1
|
Inotai K, Bata-Vidács I, Tóth Á, Kosztik J, Varga M, Szekeres A, Nagy I, Nagy I, Dobolyi C, Mörtl M, Székács A, Kukolya J. Glass bead system to study mycotoxin production of Aspergillus spp. on corn and rice starches. Appl Microbiol Biotechnol 2024; 108:348. [PMID: 38809353 PMCID: PMC11136776 DOI: 10.1007/s00253-024-13190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.
Collapse
Affiliation(s)
- Katalin Inotai
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - Ildikó Bata-Vidács
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary.
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary.
| | - Ákos Tóth
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1085, Budapest, Hungary
| | - Judit Kosztik
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - István Nagy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| | - István Nagy
- Seqomics Biotechnology Ltd., Vállalkozók útja 7, 6782, Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, HUN-REN, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Csaba Dobolyi
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100, Gödöllő, Hungary
| | - József Kukolya
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka u. 6, 3300, Eger, Hungary
| |
Collapse
|
2
|
Gomes AL, Petrus RR, de Sousa RLM, Fernandes AM. Aflatoxins and fumonisins in conventional and organic corn: a comprehensive review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:575-586. [PMID: 38530071 DOI: 10.1080/19440049.2024.2330092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
This review analyzes the occurrence and co-exposure of aflatoxins and fumonisins in conventional and organic corn, and compares the vulnerability to contamination of both. The risks of fungal contamination in corn are real, mainly by the genera Aspergillus and Fusarium, producers of aflatoxins and fumonisins, respectively. Aflatoxins, especially AFB1, are related to a high incidence of liver cancer, and the International Agency Research of Cancer (IARC) classified them in group 1A 'carcinogenic to humans'. The occurrence in conventional corn is reported in many countries, including at higher levels than those established by legislation. IARC classified fumonisins in group 2B 'possibly carcinogenic to humans' due to their link with incidence of esophageal cancer. However, comparing corn and organic and conventional by-products from different regions, different results are observed. The co-occurrence of both mycotoxins is a worldwide problem; nevertheless, there is little data on the comparison of the co-exposure of these mycotoxins in corn and derivatives between both systems. It was found that the agricultural system is not a decisive factor in the final contamination, indicating the necessity of effective strategies to reduce contamination and co-exposure at levels that do not pose health risks.
Collapse
Affiliation(s)
- Amanda L Gomes
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Brazil
| | - Rodrigo R Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Brazil
| | - Ricardo L M de Sousa
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Brazil
| | - Andrezza M Fernandes
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Brazil
| |
Collapse
|
3
|
Tan S, Ma F, Wu Y, Xu Y, Niu A, Chen Y, Wang G, Qiu W. The biodiversity of Aspergillus flavus in stored rice grain leads to a decrease in the overall aflatoxin B 1 production in these species. Int J Food Microbiol 2023; 406:110416. [PMID: 37769398 DOI: 10.1016/j.ijfoodmicro.2023.110416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Aspergillus flavus is a significant fungus that poses a threat to food safety by producing mycotoxins in various crops. In this study, A. flavus isolates were obtained from storage rice collected from seven provinces in southern China, and their AFB1 production, biosynthesis genes presence, and diversity were detected. Results showed that 56 out of the 81 A. flavus isolates produced detectable levels of AFB1, and 71 isolates (87.6 %) possessed aflR gene in their AF synthesis gene cluster, while only 41 isolates (50.6 %) had the ver-1 gene present. Genetic diversity analysis using inter-simple sequence repeats (ISSR) markers revealed seven main clusters among the isolates and the genetic similarity coefficients of 81 A. flavus isolates ranged from 0.53 to 1.00. Additionally, coculture assays were conducted using two toxigenic and two atoxigenic isolates from the same grain depot to investigate the effect of intraspecific inhibition on AFB1 production and to assess the AFB1 contamination risk of storage rice. The in situ results demonstrated that the atoxigenic isolates effectively inhibited the AFB1 contamination of toxigenic isolates. These findings provide insight into the genetic diversity of A. flavus isolates populations and highlight the potential food safety hazards of them in stored rice grain in China.
Collapse
Affiliation(s)
- Song Tan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yajie Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuancheng Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuping Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Natarajan S, Balachandar D, Paranidharan V. Inhibitory effects of epiphytic Kluyveromyces marxianus from Indian senna (Cassia angustifolia Vahl.) on growth and aflatoxin production of Aspergillus flavus. Int J Food Microbiol 2023; 406:110368. [PMID: 37639733 DOI: 10.1016/j.ijfoodmicro.2023.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Aspergillus flavus infection and subsequent aflatoxin contamination are considered the major constraints in senna (Cassia angustifolia Vahl.) export. Using native epiphytic yeast to control phytopathogens is a successful strategy for managing plant diseases. In the present investigation, we exploited the antagonistic potential of epiphytic yeast isolates obtained from senna against A. flavus growth and aflatoxin B1 (AFB1) production. Four Kluyveromyces marxianus strains (YSL3, YSL16, YSP12, and YSF9) exhibited vigorous antagonistic activity with a maximum inhibition of 64 %. In vivo evaluation of senna pods showed that K. marxianus strains effectively reduced A. flavus colonization with a population range of 5.87 to 7.08 log10 CFU/g. In contrast, the untreated senna pods were found to have severe fungal colonization with a population of 7.84 log10 CFU/g. In addition, HPLC analysis showed that aflatoxin B1 in senna pods was drastically reduced upon yeast treatment up to 14 DAI. Furthermore, we demonstrated the antifungal action mechanisms of K. marxianus, such as surface colonizing ability on pods, production of antifungal volatiles (VOCs), siderophores, extracellular lytic enzymes, and cell wall binding ability to AFB1. All four strains of K. marxianus showed rapid colonization on the senna pod, and YSP12 reached the maximum population of 7.18 log10 CFU/pod at 9 days after inoculation (DAI). The exposure of A. flavus to K. marxianus VOCs significantly reduced the growth by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Scanning electron microscopic images demonstrated severe mycelial damage and hyphal deformities of A. flavus. In addition, yeast VOCs can reduce aflatoxin biosynthesis in A. flavus by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Gas chromatography-mass spectrometry analysis confirmed the presence of antimicrobial compounds such as dimethyl trisulfide, ethyl acetate, ethanol, 3-methyl butanal, 2-methyl-1-butanol, and 3-methyl-1-butanol in the volatiles. K. marxianus strains produced siderophores and hydrolytic enzymes such as chitinase and β-1,3-glucanase. A higher AFB1 binding ability was observed in the heat-killed cells (47.5 to 70.65 %) than in the viable cells (43.16 to 60.98 %) of K. marxianus. The current study demonstrated that epiphytic K. marxianus isolated from senna could be a successful biocontrol source to reduce aflatoxin contamination in senna pods.
Collapse
Affiliation(s)
- Subramani Natarajan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; School of Biology and Environment Science, Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| |
Collapse
|
5
|
Sinelnikov I, Mikityuk O, Shcherbakova L, Nazarova T, Denisenko Y, Rozhkova A, Statsyuk N, Zorov I. Recombinant Oxidase from Armillaria tabescens as a Potential Tool for Aflatoxin B1 Degradation in Contaminated Cereal Grain. Toxins (Basel) 2023; 15:678. [PMID: 38133182 PMCID: PMC10747862 DOI: 10.3390/toxins15120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Forage grain contamination with aflatoxin B1 (AFB1) is a global problem, so its detoxification with the aim of providing feed safety and cost-efficiency is still a relevant issue. AFB1 degradation by microbial enzymes is considered to be a promising detoxification approach. In this study, we modified an previously developed Pichia pastoris GS115 expression system using a chimeric signal peptide to obtain a new recombinant producer of extracellular AFB1 oxidase (AFO) from Armillaria tabescens (the yield of 0.3 g/L), purified AFO, and selected optimal conditions for AFO-induced AFB1 removal from model solutions. After a 72 h exposure of the AFB1 solution to AFO at pH 6.0 and 30 °C, 80% of the AFB1 was degraded. Treatments with AFO also significantly reduced the AFB1 content in wheat and corn grain inoculated with Aspergillus flavus. In grain samples contaminated with several dozen micrograms of AFB1 per kg, a 48 h exposure to AFO resulted in at least double the reduction in grain contamination compared to the control, while the same treatment of more significantly (~mg/kg) AFB1-polluted samples reduced their contamination by ~40%. These findings prove the potential of the tested AFO for cereal grain decontamination and suggest that additional studies to stabilize AFO and improve its AFB1-degrading efficacy are required.
Collapse
Affiliation(s)
- Igor Sinelnikov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (Y.D.); (A.R.); (I.Z.)
| | - Oleg Mikityuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (N.S.)
| | - Larisa Shcherbakova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (N.S.)
| | - Tatyana Nazarova
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (N.S.)
| | - Yury Denisenko
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (Y.D.); (A.R.); (I.Z.)
| | - Alexandra Rozhkova
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (Y.D.); (A.R.); (I.Z.)
| | - Natalia Statsyuk
- All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, 143050 Moscow, Russia; (O.M.); (N.S.)
| | - Ivan Zorov
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (Y.D.); (A.R.); (I.Z.)
| |
Collapse
|
6
|
Niu A, Tan L, Tan S, Wang G, Qiu W. The Temporal Dynamics of Sensitivity, Aflatoxin Production, and Oxidative Stress of Aspergillus flavus in Response to Cinnamaldehyde Vapor. Foods 2023; 12:4311. [PMID: 38231749 DOI: 10.3390/foods12234311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Cinnamaldehyde (CA), a natural plant extract, possesses notable antimicrobial properties and the ability to inhibit mycotoxin synthesis. This study investigated the effects of different concentrations of gaseous CA on A. flavus and found that higher concentrations exhibited fungicidal effects, while lower concentrations exerted fungistatic effects. Although all A. flavus strains exhibited similar responses to CA vapor, the degree of response varied among them. Notably, A. flavus strains HN-1, JX-3, JX-4, and HN-8 displayed higher sensitivity. Exposure to CA vapor led to slight damage to A. flavus, induced oxidative stress, and inhibited aflatoxin B1 (AFB1) production. Upon removal of the CA vapor, the damaged A. flavus resumed growth, the oxidative stress weakened, and AFB1 production sharply increased in aflatoxin-producing strains. In the whole process, no aflatoxin was detected in aflatoxin-non-producing A. flavus. Moreover, the qRT-PCR results suggest that the recovery of A. flavus and the subsequent surge of AFB1 content following CA removal were regulated by a drug efflux pump and velvet complex proteins. In summary, these findings emphasize the significance of optimizing the targeted concentrations of antifungal EOs and provide valuable insight for their accurate application.
Collapse
Affiliation(s)
- Ajuan Niu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Leilei Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Song Tan
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weifen Qiu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Joint Laboratory for International Cooperation in Grain Circulation and Security, Nanjing 210023, China
| |
Collapse
|
7
|
Smaoui S, D’Amore T, Tarapoulouzi M, Agriopoulou S, Varzakas T. Aflatoxins Contamination in Feed Commodities: From Occurrence and Toxicity to Recent Advances in Analytical Methods and Detoxification. Microorganisms 2023; 11:2614. [PMID: 37894272 PMCID: PMC10609407 DOI: 10.3390/microorganisms11102614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Synthesized by the secondary metabolic pathway in Aspergilli, aflatoxins (AFs) cause economic and health issues and are culpable for serious harmful health and economic matters affecting consumers and global farmers. Consequently, the detection and quantification of AFs in foods/feeds are paramount from food safety and security angles. Nowadays, incessant attempts to develop sensitive and rapid approaches for AFs identification and quantification have been investigated, worldwide regulations have been established, and the safety of degrading enzymes and reaction products formed in the AF degradation process has been explored. Here, occurrences in feed commodities, innovative methods advanced for AFs detection, regulations, preventive strategies, biological detoxification, removal, and degradation methods were deeply reviewed and presented. This paper showed a state-of-the-art and comprehensive review of the recent progress on AF contamination in feed matrices with the intention of inspiring interests in both academia and industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax 3029, Tunisia
| | - Teresa D’Amore
- IRCCS CROB, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, Italy;
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus;
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece;
| |
Collapse
|
8
|
Katati B, Kovacs S, Njapau H, Kachapulula PW, Zwaan BJ, van Diepeningen AD, Schoustra SE. Aflatoxigenic Aspergillus Modulates Aflatoxin-B1 Levels through an Antioxidative Mechanism. J Fungi (Basel) 2023; 9:690. [PMID: 37367626 DOI: 10.3390/jof9060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Aflatoxins (AFs) are considered to play important functions in species of Aspergillus section Flavi including an antioxidative role, as a deterrent against fungivorous insects, and in antibiosis. Atoxigenic Flavi are known to degrade AF-B1 (B1). To better understand the purpose of AF degradation, we investigated the degradation of B1 and AF-G1 (G1) in an antioxidative role in Flavi. Atoxigenic and toxigenic Flavi were treated with artificial B1 and G1 with or without the antioxidant selenium (Se), which is expected to affect levels of AF. After incubations, AF levels were measured by HPLC. To estimate which population would likely be favoured between toxigenic and atoxigenic Flavi under Se, we investigated the fitness, by spore count, of the Flavi as a result of exposure to 0, 0.40, and 0.86 µg/g Se in 3%-sucrose cornmeal agar (3gCMA). Results showed that levels B1 in medium without Se were reduced in all isolates, while G1 did not significantly change. When the medium was treated with Se, toxigenic Flavi significantly digested less B1, while levels of G1 significantly increased. Se did not affect the digestion of B1 in atoxigenic Flavi, and also did not alter levels of G1. Furthermore, atoxigenic strains were significantly fitter than toxigenic strains at Se 0.86 µg/g 3gCMA. Findings show that while atoxigenic Flavi degraded B1, toxigenic Flavi modulated its levels through an antioxidative mechanism to levels less than they produced. Furthermore, B1 was preferred in the antioxidative role compared to G1 in the toxigenic isolates. The higher fitness of atoxigenic over toxigenic counterparts at a plant non-lethal dose of 0.86 µg/g would be a useful attribute for integration in the broader biocontrol prospects of toxigenic Flavi.
Collapse
Affiliation(s)
- Bwalya Katati
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka 310158, Zambia
| | - Stan Kovacs
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henry Njapau
- Mycotoxicology Laboratory, National Institute for Scientific and Industrial Research, Lusaka 310158, Zambia
| | - Paul W Kachapulula
- School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Anne D van Diepeningen
- Biointeractions and Plant Health, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Sijmen E Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
9
|
Boy FR, Casquete R, Gudiño I, Merchán AV, Peromingo B, Benito MJ. Antifungal Effect of Autochthonous Aromatic Plant Extracts on Two Mycotoxigenic Strains of Aspergillus flavus. Foods 2023; 12:foods12091821. [PMID: 37174358 PMCID: PMC10178858 DOI: 10.3390/foods12091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This study identified the compounds obtained from four native Dehesa plants, which were holm oak, elm, blackberry and white rockrose, and evaluated their ability to inhibit the growth and production of aflatoxins B1 and B2 of two strains of mycotoxigenic Aspergillus flavus. For this purpose, phenolic compounds present in the leaves and flowers of the plants were extracted and identified, and subsequently, the effect on the growth of A. flavus, aflatoxin production and the expression of a gene related to its synthesis were studied. Cistus albidus was the plant with the highest concentration of phenolic compounds, followed by Quercus ilex. Phenolic acids and flavonoids were mainly identified, and there was great variability among plant extracts in terms of the type and quantity of compounds. Concentrated and diluted extracts were used for each individual plant. The influence on mold growth was not very significant for any of the extracts. However, those obtained from plants of the genus Quercus ilex, followed by Ulmus sp., were very useful for inhibiting the production of aflatoxin B1 and B2 produced by the two strains of A. flavus. Expression studies of the gene involved in the aflatoxin synthesis pathway did not prove to be effective. The results indicated that using these new natural antifungal compounds from the Dehesa for aflatoxin production inhibition would be desirable, promoting respect for the environment by avoiding the use of chemical fungicides. However, further studies are needed to determine whether the specific phenolic compounds responsible for the antifungal activity of Quercus ilex and Ulmus sp. produce the antifungal activity in pure form, as well as to verify the action mechanism of these compounds.
Collapse
Affiliation(s)
- Francisco Ramiro Boy
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Almudena V Merchán
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Belén Peromingo
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
10
|
New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus. Food Res Int 2023; 163:112300. [PMID: 36596201 DOI: 10.1016/j.foodres.2022.112300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Collapse
|
11
|
Influence of abiotic factors (water activity and temperature) on growth and aflatoxin production by Aspergillus flavus in a chickpea-based medium. Int J Food Microbiol 2022; 379:109841. [DOI: 10.1016/j.ijfoodmicro.2022.109841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022]
|
12
|
Yi Y, Fan K, Shan Y, Fu Q, Zhou X, Zhang Y, Zhang H. Study on sampling scheme for detecting mycotoxin during wheat storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4752-4758. [PMID: 35218023 DOI: 10.1002/jsfa.11840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mycotoxin produced by mould is one of the most serious contamination sources in food security. Safe storage of grain has become more important to control food security. Currently, there is no officially approved or standardized sampling scheme for detecting mycotoxin in grain storage worldwide. RESULTS In this study, deoxynivalenol (DON) was taken as a typical mycotoxin in stored wheat to be detected. Population density of corn weevil could not significantly increase wheat moisture, but wheat moisture was highly significantly and positively correlated with DON content (P < 0.01). Corn weevil density significantly increased the DON content in wheat. DON contamination degree was mainly distributed in the region of 14-20 cm below the surface layer of wheat. In the process of ventilation and dehumidification during the storage period, moisture of wheat decreased slightly with the extension of ventilation, but the DON content in wheat increased significantly. Combined with the analysis of ventilation, DON content in the upper layer and H1 position, where the wind direction is not easy to reach, increased significantly. CONCLUSION Areas with high insect population density (14-20 cm below the surface layer of stored wheat) and low ventilation and high humidification (H1 position in the upper layer) should be taken as the key cutting sample areas for detecting mycotoxin during the period of grain storage. This study provides for the first time a scientific basis for the standardization of the wheat sampling scheme to monitor mycotoxin contamination during wheat storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Kun Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Youtian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Qianzhen Fu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xianqing Zhou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Huiru Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
13
|
Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Microbiol Res 2022; 263:127150. [DOI: 10.1016/j.micres.2022.127150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
14
|
Shabeer S, Asad S, Jamal A, Ali A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins (Basel) 2022; 14:307. [PMID: 35622554 PMCID: PMC9147583 DOI: 10.3390/toxins14050307] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/10/2023] Open
Abstract
Aflatoxin, a type of mycotoxin, is mostly produced by Aspergillus flavus and Aspergillus parasiticus. It is responsible for the loss of billions of dollars to the world economy, by contaminating different crops such as cotton, groundnut, maize, and chilies, and causing immense effects on the health of humans and animals. More than eighteen different types of aflatoxins have been reported to date, and among them, aflatoxins B1, B2, G1, and G2 are the most prevalent and lethal. Early detection of fungal infection plays a key role in the control of aflatoxin contamination. Therefore, different methods, including culture, chromatographic techniques, and molecular assays, are used to determine aflatoxin contamination in crops and food products. Many countries have set a maximum limit of aflatoxin contamination (2-20 ppb) in their food and agriculture commodities for human or animal consumption, and the use of different methods to combat this menace is essential. Fungal infection mostly takes place during the pre- and post-harvest stage of crops, and most of the methods to control aflatoxin are employed for the latter phase. Studies have shown that if correct measures are adopted during the crop development phase, aflatoxin contamination can be reduced by a significant level. Currently, the use of bio-pesticides is the intervention employed in many countries, whereby atoxigenic strains competitively reduce the burden of toxigenic strains in the field, thereby helping to mitigate this problem. This updated review on aflatoxins sheds light on the sources of contamination, and the on occurrence, impact, detection techniques, and management strategies, with a special emphasis on bio-pesticides to control aflatoxins.
Collapse
Affiliation(s)
- Saba Shabeer
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Shahzad Asad
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; (S.S.); (S.A.)
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
15
|
Natarajan S, Balachandar D, Senthil N, Paranidharan V. Interaction of water activity and temperature on growth, gene expression, and aflatoxin B 1 production in Aspergillus flavus on Indian senna (Cassia angustifolia Vahl.). Int J Food Microbiol 2022; 361:109457. [PMID: 34742145 DOI: 10.1016/j.ijfoodmicro.2021.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Senna (Cassia angustifolia Vahl.) is a medicinal crop with laxative properties, and it has significant demand in the global pharmaceutical market. Senna pods are highly susceptible to aflatoxin contamination, and the successful export of pods is hindered due to the regulatory limits of importing countries. The senna pod water activity (aw) from harvest to storage is the key factor determining AFB1 accumulation. The temperature conditions from field to warehouse also interact with pod aw, which influences fungal growth and AFB1 production. The determination of an ideal combination of aw and temperature led to the assessment of the critical control point for AFB1 synthesis in senna. Hence, this study aimed to evaluate the influence of aw (0.99, 0.96, 0.93, 0.90, and 0.87 aw) and temperature (20, 28, and 37 °C) on fungal growth, gene expression (aflR and aflS), and AFB1 production by A. flavus in senna agar medium. The fungus showed the longest lag time (7.7 days) at 20 °C with 0.87 aw. We observed that 0.96 aw (P < 0.01) was optimum for the diametric growth rate at 28 and 37 °C. However, the peak expression of regulatory genes (aflR and aflS) and the maximum AFB1 production were observed only at 28 °C (0.96 aw). The highest growth rate occurred at 37 °C, which did not favor the expression of genes and AFB1 production. However, at 28 °C, it positively correlated with gene expression and AFB1 production. The suppressed expression of regulatory genes and a trace amount of aflatoxin B1 were found at 20 °C with all the tested aw. In our experiments, the low aw (0.87 and 0.90 aw) suppressed the fungal growth, gene expression, and AFB1 production of A. flavus at all of the tested temperatures (20, 28, and 37 °C). The rapid drying of senna pods with a low water activity (≤0.87 aw) and storage at low temperature (20 °C) are ideal conditions to avoid AFB1 and ensure the quality of produce for export.
Collapse
Affiliation(s)
- Subramani Natarajan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India.
| |
Collapse
|
16
|
HU D, XUE Y, KOU X, SHAN C, JIANG C, TANG F, JI H. Growth modeling kinetics of Alternaria alternata in dried jujube at different temperatures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Die HU
- Shihezi University, China
| | | | | | | | | | | | - Hua JI
- Shihezi University, China
| |
Collapse
|
17
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
18
|
In Vitro Biological Control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, Producers of Antifungal Volatile Organic Compounds. Toxins (Basel) 2021; 13:toxins13090663. [PMID: 34564667 PMCID: PMC8471246 DOI: 10.3390/toxins13090663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a toxigenic fungal colonizer of fruits and cereals and may produce one of the most important mycotoxins from a food safety perspective, aflatoxins. Therefore, its growth and mycotoxin production should be effectively avoided to protect consumers' health. Among the safe and green antifungal strategies that can be applied in the field, biocontrol is a recent and emerging strategy that needs to be explored. Yeasts are normally good biocontrol candidates to minimize mold-related hazards and their modes of action are numerous, one of them being the production of volatile organic compounds (VOCs). To this end, the influence of VOCs produced by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793 on growth, expression of the regulatory gene of the aflatoxin pathway (aflR) and mycotoxin production by A. flavus for 21 days was assessed. The results showed that both yeasts, despite producing different kinds of VOCs, had a similar effect on inhibiting growth, mycotoxin biosynthetic gene expression and phenotypic toxin production overall at the mid-incubation period when their synthesis was the greatest. Based on the results, both yeast strains, H. opuntiae L479 and H. uvarum L793, are potentially suitable as a biopreservative agents for inhibiting the growth of A. flavus and reducing aflatoxin accumulation.
Collapse
|
19
|
Impacts of Climate Change Interacting Abiotic Factors on Growth, aflD and aflR Gene Expression and Aflatoxin B 1 Production by Aspergillus flavus Strains In Vitro and on Pistachio Nuts. Toxins (Basel) 2021; 13:toxins13060385. [PMID: 34071166 PMCID: PMC8228473 DOI: 10.3390/toxins13060385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98-0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98-0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.
Collapse
|
20
|
Azman NI, Wan-Mustapha WN, Goh YM, Hassim HA, Selamat J, Samsudin NIP. Climatic conditions and farm practices affected the prevalence of Aspergillus section Flavi on different types of dairy goat's feed. Int J Food Microbiol 2021; 347:109205. [PMID: 33901942 DOI: 10.1016/j.ijfoodmicro.2021.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The present work aimed to determine the prevalence of aflatoxigenic Aspergillus section Flavi on different types of dairy goat's feed samples obtained from four dairy goat's farms around the central region of Peninsular Malaysia, and to examine the effects of climatic conditions (temperature, relative humidity) of the dairy goat's farms, and their feeding and storage practices on the fungal prevalence of different types of dairy goat's feed. A total of 60 goat's feed samples were obtained, and their proximate composition and water activity were determined, following which they were cultivated on DRBC and AFPA for total fungal load and Aspergillus section Flavi load determination, respectively. Fungal isolates were identified morphologically, and toxigenicity potentials of Aspergillus section Flavi isolates were determined using CCA. The temperature and relative humidity data of all farms were obtained from the Malaysian Meteorological Department. The total fungal loads (on DRBC) of the goat's feed samples were log 0.767 to 7.071 CFU/g which included the common feed contaminants such as Aspergillus, Fusarium, and Penicillium. The Aspergillus section Flavi loads (on AFPA) were log 0.667 to 3.206 CFU/g. Farm A yielded the highest number of Aspergillus section Flavi isolates as well as the highest number of aflatoxigenic isolates. It was found that climatic conditions and different practices between farms positively influenced the fungal prevalence on goat's feed samples based on the Pearson correlation analysis. The prevalence of mycotoxigenic isolates on goat's feed warrants for urgent intervention to ensure that goats are being fed with nutritionally adequate and safe feed. The presence of aflatoxigenic Aspergillus section Flavi isolates indicates the risk of aflatoxin B1 contamination on the goat's feed, aflatoxicosis development in the goats, and aflatoxin M1 bio-transformation in the goat's milk. This is a potential threat to the flourishing goat's milk industry in Malaysia.
Collapse
Affiliation(s)
- Nur Izzati Azman
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norazihan Wan-Mustapha
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoh Meng Goh
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hasliza Abu Hassim
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Benito N, Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Influence of a glyphosate-based herbicide on growth parameters and aflatoxin B 1 production by Aspergillus section Flavi on maize grains. Rev Argent Microbiol 2021; 53:162-170. [PMID: 33239238 DOI: 10.1016/j.ram.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glyphosate-based herbicides (GBH) are the main pesticides applied worldwide on maize production. Glyphosate-resistant weeds led to the repeated application of high doses of the pesticide. In addition to environmental conditions, the presence of GBH affects the development of Aspergillus species and aflatoxin B1 (AFB1) production under in vitro conditions. The aim of this work was to evaluate the influence of a commercial GBH on growth and AFB1 production by Aspergillus flavus and Aspergillus parasiticus strains under different water activity (aW) conditions. The following concentrations of active ingredient glyphosate were evaluated: 20, 50, 200 and 500mM. The lag phase prior to growth and growth rate did not change at 20 and 50mM (that is, at field recommended doses) at 0.98 and 0.95 aW; however, at increasing GBH concentrations, between 200 and 500mM, the growth rate decreased at all aW conditions. In general, as the GBH concentration increased, AFB1 production decreased. However, a significant increase in toxin accumulation was found only at one of the aW conditions (0.95) at 21 days with 50mM of GBH in A. flavus and 20 and 50mM of GBH in A. parasiticus. These results show that, even though Aspergillus section Flavi growth did not increase, AFB1 production increased on maize grains at GBH concentrations similar to those of field recommended doses under favorable water availability and temperature conditions.
Collapse
Affiliation(s)
- Nicolás Benito
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Karen Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Cecilia Soledad Carranza
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Melisa Eglé Aluffi
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Fellowship of CONICET, Argentina
| | - Carina Elizabeth Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Member of the Research Career of CONICET, Argentina
| | - Carla Lorena Barberis
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET), Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601 (5800) Río Cuarto, Córdoba, Argentina; Member of the Research Career of CONICET, Argentina.
| |
Collapse
|
22
|
Galván AI, Rodríguez A, Martín A, Serradilla MJ, Martínez-Dorado A, Córdoba MDG. Effect of Temperature during Drying and Storage of Dried Figs on Growth, Gene Expression and Aflatoxin Production. Toxins (Basel) 2021; 13:toxins13020134. [PMID: 33670398 PMCID: PMC7918548 DOI: 10.3390/toxins13020134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Dried fig is susceptible to infection by Aspergillus flavus, the major producer of the carcinogenic mycotoxins. This fruit may be contaminated by the fungus throughout the entire chain production, especially during natural sun-drying, post-harvest, industrial processing, storage, and fruit retailing. Correct management of such critical stages is necessary to prevent mould growth and mycotoxin accumulation, with temperature being one of the main factors associated with these problems. The effect of different temperatures (5, 16, 25, 30, and 37 °C) related to dried-fig processing on growth, one of the regulatory genes of aflatoxin pathway (aflR) and mycotoxin production by A. flavus, was assessed. Firstly, growth and aflatoxin production of 11 A. flavus strains were checked before selecting two strains (M30 and M144) for in-depth studies. Findings showed that there were enormous differences in aflatoxin amounts and related-gene expression between the two selected strains. Based on the results, mild temperatures, and changes in temperature during drying and storage of dried figs should be avoided. Drying should be conducted at temperatures >30 °C and close to 37 °C, while industry processing, storage, and retailing of dried figs are advisable to perform at refrigeration temperatures (<10 °C) to avoid mycotoxin production.
Collapse
Affiliation(s)
- Ana Isabel Galván
- Junta de Extremadura, Finca La Orden-Valdesequera Research Centre (CICYTEX), Horticulture, 06187 Guadajira, Spain;
| | - Alicia Rodríguez
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 86283)
| | - Alberto Martín
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Manuel Joaquín Serradilla
- Junta de Extremadura, Agri-Food Technological Institute of Extremadura (INTAEX-CICYTEX), Department of Postharvest Science Avda, 06007 Badajoz, Spain;
| | - Ana Martínez-Dorado
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Food Quality and Microbiology, School of Agricultural Engineering, University of Extremadura, Avda. de Adolfo Suárez, s/n, 06007 Badajoz, Spain; (A.M.); (A.M.-D.); (M.d.G.C.)
- University Institute for the Research in Agrifood Resources (INURA), University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
23
|
Solanki MK, Droby S, Sionov E. The Wheat Microbiome in Relation to Mycotoxin Occurrence in Stored Grain: An Overview. POSTHARVEST PATHOLOGY 2021. [DOI: 10.1007/978-3-030-56530-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Dövényi-Nagy T, Rácz C, Molnár K, Bakó K, Szláma Z, Jóźwiak Á, Farkas Z, Pócsi I, Dobos AC. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment-A Review. Toxins (Basel) 2020; 12:E768. [PMID: 33291729 PMCID: PMC7761929 DOI: 10.3390/toxins12120768] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Aflatoxins (AFs) are harmful secondary metabolites produced by various moulds, among which Aspergillus flavus is the major AF-producer fungus. These mycotoxins have carcinogenic or acute toxigenic effects on both humans and food producing animals and, therefore, the health risks and also the potential economic damages mounted by them have led to legal restrictions, and several countries have set maximum allowable limits for AF contaminations in food and feed. While colonization of food and feed and AF production by A. flavus are highly supported by the climatic conditions in tropical and subtropical geographic regions, countries in the temperate climate zones are also increasingly exposed to AF-derived health risks due to climate change. In the present study, we have reviewed the available mathematical models as risk assessment tools to predict the possibility of A. flavus infection and levels of AF contaminations in maize in a changing climatic environment. After highlighting the benefits and possible future improvements of these models, we summarize the current agricultural practices used to prevent or, at least, mitigate the deleterious consequences of AF contaminations.
Collapse
Affiliation(s)
- Tamás Dövényi-Nagy
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Csaba Rácz
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Krisztina Molnár
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Károly Bakó
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Zsombor Szláma
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary;
| | - Attila Csaba Dobos
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| |
Collapse
|
25
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
26
|
Recent progress of the effect of environmental factors on Aspergillus flavus growth and aflatoxins production on foods. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyz040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
The contamination of Aspergillus flavus and subsequent aflatoxins (AFs) has been considered as one of the most serious food safety problems due to their acute and chronic adverse effects on humans and animals. This review collects the available information from recent years on the effect of the major environmental factors such as water activity (aw), temperature, CO2, and pH on the fungal growth, the expression of AFs-related genes, and AFs production by A. flavus on foods. In particular, the relationship between the relative expression of key regulatory (aflR and aflS) and structural genes (aflD, aflO, aflQ, etc.) and AFs production under different environmental conditions are collected and discussed. The information collected in this review can be used to design control strategies of A. flavus and AFs contamination in practical applications, primarily during storage and processing. These data suggest that integrating various post-harvest methods with synergistic functions may be more efficient for the control of A. flavus growth and AFs production, although the individual environmental factors alone have an impact.
Collapse
|
27
|
Cebrián E, Rodríguez M, Peromingo B, Bermúdez E, Núñez F. Efficacy of the Combined Protective Cultures of Penicillium chrysogenum and Debaryomyces hansenii for the Control of Ochratoxin A Hazards in Dry-Cured Ham. Toxins (Basel) 2019; 11:E710. [PMID: 31817538 PMCID: PMC6950578 DOI: 10.3390/toxins11120710] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a promising strategy to minimize this hazard. The aim of this work is to evaluate the effect of previously selected Debaryomyces hansenii and Penicillium chrysogenum strains on growth, OTA production, and relative expression of genes involved in the OTA biosynthesis by P. nordicum. P. nordicum was inoculated against the protective cultures individually and combined on dry-cured ham for 21 days at 20 °C. None of the treatments reduced the growth of P. nordicum, but all of them decreased OTA concentration. The lower production of OTA could be related to significant repression of the relative expression of otapksPN and otanpsPN genes of P. nordicum. The efficacy of the combined protective cultures was tested in 24 dry-cured hams in industrial ripening (an 8 month-long production). OTA was detected in nine of the 12 dry-cured hams in the batch inoculated only with P. nordicum. However, in the batch inoculated with both P. nordicum and the combined protective culture, a considerable reduction of OTA contamination was observed. In conclusion, although the efficacy of individual use P. chrysogenum is great, the combination with D. hansenii enhances its antifungal activity and could be proposed as a mixed protective culture to control the hazard of the presence of OTA in dry-cured ham.
Collapse
Affiliation(s)
| | - Mar Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain; (E.C.); (B.P.); (E.B.); (F.N.)
| | | | | | | |
Collapse
|
28
|
Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, Samsudin NIP, Azri FA. Aspergillus section Flavi and Aflatoxins: Occurrence, Detection, and Identification in Raw Peanuts and Peanut-Based Products Along the Supply Chain. Front Microbiol 2019; 10:2602. [PMID: 31824445 PMCID: PMC6886384 DOI: 10.3389/fmicb.2019.02602] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin contamination in foods is a global concern as they are carcinogenic, teratogenic and mutagenic compounds. The aflatoxin-producing fungi, mainly from the Aspergillus section Flavi, are ubiquitous in nature and readily contaminate various food commodities, thereby affecting human's health. The incidence of aflatoxigenic Aspergillus spp. and aflatoxins in various types of food, especially raw peanuts and peanut-based products along the supply chain has been a concern particularly in countries having tropical and sub-tropical climate, including Malaysia. These climatic conditions naturally support the growth of Aspergillus section Flavi, especially A. flavus, particularly when raw peanuts and peanut-based products are stored under inappropriate conditions. Peanut supply chain generally consists of several major stakeholders which include the producers, collectors, exporters, importers, manufacturers, retailers and finally, the consumers. A thorough examination of the processes along the supply chain reveals that Aspergillus section Flavi and aflatoxins could occur at any step along the chain, from farm to table. Thus, this review aims to give an overview on the prevalence of Aspergillus section Flavi and the occurrence of aflatoxins in raw peanuts and peanut-based products, the impact of aflatoxins on global trade, and aflatoxin management in peanuts with a special focus on peanut supply chain in Malaysia. Furthermore, aflatoxin detection and quantification methods as well as the identification of Aspergillus section Flavi are also reviewed herein. This review could help to shed light to the researchers, peanut stakeholders and consumers on the risk of aflatoxin contamination in peanuts along the supply chain.
Collapse
Affiliation(s)
- Mahror Norlia
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Selamat Jinap
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Son Radu
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nik Iskandar Putra Samsudin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farah Asilah Azri
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
29
|
Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, Kang SG. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front Microbiol 2019; 10:2266. [PMID: 31636616 PMCID: PMC6787635 DOI: 10.3389/fmicb.2019.02266] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxins produced by the Aspergillus species are highly toxic, carcinogenic, and cause severe contamination to food sources, leading to serious health consequences. Contaminations by aflatoxins have been reported in food and feed, such as groundnuts, millet, sesame seeds, maize, wheat, rice, fig, spices and cocoa due to fungal infection during pre- and post-harvest conditions. Besides these food products, commercial products like peanut butter, cooking oil and cosmetics have also been reported to be contaminated by aflatoxins. Even a low concentration of aflatoxins is hazardous for human and livestock. The identification and quantification of aflatoxins in food and feed is a major challenge to guarantee food safety. Therefore, developing feasible, sensitive and robust analytical methods is paramount for the identification and quantification of aflatoxins present in low concentrations in food and feed. There are various chromatographic and sensor-based methods used for the detection of aflatoxins. The current review provides insight into the sources of contamination, occurrence, detection techniques, and masked mycotoxin, in addition to management strategies of aflatoxins to ensure food safety and security.
Collapse
Affiliation(s)
- Dipendra K. Mahato
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | | | - Krishna N. Dewangan
- Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sang G. Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
30
|
Casquete R, Benito MJ, Aranda E, Martín A, Ruiz-Moyano S, de Guía Córdoba M. Gene expression of Aspergillus flavus strains on a cheese model system to control aflatoxin production. J Dairy Sci 2019; 102:7765-7772. [PMID: 31301828 DOI: 10.3168/jds.2019-16722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
The expression of genes associated with aflatoxin biosynthesis by different Aspergillus flavus strains growing on a cheese model system has not been studied. To control aflatoxin biosynthesis, it would be useful to understand the changes in gene expression during cheesemaking and relate those changes to toxin production. The objective of this study was to evaluate the effects of pH, water activity, and temperature on the expression of 2 regulatory genes (aflR and aflS) and 1 structural gene (aflP) involved in aflatoxin biosynthesis, using 3 aflatoxigenic A. flavus strains growing on a cheese-based medium and reverse-transcription real-time PCR. The gene expression patterns were influenced by A. flavus strain and environmental conditions. The structural gene aflP and the regulatory genes aflR and aflS showed similar expression patterns in each A. flavus strain, but we also observed inter-strain differences. We observed the highest expression levels at 6 and 9 d of incubation by A. flavus strains CQ8 and CQ103, and saw a decrease in the days following. Strain CQ7 showed the lowest expression of these genes. We observed the highest expression levels of these genes at pH 5.5, water activity 0.95, and 20 to 25°C; strain CQ103 showed a different pattern for the aflS gene, with maximum expression at pH 6.0 on d 6 of incubation. For the 3 strains, we found a strong correlation between the relative expression of the aflR and aflS genes and the concentration of aflatoxins under conditions that simulated cheese ripening. Control strategies to avoid aflatoxin contamination during cheesemaking could use the detection of regulatory gene expression.
Collapse
Affiliation(s)
- Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain.
| | - Emilio Aranda
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Santiago Ruiz-Moyano
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
31
|
Casquete R, Benito MJ, Aranda E, Martín A, Hernández A, Córdoba MDG. Cyclopiazonic acid gene expression as strategy to minimizing mycotoxin contamination in cheese. Fungal Biol 2019; 125:160-165. [PMID: 33518206 DOI: 10.1016/j.funbio.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022]
Abstract
Expression of genes associated with cyclopiazonic acid (CPA) biosynthesis by Penicillium strains in a cheese-based medium has not been previously studied. To control CPA biosynthesis, it would be useful to understand the changes in gene expression during cheese production and relate them to toxin production. The objective was to evaluate the influence of pH, aw, and temperature on expression of dmaT, which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. We assayed three Penicillium strains, Penicillium commune CBS311 and CBS341 and Penicillium camemberti CBS273, using reverse transcription real-time PCR. Our results showed that the expression patterns of the gene were influenced by strain and environmental conditions. The highest expression for the P. commune strains was observed at pH 6.0, 0.95 aw, at 25 or 30 °C, depending on the strain. In contrast, P. camemberti CBS273 showed a lower dmaT expression with a maximum at 25 °C, pH 5.0 and 0.95 aw. Correlation analysis indicated that the three toxigenic strains showed a strong correlation between the relative expression of the dmaT gene and concentration of CPA under conditions simulating cheese ripening. This method could be used to control CPA production in cheese by detection of dmaT expression.
Collapse
Affiliation(s)
- Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain.
| | - Emilio Aranda
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - Alejandro Hernández
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| | - María de Guía Córdoba
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain; Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. De la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
32
|
Blanco-Lizarazo CM, Gamboa-Marín A, Vega S, Jiménez-Rodríguez LP, Sánchez B IC. Assessment of dietary exposure to aflatoxin B 1 from corn arepas in Colombia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1109-1117. [PMID: 31140949 DOI: 10.1080/19440049.2019.1615643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this research was to evaluate dietary exposure to aflatoxin B1 (AFB1) in corn arepas in Colombia. In addition, in this study an assessment considering compliance to the maximum level of AFB1 (4 µg kg-1) for this food was conducted. AFB1 concentration data in corn arepas were obtained from 168 samples. The samples were collected from factories in 16 departments in Colombia. AFB1 was quantified by High-Performance Liquid Chromatography with a fluorescence detector. Consumption data and body weight (b.w.) were measured from the 2005 Colombian National Survey of Nutritional Status. Probabilistic estimates were made by Monte Carlo simulation of dietary exposure and margin of exposure (MOE) segmented by age group. The results showed that 27% of corn arepa samples were contaminated with AFB1, with an average concentration of 15.1 µg kg-1 and a maximum value of 111.1 µg kg-1. The stochastic dietary exposure assessment showed that the age group most exposed was children between 4 and 8 years old (10.014 ng (kg b.w. day)-1). In addition, the MOE values for all age groups were lower than 10,000, indicating a potential risk for consumers. However, in the scenario where AFB1 concentration level complies with the maximum limit of 4 µg kg-1 AFB1, the level of concern could be reduced for the adult population between 14 and 64 years old because the MOE value is above 10,000.
Collapse
Affiliation(s)
- Carla María Blanco-Lizarazo
- a Risk Assessment on Food Safety and Pesticides Group (ERIA) , National Institute of Health (INS) , Bogota , Colombia
| | - Andrea Gamboa-Marín
- a Risk Assessment on Food Safety and Pesticides Group (ERIA) , National Institute of Health (INS) , Bogota , Colombia
| | - Sandra Vega
- b System of Chemical Risk Analyses on Food and Beverages Group, Food and Beverages Direction , National Institute of Food and Drug Surveillance (Invima) , Bogota , Colombia
| | | | - Iván C Sánchez B
- a Risk Assessment on Food Safety and Pesticides Group (ERIA) , National Institute of Health (INS) , Bogota , Colombia
| |
Collapse
|
33
|
Yazid SNE, Thanggavelu H, Mahror N, Selamat J, Samsudin NIP. Formulation of maize- and peanut-based semi-synthetic growth media for the ecophysiological studies of aflatoxigenic Aspergillus flavus in maize and peanut agro-ecosystems. Int J Food Microbiol 2018; 282:57-65. [PMID: 29913332 DOI: 10.1016/j.ijfoodmicro.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 10/14/2022]
Abstract
In studying the ecophysiology of fungal phytopathogens, several stages are involved (in vitro, greenhouse, in planta). Most in vitro studies extensively utilise the general growth media such as Potato Dextrose Agar and Malt Extract Agar. Although the crop components in these media serve as excellent carbon sources and yield luxuriant growth, they are not naturally contaminated with Aspergillus flavus and thus might result in under- or overestimation of its actual toxigenic potentials. Empirical data on the formulation of semi-synthetic growth medium mimicking the natural crop commonly contaminated by A. flavus for the ecophysiological studies in vitro are scarce. The present work was aimed at investigating the ecophysiology of A. flavus on commercial growth media (PDA, MEA); formulating maize- and peanut-based semi-synthetic growth media using two methods of raw material preparation (milling, hot water extraction) at different concentrations (1, 3, 5, 7, 9% w/v), and comparing the ecophysiological parameters between commercial and formulated growth media. Growth rates were obtained by computing the hyphal expansion data into y = mx + c equation. AFB1 was quantified using high performance liquid chromatography with fluorescence detector. Formulated media were found to yield significantly higher growth rates when compared to commercial media. However, commercial media yielded significantly higher AFB1 when compared to all formulated media. Between the two formulations, milling yielded significantly higher growth rates and AFB1 when compared to hot water extraction. Although in vitro data cannot directly extrapolate in planta performance, results obtained in the present work can be used to gauge the actual toxigenic potential of A. flavus in maize and peanut agro-ecosystems.
Collapse
Affiliation(s)
- Siti Nur Ezzati Yazid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hemashangari Thanggavelu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norlia Mahror
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
34
|
Sadhasivam S, Britzi M, Zakin V, Kostyukovsky M, Trostanetsky A, Quinn E, Sionov E. Rapid Detection and Identification of Mycotoxigenic Fungi and Mycotoxins in Stored Wheat Grain. Toxins (Basel) 2017; 9:toxins9100302. [PMID: 28946706 PMCID: PMC5666349 DOI: 10.3390/toxins9100302] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
This study aimed to assess the occurrence of toxigenic fungi and mycotoxin contamination in stored wheat grains by using advanced molecular and analytical techniques. A multiplex polymerase chain reaction (PCR) strategy was established for rapid identification of mycotoxigenic fungi, and an improved analytical method was developed for simultaneous multi-mycotoxin determination in wheat grains by liquid chromatography-tandem mass spectrometry (LC/MS/MS) without the need for any clean-up. The optimized multiplex PCR method was highly specific in detecting fungal species containing species-specific and mycotoxin metabolic pathway genes. The method was applied for evaluation of 34 wheat grain samples collected from storage warehouses for the presence of mycotoxin-producing fungi, and a few samples were found positive for Fusarium and Aspergillus species. Further chemical analysis revealed that 17 samples contained mycotoxins above the level of detection, but only six samples were found to be contaminated over the EU regulatory limits with at least one mycotoxin. Aflatoxin B1, fumonisins, and deoxynivalenol were the most common toxins found in these samples. The results showed a strong correlation between the presence of mycotoxin biosynthesis genes as analyzed by multiplex PCR and mycotoxin detection by LC/MS/MS. The present findings indicate that a combined approach might provide rapid, accurate, and sensitive detection of mycotoxigenic species and mycotoxins in wheat grains.
Collapse
Affiliation(s)
- Sudharsan Sadhasivam
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| | - Malka Britzi
- National Residue Control Laboratory, Kimron Veterinary Institute, Bet Dagan 50250, Israel.
| | - Varda Zakin
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| | - Moshe Kostyukovsky
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| | - Anatoly Trostanetsky
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| | - Elazar Quinn
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| | - Edward Sionov
- Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel.
| |
Collapse
|