1
|
Regnery S, Katsigiannopulos E, Lau H, Hoegen-Saßmannshausen P, Weykamp F, Renkamp CK, Rippke C, Schlüter F, Albert S, Meis J, Kirchner M, Balzer A, Andratschke N, Guckenberger M, Debus J, Klüter S, Hörner-Rieber J. How to protect the proximal bronchial tree during stereotactic radiotherapy of ultracentral lung tumors: Lessons from MR-guided treatment. Clin Transl Radiat Oncol 2025; 51:100899. [PMID: 39790128 PMCID: PMC11714375 DOI: 10.1016/j.ctro.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT. Patients and Methods Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.5 Gy) on a 0.35 T MR-Linac (MRIdian®) in the prospective MAGELLAN trial. 4D-planning CT data of six patients served to quantify proximal bronchial tree (PBT) breathing motion. Daily fraction MRIs are used to calculate interfractional translations (mediolateral (ML), anterior-posterior (AP), superior-inferior (SI)) and their dosimetric consequences for the PBT. A planning risk volume (PRV) is calculated for an assumed non-adaptive SBRT in deep-inspiration breath hold (DIBH) with surface-guidance (AlignRT®). Finally, non-adaptive volumetric modulated arc (VMAT) SBRT is simulated with and without a PRV for N = 10 patients (10 × 5.5 Gy). Results The PBT shows relevant breathing motion, especially in superior-inferior direction (median ML: 2.5 mm, AP: 1.9 mm and SI: 9.2 mm). Furthermore, moderate interfractional translations are observed (mean absolute translation ML: 1.3 mm, AP: 1.3 mm, SI: 1.1 mm), with an estimated 2 mm PRV margin for interfractional changes alone. Simulated non-adaptive SBRT leads to PBT overdoses in 60 % of patients (median overdosed fractions VMAT: 2.5, predicted MR-linac plans 4). Both MR-guided online plan adaptation (SMART) and PRV-based non-adaptive VMAT prevent PBT overdoses, but SMART yields significantly higher planning target volume (PTV) coverage (SMART: median 96 % [IQR 95-96], VMAT: median 89 % [IQR 77-94], p = 0.014). Conclusions Both intrafractional breathing motion and interfractional translations may impact doses to the PBT during SBRT of ULT. SMART protects the PBT from overdoses while maintaining high PTV coverage. Non-adaptive SBRT appears safe with advanced breathing motion management and PRV, but yields inferior PTV coverage.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
| | - Hin Lau
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Sophia Albert
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jan Meis
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Marietta Kirchner
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Alexandra Balzer
- Institute of Medical Biometry University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- NCT Partner Site Heidelberg, A Clinical-Translational Cancer Research Partnership between University Hospital Heidelberg and DKFZ, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Murphy ES, Sahgal A, Regis J, Levivier M, Fariselli L, Gorgulho A, Ma L, Pollock B, Yomo S, Sheehan J, Paddick I, Suh JH, Saxena A, Ahmed MA, Kotecha R. Pediatric cranial stereotactic radiosurgery: Meta-analysis and international stereotactic radiosurgery society practice guidelines. Neuro Oncol 2025; 27:517-532. [PMID: 39390948 PMCID: PMC11812027 DOI: 10.1093/neuonc/noae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND There are limited data on the use of stereotactic radiosurgery (SRS) for pediatric patients. The aim of this systematic review was to summarize indications and outcomes specific to pediatric cranial SRS to inform consensus guidelines on behalf of the International Stereotactic Radiosurgery Society. METHODS A systematic review, using the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses, analyzed English-language articles on SRS, published between 1989 and 2021, that included outcomes for at least 5 pediatric patients. MEDLINE database terms included tumor types and locations, and radiosurgical and age-specific terms. We excluded nonclinical reports, expert opinions, commentaries, and review articles. Meta-regressions for associations with local control were performed for medulloblastoma, craniopharyngioma, ependymoma, glioma, and arteriovenous malformation (AVM). RESULTS Of the 113 articles identified for review, 68 met the inclusion criteria. These articles described approximately 400 pediatric patients with benign and malignant brain tumors and 5119 with AVMs who underwent cranial SRS. The rates of local control for benign tumors, malignant tumors, and AVMs were 89% (95% CI, 82%-95%), 71% (95% CI, 59%-82%), and 65% (95% CI, 60%-69%), respectively. No significant associations were identified for local control with the patient-, tumor-, or treatment-related variables. CONCLUSIONS This review is the first to summarize outcomes specific to SRS for pediatric brain tumors and AVMs. Although data reporting is limited for pediatric patients, SRS appears to provide acceptable rates of local control. We present ISRS consensus guidelines to inform the judicious use of cranial SRS for pediatric patients.
Collapse
Affiliation(s)
- Erin S Murphy
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, University of Toronto, Toronto, Canada
| | - Jean Regis
- Department of Functional Neurosurgery, La Timone Hospital, Aix-Marseille University, Marseille, France
| | - Marc Levivier
- Neurosurgery Service and Gamma Knife Center, Center Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laura Fariselli
- Department of Neurosurgery, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Milan, Italy
| | - Alessandra Gorgulho
- Department of Neurosurgery, State University of São Paulo, NeuroSapiens Group, São Paulo, Brazil
- D’Or Institute for Research and Education, São Paulo, Brazil
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Bruce Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Ian Paddick
- Queen Square Radiosurgery Centre, National Hospital for Neurology and Neurosurgery, London, UK
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anshul Saxena
- Center for Advanced Analytics, Baptist Health South Florida, Miami, Florida, USA
| | - Md Ashfaq Ahmed
- Center for Advanced Analytics, Baptist Health South Florida, Miami, Florida, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| |
Collapse
|
3
|
Yu J, Chen X. Novel approaches to fiducial-guided SBRT for ultra-central thoracic oligometastases. Radiother Oncol 2025; 205:110776. [PMID: 39933622 DOI: 10.1016/j.radonc.2025.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025]
Affiliation(s)
- Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an 710061, Shaanxi, China
| | - Xin Chen
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
4
|
Baker S, Leclerc C, Atmanspacher-Wirth H, Zhao Y, Schellenberg D, Clark H, Mou B, Liu M, Hsu F, Berrang T, Atrchian S, Bergman A, Chng N, Matthews Q, Chang JS, Tyldesley S, Robert O. The Impact of Ultracentral Tumor Location on Outcomes in Patients with Pulmonary Oligometastases: A Secondary Analysis of the Single-Arm Phase 2 SABR-5 Trial. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00096-3. [PMID: 39923903 DOI: 10.1016/j.ijrobp.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE/OBJECTIVES There are limited data on outcomes in patients with ultracentral pulmonary oligometastases treated with SABR. The purpose of this study was to determine whether ultracentral location was prognostic for toxicity and survival. MATERIAL AND METHODS Oligometastatic lung lesions treated on the single-arm phase 2 SABR-5 trial were retrospectively stratified into 2 cohorts: ultracentral tumors (UC), defined as planning target volume overlap or direct tumor abutment to the proximal bronchial tree, esophagus, great vessels, or heart, and nonultracentral tumors. Cohorts were compared with respect to grade ≥ 2 toxicity, progression-free survival (PFS), and overall survival (OS). RESULTS In total, 41 patients with 45 ultracentral metastases and 93 patients with 172 nonultracentral metastases underwent SABR. The most common primary histologies were colorectal (30%), lung (13%), and renal (13%), and these did not differ between groups. Patients with UC had a lower median PFS of 5.8 months compared with 15.8 months in patients with non ultracentral tumors (P < .001). OS was also worse in the UC cohort: median 29.0 months versus not yet reached (P < .001). On multivariable regression, UC remained prognostic for worse PFS (hazard ratio 2.18, P = .004) and OS (hazard ratio 3.45, P < .001). Groups had similar rates of local tumor control. Patients with UC had higher 2-year cumulative incidence of polymetastatic progression: 69.2% versus 31.4% (P < .001). The 2-year cumulative incidence of grade ≥ 2 toxicity was 14.6% for patients with UC and 9.8% for patients with nonultracentral tumors (P = .74). There were no grade 4 or 5 toxicities. CONCLUSIONS In this prospective patient cohort, SABR for ultracentral tumor had low toxicity rates and good local control. However, ultracentral location was an adverse prognostic feature for survival. This finding should be validated with larger studies and may be a factor when weighing the benefit versus risk of SABR in patients with pulmonary oligometastases.
Collapse
Affiliation(s)
- Sarah Baker
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Surrey, Canada.
| | | | | | - Yizhou Zhao
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Surrey, Canada
| | - Devin Schellenberg
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Surrey, Canada
| | - Haley Clark
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Surrey, Canada
| | - Benjamin Mou
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Kelowna, Canada
| | - Mitchell Liu
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Vancouver, Canada
| | - Fred Hsu
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Abbotsford, Canada
| | - Tanya Berrang
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Victoria, Canada
| | - Siavash Atrchian
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Kelowna, Canada
| | - Alanah Bergman
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Vancouver, Canada
| | - Nick Chng
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Prince George, Canada
| | - Quinn Matthews
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Prince George, Canada
| | - Jee Suk Chang
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Scott Tyldesley
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Vancouver, Canada
| | - Olson Robert
- University of British Columbia, Vancouver, Canada; Department of Surgery, Division of Radiation Oncology, BC Cancer, Prince George, Canada
| |
Collapse
|
5
|
Salvestrini V, Lastrucci A, Banini M, Loi M, Carnevale MG, Olmetto E, Garlatti P, Simontacchi G, Francolini G, Bonomo P, Wandael Y, Desideri I, Ricci R, Giansanti D, Scotti V, Livi L. Recent Advances and Current Challenges in Stereotactic Body Radiotherapy for Ultra-Central Lung Tumors. Cancers (Basel) 2024; 16:4135. [PMID: 39766035 PMCID: PMC11674056 DOI: 10.3390/cancers16244135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.e., directly abutting or whose PTV is overlapping critical mediastinal organs. While historical retrospective data are abundant but mostly heterogenous in terms of the definition of ultra-central lesions, dosing regimens and outcomes, prospective data remain scarce, even though recently published studies have given new encouraging results for such delicate treatment scenarios. For this reason, we aimed to review and summarize current knowledge on stereotactic radiation treatment for ultra-central thoracic lesions, highlighting the most recent advances and the messages that can be taken from them. Lastly, we propose a workflow of the necessary steps to identify and treat such patients, therefore helping in elucidating the advantages and caveats of such treatment options.
Collapse
Affiliation(s)
- Viola Salvestrini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Andrea Lastrucci
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Marco Banini
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Mauro Loi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Maria Grazia Carnevale
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Emanuela Olmetto
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pietro Garlatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Gabriele Simontacchi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pierluigi Bonomo
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Yannick Wandael
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Renzo Ricci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | | | - Vieri Scotti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| |
Collapse
|
6
|
Park HS, Rimner A, Amini A, Chang JY, Chun SG, Donington J, Edelman MJ, Gubens MA, Higgins KA, Iyengar P, Juloori A, Movsas B, Nemeth Z, Ning MS, Rodrigues G, Wolf A, Simone CB. Appropriate Use Criteria (AUC) for the Management of Non-Small Cell Lung Cancer in a Central/Ultra-Central Location: Guidelines from the American Radium Society. J Thorac Oncol 2024; 19:1640-1653. [PMID: 39271016 DOI: 10.1016/j.jtho.2024.09.1386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Definitive radiation therapy is considered standard therapy for medically inoperable early-stage NSCLC. Nevertheless, for patients with tumors located near structures such as the proximal tracheobronchial tree, esophagus, heart, spinal cord, and brachial plexus, the optimal management regimen is controversial. The objective was to develop expert multidisciplinary consensus guidelines on managing medically inoperable NSCLC located in a central or ultracentral location relative to critical organs at risk. METHODS Case variants regarding centrally and ultracentrally located lung tumors were developed by the 15-member multidisciplinary American Radium Society (ARS) Thoracic Appropriate Use Criteria (AUC) expert panel. A comprehensive review of the English medical literature was performed from January 1 1946 to December 31 2023 to inform consensus guidelines. Modified Delphi methods were used by the panel to evaluate the variants and procedures, with at least three rating points from median defining agreement/consensus. The guideline was then approved by the ARS Executive Committee and released for public comment per established ARS procedures. RESULTS The Thoracic ARS AUC Panel identified 90 relevant references and obtained consensus in all variants. Radiotherapy alone was considered appropriate, with additional immunotherapy to be considered primarily in the clinical trial setting. Hypofractionated radiotherapy in eight to 18 fractions was considered appropriate for ultracentral lesions near the proximal tracheobronchial tree, upper trachea, and esophagus. For other ultracentral lesions near the heart, great vessels, brachial plexus, and spine, or for non-ultracentral but still central lesions, five-fraction stereotactic body radiation therapy was also considered an appropriate option. Intensity-modulated radiotherapy was considered appropriate and three-dimensional-conformal radiotherapy inappropriate for all variants. Other treatment planning techniques to decrease the risk of overdosing critical organs at risk were also considered. CONCLUSIONS The ARS Thoracic AUC panel has developed multidisciplinary consensus guidelines for various presentations of stage I NSCLC in a central or ultracentral location.
Collapse
Affiliation(s)
- Henry S Park
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut.
| | - Andreas Rimner
- Department of Radiation Oncology, University of Freiberg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California
| | - Joe Y Chang
- Division of Radiation Oncology, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Stephen G Chun
- Division of Radiation Oncology, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas
| | | | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Comprehensive Cancer Center, Philadelphia, Pennsylvania
| | - Matthew A Gubens
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Kristin A Higgins
- Department of Radiation Oncology, City of Hope Atlanta, Newnan, Georgia
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aditya Juloori
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan
| | - Zsuzsanna Nemeth
- Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut
| | - Matthew S Ning
- Division of Radiation Oncology, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas
| | - George Rodrigues
- Division of Radiation Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrea Wolf
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
7
|
Viani GA, Gouveia AG, Louie AV, Arcidiacono F, Simone CB, Tsakiridis T, Carolina Hamamura A, Anselmo P, Moraes FY. Stereotactic ablative radiotherapy for locally advanced non-small cell lung cancer: A systematic review and meta-analysis. Radiother Oncol 2024; 201:110439. [PMID: 39032835 DOI: 10.1016/j.radonc.2024.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION To evaluate the feasibility, efficacy and safety of stereotactic ablative radiotherapy (SABR) to the primary tumor and lymph nodes in patients with locally advanced non-small cell lung cancer (LA-NSCLC) who are ineligible for or refused concomitant chemoradiation. MATERIALS AND METHODS In accordance with the PRISMA and MOOSE guidelines, a systematic review with meta-analysis was conducted. The study included reports that assessed the outcomes of SABR treatment in patients with LA-NSCLC. Studies evaluating SBRT as a boost following primary radiotherapy were excluded. The primary outcomes measured were local control (LC) and overall survival (OS). The secondary endpoint was the incidence of severe toxicity (grades 3-5). A meta-regression analysis was performed to explore the relationship between LC, OS, and severe toxicity. The Biologically Effective Dose (BED) was analyzed as a continuous variable. Statistical significance was defined as a p-value < 0.05. RESULTS A total of seven studies (3 prospective and 4 retrospective studies) involving 268 patients (SBRT to primary and lymph nodes) were included in the analysis. The pooled 1-year LC rate was 80 % (95 % CI: 63-94 %), and the factors significantly associated with LC were BEDGy10 (p = 0.005) and neoadjuvant chemotherapy (p = 0.005). The 1-year and 2-year OS rates were 74 % (95 % CI: 58-90 %) and 55 % (95 % CI: 34-76 %), respectively. Meta-regression analysis indicated a linear relationship between OS and LC, with a 0.7 % increase in OS for each 1 % improvement in LC (p = 0.005). The pooled rate of grade 3 acute toxicity was 5 % (95 % CI: 1-10 %), and the rate of grade 5 toxicity was 1.7 % (95 % CI: 0-3 %). CONCLUSION Promising results (LC and OS) with limited toxicity (feasibility) using SABR in LA-NSCLC warrant further research, emphasizing the need for larger, well-designed trials for further validation of the approach.
Collapse
Affiliation(s)
- Gustavo A Viani
- Ribeirão Preto Medical School, Department of Medical Imagings, Hematology and Oncology of University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil; Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil.
| | - Andre G Gouveia
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; Department of Oncology - Division of Radiation Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Alexander V Louie
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Charles B Simone
- New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Theodoros Tsakiridis
- Department of Oncology - Division of Radiation Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Ana Carolina Hamamura
- Ribeirão Preto Medical School, Department of Medical Imagings, Hematology and Oncology of University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Paola Anselmo
- Radiotherapy Oncology Centre, "S. Maria" Hospital, Terni, Italy
| | - Fabio Y Moraes
- Latin America Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; Department of Oncology - Division of Radiation Oncology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Sidhu C, Tang C, Scott A, Yamini Ramamurty H, Yagnik L, Morey S, Phillips M, Jacques A, Thomas R. Feasibility, safety and outcomes of stereotactic radiotherapy for ultra-central thoracic oligometastatic disease guided by linear endobronchial ultrasound-inserted fiducials. Radiother Oncol 2024; 201:110547. [PMID: 39332638 DOI: 10.1016/j.radonc.2024.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND & PURPOSE Local treatment of oligometastases has been found to improve survival and prognosis. Stereotactic body radiotherapy (SBRT) has emerged as a treatment option for oligometastases but its use in ultra-central (UC) areas can cause significant toxicity and mortality. Fiducial markers (FM) can be used to improve SBRT accuracy, and can be inserted in the central thorax using linear endobronchial ultrasound (EBUS) bronchoscopy. Outcomes of FM-guided SBRT for UC thoracic oligometastases is unknown. METHODS A single-centre retrospective study investigating the feasibility, safety and outcomes of both linear EBUS-inserted FMs and subsequent FM-guided SBRT for UC-oligometastatic disease. Motion analyses of FMs were also performed. RESULTS Thirty outpatients underwent 32 EBUS-FM insertion procedures with 100 % success, and no major procedural mortality or morbidity. Minor complications were 4.8 % incidence of delayed FM-displacement. UC FM-guided SBRT was completed in 20 patients with 99.9 % fractions delivered. Median SBRT dose delivered was 40 Gy over a median of 8 fractions. Majority of adverse events were Grade 1 and there was no SBRT-related mortality. Local control with SBRT was 95 %, with overall survival at 1-year and 3-years of 90 % and 56.3 % respectively. Median overall survival after SBRT was 43.6 months. FM movements in UC areas were recorded being greatest in the superior-inferior axis. CONCLUSION Combined linear EBUS sampling and FM-insertion in UC thoracic oligometastatic disease is feasible and safe. UC-SBRT to oligometastases using FM guidance was found to have minimal complications and associated with moderate survival up to 3 years post-treatment.
Collapse
Affiliation(s)
- Calvin Sidhu
- School of Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Colin Tang
- School of Health Sciences, Edith Cowan University, Joondalup, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alison Scott
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Hema Yamini Ramamurty
- Department of Respiratory Medicine, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Lokesh Yagnik
- Department of Respiratory Medicine, Fiona Stanley Hospital, Perth, Australia
| | - Sue Morey
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | | | - Angela Jacques
- Institute of Health Research, University of Notre Dame, Fremantle, Australia
| | - Rajesh Thomas
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia; School of Medicine, University of Western Australia, Perth, Australia; Institute for Respiratory Health, Perth, Australia
| |
Collapse
|
9
|
Swaminath A, Parpia S, Wierzbicki M, Kundapur V, Faria S, Okawara GS, Tsakiridis TK, Ahmed N, Bujold A, Hirmiz K, Owen T, Leong N, Ramchandar K, Filion E, Lau H, Gabos Z, Thompson R, Yaremko B, Mehiri S, Louie AV, Quan K, Levine MN, Wright JR, Whelan TJ. Stereotactic vs Hypofractionated Radiotherapy for Inoperable Stage I Non-Small Cell Lung Cancer: The LUSTRE Phase 3 Randomized Clinical Trial. JAMA Oncol 2024; 10:1571-1575. [PMID: 39298144 PMCID: PMC11413752 DOI: 10.1001/jamaoncol.2024.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/11/2024] [Indexed: 09/25/2024]
Abstract
Importance Stereotactic body radiotherapy (SBRT) is widely used for stage I medically inoperable non-small cell lung cancer (NSCLC), yet varied results from randomized clinical trials (RCTs) and concerns in treating centrally located tumors persist. Objective To examine whether SBRT would improve local control (LC) compared with hypofractionated conventional radiotherapy (CRT). Design Setting and Participants This phase 3 RCT was conducted in 16 Canadian centers. Patients with medically inoperable stage I (≤5 cm) NSCLC were randomized 2:1 to SBRT of 48 Gy in 4 fractions (peripheral NSCLC) or 60 Gy in 8 fractions (central NSCLC) vs CRT of 60 Gy in 15 fractions. Data were collected from May 2014 to January 2020, and data were analyzed from July 2022 to July 2023. Interventions SBRT or CRT. Main Outcomes and Measures The primary objective was to determine the effectiveness of SBRT compared with CRT based on LC at 3 years. Secondary outcomes included event-free survival, overall survival, and toxic effects. All radiation plans were subject to real-time/final review. Local failures were centrally adjudicated. The study was designed to detect a 3-year LC improvement of SBRT from 75% to 87.5%. The target sample size was 324 patients. Results Of 233 included patients, 119 (51.1%) were male, and the mean (SD) age was 75.4 (7.7) years; the median (IQR) follow-up was 36.1 (26.4-52.8) months. A total of 154 patients received SBRT and 79 received CRT. The 3-year LC was 87.6% (95% CI, 81.9%-93.4%) for SBRT and 81.2% (95% CI, 71.9%-90.5%) for CRT (hazard ratio [HR], 0.61; 95% CI, 0.31-1.20; P = .15). The HR was 1.02 (95% CI, 0.72-1.45; P = .87) for event-free survival and 1.18 (95% CI, 0.80-1.76; P = .40) for overall survival. Minimal acute toxic effects were observed. Among those randomized to SBRT, late grade 3 or 4 toxic effects occurred in 5 of 45 (11%) with central NSCLC and 2 of 109 (1.8%) with peripheral NSCLC; among those randomized to CRT, in 1 of 19 (5%) with central NSCLC and 1 of 60 (2%) with peripheral NSCLC. One patient who received SBRT for an ultracentral lesion (target overlapping proximal bronchus) experienced a possible treatment-related grade 5 event (hemoptysis). Conclusions and Relevance This RCT compared lung SBRT with hypofractionated CRT that included central/ultracentral tumors. No difference was detected in LC between groups. Severe toxic effects were limited, including patients with central tumors. The trial provides important prospective data evaluating SBRT; however, further research is necessary to determine if SBRT is more effective than CRT for peripheral and central NSCLC. Trial Registration ClinicalTrials.gov Identifier: NCT03924869.
Collapse
Affiliation(s)
- Anand Swaminath
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Sameer Parpia
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Marcin Wierzbicki
- Juravinski Cancer Centre, Department of Medical Physics, McMaster University, Hamilton, Ontario, Canada
| | - Vijayananda Kundapur
- Saskatchewan Cancer Agency, Department of Radiation Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sergio Faria
- Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Gordon S. Okawara
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Theodoros K. Tsakiridis
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Naseer Ahmed
- Section of Radiation Oncology, Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba and CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Alexis Bujold
- Département de Radio-oncologie Clinique-Enseignement-Recherche, Centre intégré universitaire de soins et services sociaux de l’Est-de-l’Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Khalid Hirmiz
- Department of Radiation Oncology, Windsor Regional Cancer Centre, Windsor, Ontario, Canada
| | - Timothy Owen
- Department of Oncology, Queen’s University, Cancer Centre of Southeast Ontario at Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nelson Leong
- Allan Blair Cancer Centre, Department of Radiation Oncology, University of Saskatchewan, Regina, Saskatchewan, Canada
| | - Kevin Ramchandar
- Department of Oncology, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Edith Filion
- Radiation Oncology Department, Centre Hospitalier de l’Université de Montréal, Notre Dame Hospital, Montreal, Quebec, Canada
| | - Harold Lau
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Zsolt Gabos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Thompson
- Department of Radiation Oncology, Dalhousie University, Saint John, New Brunswick, Canada
| | - Brian Yaremko
- Department of Radiation Oncology, Western University, London, Ontario, Canada
| | - Selma Mehiri
- Département de Radio-oncologie, CISSS Montérégie, Hôpital Charles Lemoyne, Montreal, Quebec, Canada
| | - Alexander V. Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Kimmen Quan
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Mark N. Levine
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - James R. Wright
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Timothy J. Whelan
- Department of Oncology, McMaster University, and the Division of Radiation Oncology Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Li GJ, Tan H, Nusrat H, Chang J, Chen H, Poon I, Shahi J, Tsao M, Ung Y, Cheung P, Louie AV. Safety and Efficacy of Stereotactic Body Radiation Therapy for Ultra-central Thoracic Tumors: A Single Center Retrospective Review. Int J Radiat Oncol Biol Phys 2024; 120:359-369. [PMID: 38621607 DOI: 10.1016/j.ijrobp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We sought to evaluate the toxicity and efficacy of stereotactic body radiation therapy (SBRT) for ultracentral thoracic tumors at our institution. METHODS AND MATERIALS Patients with ultracentral lung tumors or nodes, defined as having the planning target volume (PTV) overlapping or abutting the central bronchial tree and/or esophagus, treated at our institution with SBRT between 2009 and 2019 were retrospectively reviewed. All SBRT plans were generated with the goal of creating homogenous dose distributions. The primary endpoint was incidence of SBRT-related grade ≥3 toxicity, defined using the Common Terminology Criteria for Adverse Events (V5.0). Secondary endpoints included local failure (LF), progression-free survival (PFS), and overall survival. Competing risk analysis was used to estimate incidence and identify predictors of severe toxicity and LF, while the Kaplan-Meier method was used to estimate PFS and OS. RESULTS A total of 154 patients receiving 162 ultracentral courses of SBRT were included. The most common prescription was 50 Gy in 5 fractions (42%), with doses ranging from 30 to 55 Gy in 5 fractions (BED10 range, 48-115 Gy). The incidence of severe toxicity was 9.4% at 3 years. The most common severe toxicity was pneumonitis (n = 4). There was 1 possible treatment-related death from pneumonitis/pneumonia. Predictors of severe toxicity included increased PTV size, decreased PTV V95%, lung V5 Gy, and lung V20 Gy. The incidence of LF was 14% at 3 years. Predictors of LF included younger age and greater volume of overlap between the PTV and esophagus. The median PFS was 8.8 months, while the median overall survival was 44.0 months. CONCLUSIONS In the largest case series of ultracentral thoracic SBRT to date, homogenously prescribed SBRT was associated with relatively low rates of severe toxicity and LF. Predictors of toxicity should be interpreted in the context of the heterogeneity in toxicities observed.
Collapse
Affiliation(s)
- George J Li
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hendrick Tan
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Humza Nusrat
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joe Chang
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ian Poon
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeevin Shahi
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - May Tsao
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Yee Ung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Cheung
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Piórek A, Płużański A, Knetki-Wróblewska M, Winiarczyk K, Tabor S, Kowalski DM, Krzakowski M. Tracheal Tumors: Clinical Practice Guidelines for Palliative Treatment and Follow-Up. Oncol Rev 2024; 18:1451247. [PMID: 39360235 PMCID: PMC11445028 DOI: 10.3389/or.2024.1451247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
A substantial portion of patients with advanced cancer cannot be cured, regardless of the therapeutic methods employed. Hence, rational palliative causal treatment becomes crucial. Representative studies specifically addressing the exclusive palliative treatment of patients diagnosed with tracheal cancers have not been identified. In most studies, patients treated palliatively constituted a subset of the overall evaluated group. A thorough literature review was conducted, focusing on three types of palliative treatment: palliative radiotherapy, palliative surgical procedures, and systemic treatment for advanced disease. This review uniquely fills a significant gap in the existing literature by providing the first comprehensive and updated clinical practice guidelines specifically focused on the palliative treatment of tracheal tumors. The proposed guidelines emphasize the unique clinical challenges and treatment strategies pertinent to palliative care in tracheal tumors, which are not adequately covered in existing guidelines for other thoracic malignancies.
Collapse
Affiliation(s)
- Aleksandra Piórek
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Adam Płużański
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Knetki-Wróblewska
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Kinga Winiarczyk
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Sylwia Tabor
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Dariusz M Kowalski
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
12
|
Harris JP, Samson P, Owen D, Siva S, Daly ME, Giuliani M. Adapt or Perish: Adaptive RT for NSCLC. Int J Radiat Oncol Biol Phys 2024; 119:1047-1051. [PMID: 38925759 DOI: 10.1016/j.ijrobp.2024.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Jeremy P Harris
- Department of Radiation Oncology, University of California Irvine, Orange, California.
| | - Pamela Samson
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Center, Victoria, Australia
| | - Megan E Daly
- Department of Radiation Oncology, University of California, Davis, California
| | - Meredith Giuliani
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Zhao S, Beckert R, Zhao X, Laugeman E, Robinson CG, Vlacich G, Samson PP, Schiff JP. The First Reported Case of Treating the Ultra-Central Thorax With Cone Beam Computed Tomography-Guided Stereotactic Adaptive Radiotherapy (CT-STAR). Cureus 2024; 16:e62906. [PMID: 39040774 PMCID: PMC11262774 DOI: 10.7759/cureus.62906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
Stereotactic body radiotherapy (SBRT) to the central and ultra-central thorax is associated with infrequent but potentially serious adverse events. Adaptive SBRT, which provides more precise treatment planning and inter-fraction motion management, may allow the delivery of ablative doses to ultra-central tumors with effective local control and improved toxicity profiles. Herein, we describe the first reported case of cone beam computed tomography (CBCT)-guided stereotactic adaptive radiotherapy (CT-STAR) in the treatment of ultra-central non-small cell lung cancer (NSCLC) in a prospective clinical trial (NCT05785845). An 80-year-old man with radiographically diagnosed early-stage NSCLC presented for definitive management of an enlarging ultra-central lung nodule. He was prescribed 55 Gy in five fractions with CT-STAR. A simulation was performed using four-dimensional CT, and patients were planned for treatment at end-exhale breath-hold. Treatment plans were generated using a strict isotoxicity approach, which prioritized organ at risk (OAR) constraints over target coverage. During treatment, daily CBCTs were acquired and used to generate adapted contours and treatment plans based on the patient's anatomy-of-the-day, all while the patient was on the treatment table. The initial and adapted plans were compared using dose-volume histograms, and the superior plan was selected for treatment. The adapted plan was deemed superior and used for treatment in three out of five fractions. The adapted plan provided improved target coverage in two fractions and resolved an OAR hard constraint violation in one fraction. We report the successful treatment of a patient with ultra-central NSCLC utilizing CT-STAR. This case report builds on previously published in silico data to support the viability and dosimetric advantages of CT-STAR in the ablative treatment of this challenging tumor location. Further data are needed to confirm the toxicity and efficacy of this technique.
Collapse
Affiliation(s)
- Stephanie Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Robbie Beckert
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Xiaodong Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Gregory Vlacich
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Joshua P Schiff
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
14
|
Merckel L, Pomp J, Hackett S, van Lier A, van den Dobbelsteen M, Rasing M, Mohamed Hoesein F, Snoeren L, van Es C, van Rossum P, Fast M, Verhoeff J. Stereotactic body radiotherapy of central lung tumours using a 1.5 T MR-linac: First clinical experiences. Clin Transl Radiat Oncol 2024; 45:100744. [PMID: 38406645 PMCID: PMC10885732 DOI: 10.1016/j.ctro.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Background MRI-guidance may aid better discrimination between Organs at Risk (OARs) and target volumes in proximity of the mediastinum. We report the first clinical experiences with Stereotactic Body Radiotherapy (SBRT) of (ultra)central lung tumours on a 1.5 T MR-linac. Materials and Methods Patients with an (ultra)central lung tumour were selected for MR-linac based SBRT treatment. A T2-weighted 3D sequence MRI acquired during free breathing was used for daily plan adaption. Prior to each fraction, contours of Internal Target Volume (ITV) and OARs were deformably propagated and amended by a radiation oncologist. Inter-fractional changes in volumes and coverage of target volumes as well as doses in OARs were evaluated in offline and online treatment plans. Results Ten patients were treated and completed 60 Gy in 8 or 12 fractions. In total 104 fractions were delivered. The median time in the treatment room was 41 min with a median beam-on time of 8.9 min. No grade ≥3 acute toxicity was observed. In two patients, the ITV significantly decreased during treatment (58 % and 37 %, respectively) due to tumour shrinkage. In the other patients, 81 % of online ITVs were within ±15 % of the volume of fraction 1. Comparison with the pre-treatment plan showed that ITV coverage of the online plan was similar in 52 % and improved in 34 % of cases. Adaptation to meet OAR constraints, led to decreased ITV coverage in 14 %. Conclusions We describe the workflow for MR-guided Radiotherapy and the feasibility of using 1.5 T MR-linac for SBRT of (ultra) central lung tumours.
Collapse
Affiliation(s)
- L.G. Merckel
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J. Pomp
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - S.L. Hackett
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - A.L.H.M.W. van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M. van den Dobbelsteen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M.J.A. Rasing
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | - L.M.W. Snoeren
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - C.A. van Es
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P.S.N. van Rossum
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M.F. Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J.J.C. Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
15
|
Csiki E, Simon M, Papp J, Barabás M, Mikáczó J, Gál K, Sipos D, Kovács Á. Stereotactic body radiotherapy in lung cancer: a contemporary review. Pathol Oncol Res 2024; 30:1611709. [PMID: 38476352 PMCID: PMC10928908 DOI: 10.3389/pore.2024.1611709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The treatment of early stage non-small cell lung cancer (NSCLC) has improved enormously in the last two decades. Although surgery is not the only choice, lobectomy is still the gold standard treatment type for operable patients. For inoperable patients stereotactic body radiotherapy (SBRT) should be offered, reaching very high local control and overall survival rates. With SBRT we can precisely irradiate small, well-defined lesions with high doses. To select the appropriate fractionation schedule it is important to determine the size, localization and extent of the lung tumor. The introduction of novel and further developed planning (contouring guidelines, diagnostic image application, planning systems) and delivery techniques (motion management, image guided radiotherapy) led to lower rates of side effects and more conformal target volume coverage. The purpose of this study is to summarize the current developments, randomised studies, guidelines about lung SBRT, with emphasis on the possibility of increasing local control and overall rates in "fit," operable patients as well, so SBRT would be eligible in place of surgery.
Collapse
Affiliation(s)
- Emese Csiki
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Papp
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Barabás
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Johanna Mikáczó
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Kristóf Gál
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Sipos
- Faculty of Health Sciences, University of Pécs, Pecs, Hungary
| | - Árpád Kovács
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
La Rosa A, Mittauer KE, Bassiri N, Rzepczynski AE, Chuong MD, Yarlagadda S, Kutuk T, McAllister NC, Hall MD, Gutierrez AN, Tolakanahalli R, Mehta MP, Kotecha R. Accelerated Hypofractionated Magnetic Resonance Guided Adaptive Radiation Therapy for Ultracentral Lung Tumors. Tomography 2024; 10:169-180. [PMID: 38250959 PMCID: PMC10820032 DOI: 10.3390/tomography10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.
Collapse
Affiliation(s)
- Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Kathryn E. Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Amy E. Rzepczynski
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Nicole C. McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
17
|
Safavi AH, Palma DA, Giuliani ME. Beyond the HILUS Trial: How Can We Improve the Safety of SABR for Ultracentral Thoracic Tumors? Int J Radiat Oncol Biol Phys 2023; 117:1232-1235. [PMID: 37980143 DOI: 10.1016/j.ijrobp.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 11/20/2023]
Affiliation(s)
- Amir H Safavi
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Meredith E Giuliani
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Lindberg K. Balancing tumour control probability and toxicity in SBRT of ultra-central lung tumours - One step forward. Lung Cancer 2023; 184:107343. [PMID: 37625912 DOI: 10.1016/j.lungcan.2023.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Affiliation(s)
- Karin Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; Centre of Pulmonary Oncology, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|