1
|
Yin Y, Sakakibara R, Honda T, Kirimura S, Daroonpan P, Kobayashi M, Ando K, Ujiie H, Kato T, Kaga K, Mitsumura T, Nakano R, Sakashita H, Matsuge S, Ishibashi H, Akashi T, Hida Y, Morohoshi T, Azuma M, Okubo K, Miyazaki Y. High density and proximity of CD8 + T cells to tumor cells are correlated with better response to nivolumab treatment in metastatic pleural mesothelioma. Thorac Cancer 2023. [PMID: 37253418 DOI: 10.1111/1759-7714.14981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) in pleural mesothelioma has recently been established. The response to ICIs can be predicted by quantitative analysis of cells and their spatial distribution in the tumor microenvironment (TME). However, the detailed composition of the TME in pleural mesothelioma has not been reported. We evaluated the association between the TME and response to ICIs in this cancer. METHODS A retrospective analysis of 22 pleural mesothelioma patients treated with nivolumab in different centers was performed using surgical specimens. Four patients had a partial response to nivolumab (response group) and 18 patients had stable or progressive disease (nonresponse group). The number of CD4, CD8, FoxP3, CK, and PD-L1 positive cells, cell density, and cell-to-cell distance were analyzed by multiplex immunofluorescence. RESULTS PD-L1 expression did not differ significantly between the response and nonresponse groups. The density of total T cells and of CD8+ T cells was significantly higher in the response than in the nonresponse group. CD8+ T cells were more clustered and located closer to tumor cells, whereas regulatory T cells were located further from tumor cells in the response than in the nonresponse group. CONCLUSIONS High density and spatial proximity of CD8+ T cells to tumor cells were associated with better response to nivolumab, whereas the proximity of regulatory T cells to tumor cells was associated with worse response, suggesting that the distinct landscape of the TME could be a potential predictor of ICI efficacy in pleural mesothelioma.
Collapse
Affiliation(s)
- Yuting Yin
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Sakakibara
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pissacha Daroonpan
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Ando
- Department of Thoracic Surgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Hideki Ujiie
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Tatsuya Kato
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Kichizo Kaga
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Takahiro Mitsumura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Pulmonary Immunotherapeutics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoji Nakano
- Department of Respiratory Medicine, Hokkaido Kin-Ikyo Chuo Hospital, Sapporo, Japan
| | | | - Shinichi Matsuge
- Department of Thoracic Surgery, Hokkaido Kin-Ikyo Chuo Hospital, Sapporo, Japan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Hida
- Department of Thoracic Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Takao Morohoshi
- Department of Thoracic Surgery, Yokosuka Kyosai Hospital, Yokosuka, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Khan SU, Khan MU, Azhar Ud Din M, Khan IM, Khan MI, Bungau S, Hassan SSU. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front Immunol 2023; 14:1166487. [PMID: 37138860 PMCID: PMC10149956 DOI: 10.3389/fimmu.2023.1166487] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering Fuyang Normal University, Fuyang, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Ollila H, Mäyränpää MI, Paavolainen L, Paajanen J, Välimäki K, Sutinen E, Wolff H, Räsänen J, Kallioniemi O, Myllärniemi M, Ilonen I, Pellinen T. Prognostic Role of Tumor Immune Microenvironment in Pleural Epithelioid Mesothelioma. Front Oncol 2022; 12:870352. [PMID: 35795056 PMCID: PMC9251441 DOI: 10.3389/fonc.2022.870352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPleural mesothelioma (MPM) is an aggressive malignancy with an average patient survival of only 10 months. Interestingly, about 5%–10% of the patients survive remarkably longer. Prior studies have suggested that the tumor immune microenvironment (TIME) has potential prognostic value in MPM. We hypothesized that high-resolution single-cell spatial profiling of the TIME would make it possible to identify subpopulations of patients with long survival and identify immunophenotypes for the development of novel treatment strategies.MethodsWe used multiplexed fluorescence immunohistochemistry (mfIHC) and cell-based image analysis to define spatial TIME immunophenotypes in 69 patients with epithelioid MPM (20 patients surviving ≥ 36 months). Five mfIHC panels (altogether 21 antibodies) were used to classify tumor-associated stromal cells and different immune cell populations. Prognostic associations were evaluated using univariate and multivariable Cox regression, as well as combination risk models with area under receiver operating characteristic curve (AUROC) analyses.ResultsWe observed that type M2 pro-tumorigenic macrophages (CD163+pSTAT1−HLA-DRA1−) were independently associated with shorter survival, whereas granzyme B+ cells and CD11c+ cells were independently associated with longer survival. CD11c+ cells were the only immunophenotype increasing the AUROC (from 0.67 to 0.84) when added to clinical factors (age, gender, clinical stage, and grade).ConclusionHigh-resolution, deep profiling of TIME in MPM defined subgroups associated with both poor (M2 macrophages) and favorable (granzyme B/CD11c positivity) patient survival. CD11c positivity stood out as the most potential prognostic cell subtype adding prediction power to the clinical factors. These findings help to understand the critical determinants of TIME for risk and therapeutic stratification purposes in MPM.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Hely Ollila,
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henrik Wolff
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Laboratory of Pathology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
HDAC Inhibition with Valproate Improves Direct Cytotoxicity of Monocytes against Mesothelioma Tumor Cells. Cancers (Basel) 2022; 14:cancers14092164. [PMID: 35565292 PMCID: PMC9100202 DOI: 10.3390/cancers14092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor-associated macrophages and monocyte myeloid-derived immunosuppressive cells are associated with bad prognosis in malignant pleural mesothelioma (MPM). This study shows that peripheral blood monocytes can, nevertheless, be cytotoxic for MPM tumor cells. This cytotoxic activity that involves direct cell-to-cell contact can be improved with a lysine deacetylase inhibitor (VPA), opening new prospects for further improvement of still unsatisfactory MPM therapies. Abstract The composition of the tumor microenvironment (TME) mediates the outcome of chemo- and immunotherapies in malignant pleural mesothelioma (MPM). Tumor-associated macrophages (TAMs) and monocyte myeloid-derived immunosuppressive cells (M-MDSCs) constitute a major fraction of the TME. As central cells of the innate immune system, monocytes exert well-characterized functions of phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). The objective of this study was to evaluate the ability of monocytes to exert a direct cytotoxicity by cell-to-cell contact with MPM cells. The experimental model is based on cocultures between human blood-derived monocytes sorted by negative selection and mesothelioma cell lines. Data show (i) that blood-derived human monocytes induce tumor cell death by direct cell-to-cell contact, (ii) that VPA is a pharmacological enhancer of this cytotoxic activity, (iii) that VPA increases monocyte migration and their aggregation with MPM cells, and (iv) that the molecular mechanisms behind VPA modulation of monocytes involve a downregulation of the membrane receptors associated with the M2 phenotype, i.e., CD163, CD206, and CD209. These conclusions, thus, broaden our understanding about the molecular mechanisms involved in immunosurveillance of the tumor microenvironment and open new prospects for further improvement of still unsatisfactory MPM therapies
Collapse
|
5
|
Cantini L, Laniado I, Murthy V, Sterman D, Aerts JGJV. Immunotherapy for mesothelioma: Moving beyond single immune check point inhibition. Lung Cancer 2022; 165:91-101. [PMID: 35114509 DOI: 10.1016/j.lungcan.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with low survival rates. Platinum-based chemotherapy has represented the cornerstone of treatment for over a decade, prompting the investigation of new therapeutic strategies both in the early stage of the disease and in the advanced setting. The advent of immune check-point inhibitors (ICIs) has recently revamped the enthusiasm for using immunotherapy also in MPM. However, results from first clinical trials using single immune check-point inhibition have been conflicting, and this may be mainly attributed to the lack of specific biomarkers as well as to intra- and inter- patient heterogeneity. The phase III Checkmate743 firstly demonstrated the superiority of an ICI combination (nivolumab plus ipilimumab) over chemotherapy in the first-line treatment of unresectable MPM, leading to FDA approval of this regimen and showing that moving beyond single immune check point inhibition might be a successful strategy to overcome resistance in the majority of MPM patients. In this review, we describe the emerging immunotherapy strategies for the treatment of MPM. We also discuss how refining the approach in pre-clinical studies towards a more holistic perspective (which takes into account not only genetic but also pathophysiological vulnerabilities) and strengthening multi-institutional collaboration in clinical trials is finally helping the clinical development of immunotherapy in MPM.
Collapse
Affiliation(s)
- Luca Cantini
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Clinical Oncology, Università Politecnica Delle Marche, AOU Ospedali Riuniti Ancona, Italy
| | - Isaac Laniado
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Vivek Murthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Daniel Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
7
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
8
|
Napoli F, Listì A, Zambelli V, Witel G, Bironzo P, Papotti M, Volante M, Scagliotti G, Righi L. Pathological Characterization of Tumor Immune Microenvironment (TIME) in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2564. [PMID: 34073720 PMCID: PMC8197227 DOI: 10.3390/cancers13112564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that arises from pleural mesothelial cells, characterized by a median survival of approximately 13-15 months after diagnosis. The primary cause of this disease is asbestos exposure and the main issues associated with it are late diagnosis and lack of effective therapies. Asbestos-induced cellular damage is associated with the generation of an inflammatory microenvironment that influences and supports tumor growth, possibly in association with patients' genetic predisposition and tumor genomic profile. The chronic inflammatory response to asbestos fibers leads to a unique tumor immune microenvironment (TIME) composed of a heterogeneous mixture of stromal, endothelial, and immune cells, and relative composition and interaction among them is suggested to bear prognostic and therapeutic implications. TIME in MPM is known to be constituted by immunosuppressive cells, such as type 2 tumor-associated macrophages and T regulatory lymphocytes, plus the expression of several immunosuppressive factors, such as tumor-associated PD-L1. Several studies in recent years have contributed to achieve a greater understanding of the pathogenetic mechanisms in tumor development and pathobiology of TIME, that opens the way to new therapeutic strategies. The study of TIME is fundamental in identifying appropriate prognostic and predictive tissue biomarkers. In the present review, we summarize the current knowledge about the pathological characterization of TIME in MPM.
Collapse
Affiliation(s)
- Francesca Napoli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Angela Listì
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Vanessa Zambelli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Gianluca Witel
- Department of Medical Sciences, University of Turin, City of Health and Science, 10126 Torino, Italy;
| | - Paolo Bironzo
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Mauro Papotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Pathology Unit, City of Health and Science, 10126 Torino, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Luisella Righi
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| |
Collapse
|
9
|
Blondy T, d'Almeida SM, Briolay T, Tabiasco J, Meiller C, Chéné AL, Cellerin L, Deshayes S, Delneste Y, Fonteneau JF, Boisgerault N, Bennouna J, Grégoire M, Jean D, Blanquart C. Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. J Immunother Cancer 2021; 8:jitc-2019-000182. [PMID: 32581053 PMCID: PMC7319783 DOI: 10.1136/jitc-2019-000182] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The tumor microenvironment content, particularly the presence of macrophages, was described as crucial for the development of the disease. This work aimed at studying the involvement of the M-CSF (CSF-1)/IL-34/CSF-1R pathway in the formation of macrophages in MPM, using samples from patients. Methods Pleural effusions (PEs), frozen tumors, primary MPM cells and MPM cell lines used in this study belong to biocollections associated with clinical databases. Cytokine expressions were studied using real-time PCR and ELISA. The Cancer Genome Atlas database was used to confirm our results on an independent cohort. An original three-dimensional (3D) coculture model including MPM cells, monocytes from healthy donors and a tumor antigen-specific cytotoxic CD8 T cell clone was used. Results We observed that high interleukin (IL)-34 levels in PE were significantly associated with a shorter survival of patients. In tumors, expression of CSF1 was correlated with ‘M2-like macrophages’ markers, whereas this was not the case with IL34 expression, suggesting two distinct modes of action of these cytokines. Expression of IL34 was higher in MPM cells compared with primary mesothelial cells. Particularly, high expression of IL34 was observed in MPM cells with an alteration of CDKN2A. Finally, using 3D coculture model, we demonstrated the direct involvement of MPM cells in the formation of immunosuppressive macrophages, through activation of the colony stimulating factor-1 receptor (CSF1-R) pathway, causing the inhibition of cytotoxicity of tumor antigen-specific CD8+ T cells. Conclusions The M-CSF/IL-34/CSF-1R pathway seems strongly implicated in MPM and could constitute a therapeutic target to act on immunosuppression and to support immunotherapeutic strategies.
Collapse
Affiliation(s)
- Thibaut Blondy
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Sènan Mickael d'Almeida
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France.,Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Flow Cytometry Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tina Briolay
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Julie Tabiasco
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Anne-Laure Chéné
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hopital Nord Laennec, Nantes, Pays de la Loire, France
| | - Laurent Cellerin
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,Service d'Oncologie Médicale Thoracique et Digestive, Hopital Nord Laennec, Nantes, Pays de la Loire, France
| | - Sophie Deshayes
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Yves Delneste
- Université d'Angers, INSERM, CRCINA, F-49000 Angers, France.,CHU Angers, Laboratoire d'Immunologie et Allergologie, F-49000 Angers, France
| | | | | | - Jaafar Bennouna
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France.,CHU de Nantes, oncologie thoracique et oncologie digestive, 5, allée de l'Île Gloriette, 44093 Nantes, France
| | - Marc Grégoire
- Université de Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | | |
Collapse
|
10
|
Biomarkers for Malignant Pleural Mesothelioma-A Novel View on Inflammation. Cancers (Basel) 2021; 13:cancers13040658. [PMID: 33562138 PMCID: PMC7916017 DOI: 10.3390/cancers13040658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowledged as main risk factors. Since immune therapy evolved as a promising novel treatment modality, we want to reevaluate and summarize the role of the inflammatory system in MPM. This review focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers, and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and consequently improves patient's outcome in this rare disease. Additionally, a better understanding of the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis and progression, might also reveal possible new targets for MPM treatment. After reviewing the currently available literature and according to our own research, it is concluded that the suppression of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM aggressiveness translating to poor patient outcome.
Collapse
|
11
|
Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. J Clin Med 2020; 9:jcm9103226. [PMID: 33050070 PMCID: PMC7600332 DOI: 10.3390/jcm9103226] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the most abundant leucocyte subset in many cancers and play a major role in the creation of a protective niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to escape the immune system and to allow the tumor to proliferate and metastasize to distant sites. Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to reprogram TAMs with single as well as combination therapies.
Collapse
|
12
|
Balancin ML, Teodoro WR, Farhat C, de Miranda TJ, Assato AK, de Souza Silva NA, Velosa AP, Falzoni R, Ab'Saber AM, Roden AC, Capelozzi VL. An integrative histopathologic clustering model based on immuno-matrix elements to predict the risk of death in malignant mesothelioma. Cancer Med 2020; 9:4836-4849. [PMID: 32391978 PMCID: PMC7333849 DOI: 10.1002/cam4.3111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Previous studies have reported a close relationship between malignant mesothelioma (MM) and the immune matricial microenvironment (IMM). One of the major problems in these studies is the lack of adequate adjustment for potential confounders. Therefore, the aim of this study was to identify and quantify risk factors such as IMM and various tumor characteristics and their association with the subtype of MM and survival. Methods We examined IMM and other tumor markers in tumor tissues from 82 patients with MM. These markers were evaluated by histochemistry, immunohistochemistry, immunofluorescence, and morphometry. Logistic regression analysis, cluster analysis, and Cox regression analysis were performed. Results Hierarchical cluster analysis revealed two clusters of MM that were independent of clinicopathologic features. The high‐risk cluster included MM with high tumor cellularity, high type V collagen (Col V) fiber density, and low CD8+ T lymphocyte density in the IMM. Our results showed that the risk of death was increased for patients with MM with high tumor cellularity (OR = 1.63, 95% CI = 1.29‐2.89, P = .02), overexpression of Col V (OR = 2.60, 95% CI = 0.98‐6.84, P = .04), and decreased CD8 T lymphocytes (OR = 1.001, 95% CI = 0.995‐1.007, P = .008). The hazard ratio for the high‐risk cluster was 2.19 (95% CI = 0.54‐3.03, P < .01) for mortality from MM at 40 months. Conclusion Morphometric analysis of Col V, CD8+ T lymphocytes, and tumor cellularity can be used to identify patients with high risk of death from MM.
Collapse
Affiliation(s)
- Marcelo Luiz Balancin
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia Farhat
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tomas Jurandir de Miranda
- Rheumatology Division, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aline Kawassaki Assato
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Paula Velosa
- Rheumatology Division, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Falzoni
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Hamaidia M, Gazon H, Hoyos C, Hoffmann GB, Louis R, Duysinx B, Willems L. Inhibition of EZH2 methyltransferase decreases immunoediting of mesothelioma cells by autologous macrophages through a PD-1-dependent mechanism. JCI Insight 2019; 4:128474. [PMID: 31534051 DOI: 10.1172/jci.insight.128474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022] Open
Abstract
The roles of macrophages in orchestrating innate immunity through phagocytosis and T lymphocyte activation have been extensively investigated. Much less understood is the unexpected role of macrophages in direct tumor regression. Tumoricidal macrophages can indeed manifest cancer immunoediting activity in the absence of adaptive immunity. We investigated direct macrophage cytotoxicity in malignant pleural mesothelioma, a lethal cancer that develops from mesothelial cells of the pleural cavity after occupational asbestos exposure. In particular, we analyzed the cytotoxic activity of mouse RAW264.7 macrophages upon cell-cell contact with autologous AB1/AB12 mesothelioma cells. We show that macrophages killed mesothelioma cells by oxeiptosis via a mechanism involving enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27-specific (H3K27-specific) methyltransferase of the polycomb repressive complex 2 (PRC2). A selective inhibitor of EZH2 indeed impaired RAW264.7-directed cytotoxicity and concomitantly stimulated the PD-1 immune checkpoint. In the immunocompetent BALB/c model, RAW264.7 macrophages pretreated with the EZH2 inhibitor failed to control tumor growth of AB1 and AB12 mesothelioma cells. Blockade of PD-1 engagement restored macrophage-dependent antitumor activity. We conclude that macrophages can be directly cytotoxic for mesothelioma cells independent of phagocytosis. Inhibition of the PRC2 EZH2 methyltransferase reduces this activity because of PD-1 overexpression. Combination of PD-1 blockade and EZH2 inhibition restores macrophage cytotoxicity.
Collapse
Affiliation(s)
- Malik Hamaidia
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Hélène Gazon
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium
| | - Clotilde Hoyos
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Gabriela Brunsting Hoffmann
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| | - Renaud Louis
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Bernard Duysinx
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (Groupe Interdisciplinaire de Génoprotéomique Appliquée [GIGA]), Liège, Belgium.,Molecular Biology, TERRA, Gembloux, Belgium
| |
Collapse
|
14
|
Salaroglio IC, Kopecka J, Napoli F, Pradotto M, Maletta F, Costardi L, Gagliasso M, Milosevic V, Ananthanarayanan P, Bironzo P, Tabbò F, Cartia CF, Passone E, Comunanza V, Ardissone F, Ruffini E, Bussolino F, Righi L, Novello S, Di Maio M, Papotti M, Scagliotti GV, Riganti C. Potential Diagnostic and Prognostic Role of Microenvironment in Malignant Pleural Mesothelioma. J Thorac Oncol 2019; 14:1458-1471. [PMID: 31078776 DOI: 10.1016/j.jtho.2019.03.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A comprehensive analysis of the immune cell infiltrate collected from pleural fluid and from biopsy specimens of malignant pleural mesothelioma (MPM) may contribute to understanding the immune-evasion mechanisms related to tumor progression, aiding in differential diagnosis and potential prognostic stratification. Until now such approach has not routinely been verified. METHODS We enrolled 275 patients with an initial clinical diagnosis of pleural effusion. Specimens of pleural fluids and pleural biopsy samples used for the pathologic diagnosis and the immune phenotype analyses were blindly investigated by multiparametric flow cytometry. The results were analyzed using the Kruskal-Wallis test. The Kaplan-Meier and log-rank tests were used to correlate immune phenotype data with patients' outcome. RESULTS The cutoffs of intratumor T-regulatory (>1.1%) cells, M2-macrophages (>36%), granulocytic and monocytic myeloid-derived suppressor cells (MDSC; >5.1% and 4.2%, respectively), CD4 molecule-positive (CD4+) programmed death 1-positive (PD-1+) (>5.2%) and CD8+PD-1+ (6.4%) cells, CD4+ lymphocyte activating 3-positive (LAG-3+) (>2.8% ) and CD8+LAG-3+ (>2.8%) cells, CD4+ T cell immunoglobulin and mucin domain 3-positive (TIM-3+) (>2.5%), and CD8+TIM-3+ (>2.6%) cells discriminated MPM from pleuritis with 100% sensitivity and 89% specificity. The presence of intratumor MDSC contributed to the anergy of tumor-infiltrating lymphocytes. The immune phenotype of pleural fluid cells had no prognostic significance. By contrast, the intratumor T-regulatory and MDSC levels significantly correlated with progression-free and overall survival, the PD-1+/LAG-3+/TIM-3+ CD4+ tumor-infiltrating lymphocytes correlated with overall survival. CONCLUSIONS A clear immune signature of pleural fluids and tissues of MPM patients may contribute to better predict patients' outcome.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Monica Pradotto
- Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Francesca Maletta
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Lorena Costardi
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Matteo Gagliasso
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | | | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Carlotta F Cartia
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Erika Passone
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Francesco Ardissone
- Thoracic Surgery Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Enrico Ruffini
- Thoracic Surgery Unit, Department of Surgery, AOU Città della Salute e Della Scienza, University of Torino, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Department of Oncology, University of Torino, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Torino, Torino, Italy; Medical Oncology Division, Department of Oncology at AOU Ordine Mauriziano di Torino, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, Torino, Italy; Pathology Unit, Department of Oncology at AOU Città della Salute e della Scienza, Torino, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy; Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino Regione Gonzole 10, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy; Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy.
| |
Collapse
|
15
|
Li Y, Liu J, Gao L, Liu Y, Meng F, Li X, Qin FXF. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance. Immunol Lett 2019; 220:88-96. [PMID: 30885690 DOI: 10.1016/j.imlet.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/19/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
The ability of immune checkpoint inhibitors (ICIs) to reactivate the killing function of the immune system to tumor cells has led to long lasting immune response presenting highly promising clinical advances. Recently, immune checkpoint inhibitors related resistance due to the specialized tumor microenvironment has also drawn a widely attention. To overcome resistance to immune checkpoint blockade therapy, understanding the relationship of this type of therapy and tumor microenvironment is necessary and critical. This review will focus on how the tumor environment influences the effectiveness of the immunotherapeutic check inhibitors. Finally, we provide a briefly succinct glimpse into the most exciting pre-clinical discoveries and ongoing clinical trials to overcome the resistance of ICIs.
Collapse
Affiliation(s)
- Yaqi Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Jing Liu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Long Gao
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Yuan Liu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Fang Meng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Xiaoan Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
16
|
Ye L, Ma S, Robinson BW, Creaney J. Immunotherapy strategies for mesothelioma - the role of tumor specific neoantigens in a new era of precision medicine. Expert Rev Respir Med 2018; 13:181-192. [PMID: 30596292 DOI: 10.1080/17476348.2019.1563488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy has long been considered a potential therapy for malignant mesothelioma and is currently being pursued as such. Some of the early phase clinical trials involving immunomodulators have demonstrated encouraging results and numerous clinical trials are underway to further investigate this treatment approach in various treatment settings and larger patient cohorts. Areas covered: This review summarizes the current and emerging clinical evidence for checkpoint blockade and other immunotherapeutic strategies in mesothelioma. The mesothelioma tumor immune microenvironment and mutational landscape are also discussed, including their impact on treatment strategies. We also provide an evaluation of the current evidence for neoantigen targeted personalized immunotherapy. Expert opinion: Immune checkpoint inhibitors work by unleashing the host immune response against probable neoantigens. Despite impressive activity in a small subset of patients and the potential for prolonged responses, most patients experience treatment failure. Neoantigen vaccines provide a potential complementary therapeutic strategy by increasing the immunogenic antigen load, which can lead to an increased tumor specific immune response. Further research is needed explore this treatment option in mesothelioma and technological advances are required to translate this concept into clinical practice.
Collapse
Affiliation(s)
- Linda Ye
- a Department of Medical Oncology , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Shaokang Ma
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia
| | - Bruce W Robinson
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Jenette Creaney
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia.,d Institute of Respiratory Health , University of Western Australia , Nedlands , Australia
| |
Collapse
|
17
|
Minnema-Luiting J, Vroman H, Aerts J, Cornelissen R. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma. Int J Mol Sci 2018; 19:ijms19041041. [PMID: 29601534 PMCID: PMC5979422 DOI: 10.3390/ijms19041041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.
Collapse
Affiliation(s)
- Jorien Minnema-Luiting
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Heleen Vroman
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Joachim Aerts
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Robin Cornelissen
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Dammeijer F, Lievense LA, Kaijen-Lambers ME, van Nimwegen M, Bezemer K, Hegmans JP, van Hall T, Hendriks RW, Aerts JG. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunol Res 2017; 5:535-546. [DOI: 10.1158/2326-6066.cir-16-0309] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/30/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022]
|
19
|
Simard FA, Richert I, Vandermoeten A, Decouvelaere AV, Michot JP, Caux C, Blay JY, Dutour A. Description of the immune microenvironment of chondrosarcoma and contribution to progression. Oncoimmunology 2016; 6:e1265716. [PMID: 28344871 DOI: 10.1080/2162402x.2016.1265716] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/12/2023] Open
Abstract
Chondrosarcoma (CHS) is a rare bone malignancy characterized by its resistance to conventional systemic and radiation therapies. Whether immunotherapy targeting immune checkpoints may be active in these tumors remains unknown. To explore the role of the immune system in this tumor, we analyzed the immune environment of chondrosarcomas both in human sample, and in a syngeneic rat model, and tested the contribution of T lymphocytes and macrophages in chondrosarcoma progression. Immunohistochemical stainings were performed on human chondrosarcoma samples and on Swarm rat chondrosarcoma (SRC) model. Selective immunodepletion assays were performed in SRC to evaluate immune population's involvement in tumor progression. In human and rat chondrosarcoma, immune infiltrates composed of lymphocytes and macrophages were identified in the peritumoral area. Immune infiltrates composition was found correlated with tumors characteristics and evolution (grade, invasiveness and size). In SRC, selective depletion of T lymphocytes resulted in an accelerated growth rates, whereas depletion of CD163+ macrophages slowed down tumor progression. Splenocytes isolated from CHS-bearing SRC showed a specific cytotoxicity directed against chondrosarcoma cells (27%), which significantly decreased in CD3-depleted SRC (11%). The immune environment contributes to CHS progression in both human and animal models, suggesting that immunomodulatory approaches could be tested in bone chondrosarcoma.
Collapse
Affiliation(s)
- François A Simard
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Léon Berard , Lyon, France
| | - Iseulys Richert
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Léon Berard , Lyon, France
| | - Alexandra Vandermoeten
- SCAR, Université Claude Bernard Lyon1, Faculté de médecine et de pharmacie de Rockefeller , Lyon, France
| | | | | | - Christophe Caux
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Léon Berard , Lyon, France
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Leon Berard , Lyon, France
| | - Aurélie Dutour
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Léon Berard , Lyon, France
| |
Collapse
|
20
|
Chéné AL, d'Almeida S, Blondy T, Tabiasco J, Deshayes S, Fonteneau JF, Cellerin L, Delneste Y, Grégoire M, Blanquart C. Pleural Effusions from Patients with Mesothelioma Induce Recruitment of Monocytes and Their Differentiation into M2 Macrophages. J Thorac Oncol 2016; 11:1765-73. [PMID: 27418105 DOI: 10.1016/j.jtho.2016.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/11/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Mesothelioma is a rare and aggressive cancer related to asbestos exposure. We recently showed that pleural effusions (PEs) from patients with mesothelioma contain high levels of the C-C motif chemokine ligand 2 (CCL2) inflammatory chemokine. In the present work, we studied the effect of CCL2 contained in mesothelioma samples, particularly on monocyte recruitment. Then, we studied the fate of these monocytes in malignant pleural mesothelioma (MPM) PEs and their impact on tumor cells' properties. METHODS The implication of CCL2 in monocyte recruitment was evaluated using transmigration assays and a CCL2 blocking antibody. The phenotype of macrophages was determined by flow cytometry and enzyme-linked immunosorbent assay. Immunohistochemical analysis was used to support the results. Cocultures of macrophages with mesothelioma cells were performed to study cancer cell proliferation and resistance to treatment. RESULTS We showed that CCL2 is a major factor of monocyte recruitment induced by MPM samples. Macrophages obtained in MPM samples were M2 macrophages (high CD14, high CD163, and interleukin-10 secretion after activation). The colony-stimulating factor 1 receptor/macrophage colony-stimulating factor (M-CSF) pathway is implicated in M2 polarization, and high levels of M-CSF were measured in MPM samples compared with benign PE (4.17 ± 2.75 ng/mL and 1.94 ± 1.47 ng/mL, respectively). Immunohistochemical analysis confirmed the presence of M2 macrophages in pleural and peritoneal mesothelioma. Finally, we showed that M2 macrophages increased mesothelioma cell proliferation and resistance to treatment. CONCLUSIONS These results demonstrate the implication of CCL2 in MPM pathogenesis and designate M-CSF as a new potential biomarker of MPM. This study also identifies CCL2 and colony-stimulating factor 1 receptor/M-CSF as interesting new targets to modulate pro-tumorigenic properties of the tumor microenvironment.
Collapse
Affiliation(s)
- Anne-Laure Chéné
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France
| | - Sènan d'Almeida
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Cancer Research Center Nantes-Angers, Inserm, U892, Angers, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Angers, France
| | - Thibaut Blondy
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France
| | - Julie Tabiasco
- Cancer Research Center Nantes-Angers, Inserm, U892, Angers, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Angers, France
| | - Sophie Deshayes
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France
| | - Jean-François Fonteneau
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France
| | - Laurent Cellerin
- Thoracic and Digestive Oncology Unit, Hôpital Laënnec, University Hospital of Nantes, France
| | - Yves Delneste
- Cancer Research Center Nantes-Angers, Inserm, U892, Angers, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Angers, France; Immunology and Allergology Laboratory, University Hospital of Angers, Angers, France
| | - Marc Grégoire
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France
| | - Christophe Blanquart
- Cancer Research Center Nantes-Angers, Inserm, U892, Nantes, France; Cancer Research Center Nantes-Angers, CNRS, UMR6299, Nantes, France; Nantes University, Nantes, France.
| |
Collapse
|
21
|
Lievense LA, Bezemer K, Cornelissen R, Kaijen-Lambers MEH, Hegmans JPJJ, Aerts JGJV. Precision immunotherapy; dynamics in the cellular profile of pleural effusions in malignant mesothelioma patients. Lung Cancer 2016; 107:36-40. [PMID: 27168021 DOI: 10.1016/j.lungcan.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Clinical studies have proven the potential of immunotherapy in malignancies. To increase efficacy, a prerequisite is that treatment is tailored, so precision immune-oncology is the logical next step. In order to tailor treatment, characterization of the patient's tumor environment is key. Pleural effusion (PE) often accompanies malignant pleural mesothelioma (MPM) and is an important part of the MPM environment. Furthermore, the composition of PE is used as surrogate for the tumor. In this study, we provide an insight in the dynamics of the MPM environment through characterization of PE composition over time and show that the immunological characteristics of PE do not necessarily mirror those of the tumor. MATERIALS AND METHODS From 5 MPM patients, PE and tumor biopsies were acquired at the same time point. From one of these patients multiple PEs were obtained. PEs were acquired performing thoracocenteses and total cell amounts were determined. Immunohistochemistry was performed to quantify immune cell composition (T cells, macrophages) and tumor cells in PE derived cytospins and tumor biopsies. RESULTS The PE amount and (immune) cellular composition varied considerably over time between multiple (n=10) thoracocenteses. These dynamics could in part be attributed to the treatment regimen consisting of standard chemotherapy and dendritic cell (DC)-based immunotherapy. In addition, the presence of T cells and macrophages in PE did not necessarily mirror the infiltration of these immune cells within tumor biopsies in 4 out of 5 patients. CONCLUSIONS In this proof-of-concept study with limited sample size, we demonstrate that the composition of PE is dynamic and influenced by treatment. Furthermore, the immune cell composition of PE does not automatically reflect the properties of tumor tissue. This has major consequences when applying precision immunotherapy based on PE findings in patients. Furthermore, it implies a regulated trafficking of immune regulating cells within the tumor environment.
Collapse
Affiliation(s)
- Lysanne A Lievense
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | | | - Joost P J J Hegmans
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands.
| |
Collapse
|