2147/cmar.s274830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy provided with checkpoint inhibitors such as the programmed cell death-1 (PD-1) receptor or its ligand-1 (PD-L1) protein has been shown to be effective for treating several types of cancer, and was recently approved for use in treating malignant melanoma, advanced non-small cell lung cancer (NSCLC), urothelial carcinoma, head and neck squamous cell carcinoma, liver cancer, and additional forms of cancer. However, there is little evidence concerning its effectiveness in treating thymic squamous cell carcinoma (TSCC). Here, we report two cases of refractory TSCC that were treated with PD-1 single/combination therapy in a clinical setting. The patients exhibited variable responses to therapy without any serious adverse events. In summary, our findings show that immunotherapy provided with an immuno-checkpoint inhibitor in combination with chemotherapy/anti-angiogenesis therapy can improve the treatment response of patients with refractory TSCC. Anti-PD-1 single/combination therapy may be used as a strategy for treating advanced refractory TC.
Collapse
Affiliation(s)
- Wei Jin
- Department of Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jian-Chun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zhi-Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lin Lin
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Li Feng
- Department of Chinese Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
49
|
Abstract
BACKGROUND Metastatic and unresectable thymoma (T) or thymic carcinoma (TC) have limited treatment options, especially after first line. METHODS Patients with unresectable or recurrent thymic tumors who used minimum one dose of nivolumab at any line of treatment were evaluated retrospectively. Even though nivolumab was administered 3mg/kg dosage in PRIMER study, due to toxicity and financial concerns, we used low dose regimen mostly. RESULTS Among 46 unresectable and recurrent thymic epithelial tumors; 8 patients with TC (n = 3), T (n = 4) and mixt histology (n = 1) were reviewed. Three patients had myasthenia gravis history that had to be controlled before treatment. Four patients showed moderate (n = 2) or severe (n = 2) adverse events with nivolumab treatment. Interestingly, two severe adverse events were occurred at first dose even with 40 mg nivolumab and required cessation of treatment permanently. The median number of nivolumab received was four (range: 1-18). Best response was partial response. Two patients progressed at the 3rd and 5th month of treatment. Best duration of response for one patient with TC and one patient with T-B2 were 9 and 14 months, respectively. Median survival time after nivolumab was 7.4 months (range: 2-22.1). CONCLUSIONS After the results of the previous study could be supported by randomized prospective studies with more number of patients, nivolumab may be considered as an option in patients with thymic epithelial tumors who have received multiple line treatments. However, given the high rate of severe toxicities, there is need to find out a reliable marker to prediction patients who will derive benefit or exhibit toxicity.
Collapse
Affiliation(s)
- Naziye Ak
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Adnan Aydiner
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
50
|
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 2020; 251:117103. [PMID: 33142641 DOI: 10.1016/j.carbpol.2020.117103] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
The polysaccharide-based biomaterials hyaluronic acid (HA) and chondroitin sulfate (CS) have aroused great interest for use in drug delivery systems for tumor therapy, as they have outstanding biocompatibility and great targeting ability for cluster determinant 44 (CD44). In addition, modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs) for targeted drug delivery. This review discusses the formation of HA- and CS-based NPs, and various types of CS-based NPs including CS-drug conjugates, CS-polymer NPs, CS-small molecule NPs, polyelectrolyte nanocomplexes (PECs), CS-metal NPs, and nanogels. We then focus on the applications of HA- and CS-based NPs in tumor chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. Finally, this review is expected to provide guidelines for the development of various HA- and CS-based NPs used in multiple cancer therapies.
Collapse
|